/* * This was an experiment to learn about how libc turn floating point strings * into actual values. * * The original code is licensed to and was taken from musl libc, originally * stored at src/internal/floatscan.c * * musl libc is licensed under MIT license: * musl as a whole is licensed under the following standard MIT license: * * ---------------------------------------------------------------------- * Copyright © 2005-2020 Rich Felker, et al. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * The license information of the added code and this modification: * Author: Intel A80486DX2-66 * License: Creative Commons Zero 1.0 Universal */ #include #include #include #include #include #include #include /* wrapping code --- beginning */ const char* fgetc_ptr = NULL; int __shgetc(void); int __shunget(void); long double floatscan(const char* s, int prec); #define shgetc(f) __shgetc() #define shlim(...) #define shunget(f) __shunget() #define FLOAT_TYPE 0 #define DOUBLE_TYPE 1 #define LONG_DOUBLE_TYPE 2 static long long scanexp(FILE *f, int pok); static long double decfloat(FILE *f, int c, int bits, int emin, int sign, int pok); static long double hexfloat(FILE *f, int bits, int emin, int sign, int pok); long double __floatscan(FILE *f, int prec, int pok); /* wrapping code --- end */ /* the original musl libc code --- beginning */ #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 #define LD_B1B_DIG 2 #define LD_B1B_MAX 9007199, 254740991 #define KMAX 128 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 #define LD_B1B_DIG 3 #define LD_B1B_MAX 18, 446744073, 709551615 #define KMAX 2048 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 #define LD_B1B_DIG 4 #define LD_B1B_MAX 10384593, 717069655, 257060992, 658440191 #define KMAX 2048 #else #error Unsupported long double representation #endif #define MASK (KMAX-1) static long long scanexp(FILE *f, int pok) { int c; int x; long long y; int neg = 0; c = shgetc(f); if (c=='+' || c=='-') { neg = (c=='-'); c = shgetc(f); if (c-'0'>=10U && pok) shunget(f); } if (c-'0'>=10U) { shunget(f); return LLONG_MIN; } for (x=0; c-'0'<10U && x=0) { shunget(f); } if (!gotdig) { errno = EINVAL; shlim(f, 0); return 0; } /* Handle zero specially to avoid nasty special cases later */ if (!x[0]) return sign * 0.0; /* Optimize small integers (w/no exponent) and over/under-flow */ if (lrp==dc && dc<10 && (bits>30 || x[0]>>bits==0)) return sign * (long double)x[0]; if (lrp > -emin/2) { errno = ERANGE; return sign * LDBL_MAX * LDBL_MAX; } if (lrp < emin-2*LDBL_MANT_DIG) { errno = ERANGE; return sign * LDBL_MIN * LDBL_MIN; } /* Align incomplete final B1B digit */ if (j) { for (; j<9; j++) x[k]*=10; k++; j=0; } a = 0; z = k; e2 = 0; rp = lrp; /* Optimize small to mid-size integers (even in exp. notation) */ if (lnz<9 && lnz<=rp && rp < 18) { if (rp == 9) return sign * (long double)x[0]; if (rp < 9) return sign * (long double)x[0] / p10s[8-rp]; int bitlim = bits-3*(int)(rp-9); if (bitlim>30 || x[0]>>bitlim==0) return sign * (long double)x[0] * p10s[rp-10]; } /* Drop trailing zeros */ for (; !x[z-1]; z--); /* Align radix point to B1B digit boundary */ if (rp % 9) { int rpm9 = rp>=0 ? rp%9 : rp%9+9; int p10 = p10s[8-rpm9]; uint32_t carry = 0; for (k=a; k!=z; k++) { uint32_t tmp = x[k] % p10; x[k] = x[k]/p10 + carry; carry = 1000000000/p10 * tmp; if (k==a && !x[k]) { a = ((a+1) & MASK); rp -= 9; } } if (carry) x[z++] = carry; rp += 9-rpm9; } /* Upscale until desired number of bits are left of radix point */ while (rp < 9*LD_B1B_DIG || (rp == 9*LD_B1B_DIG && x[a] 1000000000) { carry = tmp / 1000000000; x[k] = tmp % 1000000000; } else { carry = 0; x[k] = tmp; } if (k==((z-1) & MASK) && k!=a && !x[k]) z = k; if (k==a) break; } if (carry) { rp += 9; a = ((a-1) & MASK); if (a == z) { z = (z-1) & MASK; x[(z-1) & MASK] |= x[z]; } x[a] = carry; } } /* Downscale until exactly number of bits are left of radix point */ for (;;) { uint32_t carry = 0; int sh = 1; for (i=0; i th[i]) break; } if (i==LD_B1B_DIG && rp==9*LD_B1B_DIG) break; /* FIXME: find a way to compute optimal sh */ if (rp > 9+9*LD_B1B_DIG) sh = 9; e2 += sh; for (k=a; k!=z; k=(k+1) & MASK) { uint32_t tmp = x[k] & ((1<>sh) + carry; carry = (1000000000>>sh) * tmp; if (k==a && !x[k]) { a = (a+1) & MASK; i--; rp -= 9; } } if (carry) { if (((z+1) & MASK) != a) { x[z] = carry; z = (z+1) & MASK; } else x[(z-1) & MASK] |= 1; } } /* Assemble desired bits into floating point variable */ for (y=i=0; i LDBL_MANT_DIG+e2-emin) { bits = LDBL_MANT_DIG+e2-emin; if (bits<0) bits=0; denormal = 1; } /* Calculate bias term to force rounding, move out lower bits */ if (bits < LDBL_MANT_DIG) { bias = copysignl(scalbn(1, 2*LDBL_MANT_DIG-bits-1), y); frac = fmodl(y, scalbn(1, LDBL_MANT_DIG-bits)); y -= frac; y += bias; } /* Process tail of decimal input so it can affect rounding */ if (((a+i) & MASK) != z) { uint32_t t = x[(a+i) & MASK]; if (t < 500000000 && (t || ((a+i+1) & MASK) != z)) frac += 0.25*sign; else if (t > 500000000) frac += 0.75*sign; else if (t == 500000000) { if (((a+i+1) & MASK) == z) frac += 0.5*sign; else frac += 0.75*sign; } if (LDBL_MANT_DIG-bits >= 2 && !fmodl(frac, 1)) frac++; } y += frac; y -= bias; if (((e2+LDBL_MANT_DIG) & INT_MAX) > emax-5) { if (fabsl(y) >= 2/LDBL_EPSILON) { if (denormal && bits==LDBL_MANT_DIG+e2-emin) denormal = 0; y *= 0.5; e2++; } if (e2+LDBL_MANT_DIG>emax || (denormal && frac)) errno = ERANGE; } return scalbnl(y, e2); } static long double hexfloat(FILE *f, int bits, int emin, int sign, int pok) { uint32_t x = 0; long double y = 0; long double scale = 1; long double bias = 0; int gottail = 0, gotrad = 0, gotdig = 0; long long rp = 0; long long dc = 0; long long e2 = 0; int d; int c; c = shgetc(f); /* Skip leading zeros */ for (; c=='0'; c = shgetc(f)) gotdig = 1; if (c=='.') { gotrad = 1; c = shgetc(f); /* Count zeros after the radix point before significand */ for (rp=0; c=='0'; c = shgetc(f), rp--) gotdig = 1; } for (; c-'0'<10U || (c|32)-'a'<6U || c=='.'; c = shgetc(f)) { if (c=='.') { if (gotrad) break; rp = dc; gotrad = 1; } else { gotdig = 1; if (c > '9') d = (c|32)+10-'a'; else d = c-'0'; if (dc<8) { x = x*16 + d; } else if (dc < LDBL_MANT_DIG/4+1) { y += d*(scale/=16); } else if (d && !gottail) { y += 0.5*scale; gottail = 1; } dc++; } } if (!gotdig) { shunget(f); if (pok) { shunget(f); if (gotrad) shunget(f); } else { shlim(f, 0); } return sign * 0.0; } if (!gotrad) rp = dc; while (dc<8) x *= 16, dc++; if ((c|32)=='p') { e2 = scanexp(f, pok); if (e2 == LLONG_MIN) { if (pok) { shunget(f); } else { shlim(f, 0); return 0; } e2 = 0; } } else { shunget(f); } e2 += 4*rp - 32; if (!x) return sign * 0.0; if (e2 > -emin) { errno = ERANGE; return sign * LDBL_MAX * LDBL_MAX; } if (e2 < emin-2*LDBL_MANT_DIG) { errno = ERANGE; return sign * LDBL_MIN * LDBL_MIN; } while (x < 0x80000000) { if (y>=0.5) { x += x + 1; y += y - 1; } else { x += x; y += y; } e2--; } if (bits > 32+e2-emin) { bits = 32+e2-emin; if (bits<0) bits=0; } if (bits < LDBL_MANT_DIG) bias = copysignl(scalbn(1, 32+LDBL_MANT_DIG-bits-1), sign); if (bits<32 && y && !(x&1)) x++, y=0; y = bias + sign*(long double)x + sign*y; y -= bias; if (!y) errno = ERANGE; return scalbnl(y, e2); } long double __floatscan(FILE *f, int prec, int pok) { int sign = 1; size_t i; int bits; int emin; int c; switch (prec) { case 0: bits = FLT_MANT_DIG; emin = FLT_MIN_EXP-bits; break; case 1: bits = DBL_MANT_DIG; emin = DBL_MIN_EXP-bits; break; case 2: bits = LDBL_MANT_DIG; emin = LDBL_MIN_EXP-bits; break; default: return 0; } while (isspace((c=shgetc(f)))); if (c=='+' || c=='-') { sign -= 2*(c=='-'); c = shgetc(f); } for (i=0; i<8 && (c|32)=="infinity"[i]; i++) if (i<7) c = shgetc(f); if (i==3 || i==8 || (i>3 && pok)) { if (i!=8) { shunget(f); if (pok) for (; i>3; i--) shunget(f); } return sign * INFINITY; } if (!i) for (i=0; i<3 && (c|32)=="nan"[i]; i++) if (i<2) c = shgetc(f); if (i==3) { if (shgetc(f) != '(') { shunget(f); return NAN; } for (i=1; ; i++) { c = shgetc(f); if (c-'0'<10U || c-'A'<26U || c-'a'<26U || c=='_') continue; if (c==')') return NAN; shunget(f); if (!pok) { errno = EINVAL; shlim(f, 0); return 0; } while (i--) shunget(f); return NAN; } return NAN; } if (i) { shunget(f); errno = EINVAL; shlim(f, 0); return 0; } if (c=='0') { c = shgetc(f); if ((c|32) == 'x') return hexfloat(f, bits, emin, sign, pok); shunget(f); c = '0'; } return decfloat(f, c, bits, emin, sign, pok); } /* the original musl libc code --- end */ /* wrapping code --- beginning */ int __shgetc(void) { return *fgetc_ptr++; } int __shunget(void) { fgetc_ptr--; return 0; } long double floatscan(const char* s, int prec) { fgetc_ptr = s; return __floatscan(NULL, prec, 1); } /* wrapping code --- end */ /* test code --- beginning */ int main(int argc, char** argv) { char* value = argc > 1 ? argv[1] : "+314.1e-2"; const int prec = LD_B1B_DIG; printf("Selected precision index = %d\n", prec); long double result = floatscan(value, LONG_DOUBLE_TYPE); printf("Input : %s\n", value); printf("Decimal floating-point format: %Lf\n", result); printf("Double floating-point format : %Lg\n", result); printf("Hexadecimal form : %La\n", result); return 0; } /* test code --- end */