/* * stat.c - cpu/numa related definitions for libproc2 * * Copyright © 2015-2023 Jim Warner * Copyright © 2015-2023 Craig Small * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include "numa.h" #include "procps-private.h" #include "stat.h" #define STAT_FILE "/proc/stat" #define CORE_FILE "/proc/cpuinfo" #define CORE_BUFSIZ 1024 // buf size for line of /proc/cpuinfo #define BUFFER_INCR 8192 // amount i/p buffer allocations grow #define STACKS_INCR 64 // amount reap stack allocations grow #define NEWOLD_INCR 64 // amount jiffs hist allocations grow #define ECORE_BEGIN 10 // PRETEND_E_CORES begin at this cpu# /* ------------------------------------------------------------------------- + this provision just does what its name sugggests - it will create several | E-Core cpus for testing that STAT_TIC_ID_CORE & STAT_TIC_TYPE_CORE stuff! |*/ // #define PRETEND_E_CORES //----------------------------------------------- | // ------------------------------------------------------------------------- + /* ------------------------------------------------------------------------- + this provision can be used to ensure that our Item_table was synchronized | with those enumerators found in the associated header file. It's intended | to only be used locally (& temporarily) at some point prior to a release! | */ // #define ITEMTABLE_DEBUG //----------------------------------------------- | // ------------------------------------------------------------------------- + /* ------------------------------------------------------------------------- + because 'reap' would be forced to duplicate the global SYS stuff in every | TIC type results stack, the following #define can be used to enforce that | only STAT_noop and STAT_extra plus all the STAT_TIC items will be allowed | */ //#define ENFORCE_LOGICAL // ensure only logical items are accepted by reap | // ------------------------------------------------------------------------- + /* --------------------------------------------------------------------------+ this next define is equivalent to the master top's CPU_ZEROTICS provision | except that here in newlib we'll take an opposite approach to our default | */ //#define CPU_IDLE_FORCED // show as 100% idle if fewer ticks than expected | // --------------------------------------------------------------------------+ #ifdef CPU_IDLE_FORCED /* this is the % used in establishing a ticks threshold below which some | cpu will be treated 'idle' rather than reflect misleading tick values | */ #define TICS_THRESHOLD ( 100 / 20 ) #endif struct stat_jifs { unsigned long long user, nice, system, idle, iowait, irq, sirq, stolen, guest, gnice; unsigned long long xusr, xsys, xidl, xbsy, xtot; }; struct stat_core { int id; int type; // 2 = p-core, 1 = e-core, 0 = unsure int thread_1; int thread_2; struct stat_core *next; }; struct stat_data { unsigned long intr; unsigned long ctxt; unsigned long btime; unsigned long procs_created; unsigned long procs_blocked; unsigned long procs_running; }; struct hist_sys { struct stat_data new; struct stat_data old; }; struct hist_tic { int id; int numa_node; int count; struct stat_jifs new; struct stat_jifs old; #ifdef CPU_IDLE_FORCED unsigned long edge; // only valued/valid with cpu summary #endif struct stat_core *core; int saved_id; }; struct stacks_extent { int ext_numstacks; struct stacks_extent *next; struct stat_stack **stacks; }; struct item_support { int num; // includes 'logical_end' delimiter enum stat_item *enums; // includes 'logical_end' delimiter }; struct ext_support { struct item_support *items; // how these stacks are configured struct stacks_extent *extents; // anchor for these extents }; struct tic_support { int n_alloc; // number of below structs allocated int n_inuse; // number of below structs occupied struct hist_tic *tics; // actual new/old jiffies }; struct reap_support { int total; // independently obtained # of cpus/nodes struct ext_support fetch; // extents plus items details struct tic_support hist; // cpu and node jiffies management int n_alloc; // last known anchor pointers allocation struct stat_stack **anchor; // reapable stacks (consolidated extents) int n_alloc_save; // last known results.stacks allocation struct stat_reap result; // summary + stacks returned to caller }; struct stat_info { int refcount; FILE *stat_fp; char *stat_buf; // grows to accommodate all /proc/stat int stat_buf_size; // current size for the above stat_buf int cpu_count_hwm; // if changed, triggers new cores scan struct hist_sys sys_hist; // SYS type management struct hist_tic cpu_hist; // TIC type management for cpu summary struct reap_support cpus; // TIC type management for real cpus struct reap_support nodes; // TIC type management for numa nodes struct ext_support cpu_summary; // supports /proc/stat line #1 results struct ext_support select; // support for 'procps_stat_select()' struct stat_reaped results; // for return to caller after a reap struct stat_result get_this; // for return to caller after a get struct item_support reap_items; // items used for reap (shared among 3) struct item_support select_items; // items unique to select time_t sav_secs; // used by procps_stat_get to limit i/o struct stat_core *cores; // linked list, also linked from hist_tic }; // ___ Results 'Set' Support |||||||||||||||||||||||||||||||||||||||||||||||||| #define setNAME(e) set_stat_ ## e #define setDECL(e) static void setNAME(e) \ (struct stat_result *R, struct hist_sys *S, struct hist_tic *T) // regular assignment #define TIC_set(e,t,x) setDECL(e) { \ (void)S; R->result. t = T->new. x; } #define SYS_set(e,t,x) setDECL(e) { \ (void)T; R->result. t = S->new. x; } // delta assignment #define TICsetH(e,t,x) setDECL(e) { \ (void)S; R->result. t = ( T->new. x - T->old. x ); \ if (R->result. t < 0) R->result. t = 0; } #define SYSsetH(e,t,x) setDECL(e) { \ (void)T; R->result. t = ( S->new. x - S->old. x ); } setDECL(noop) { (void)R; (void)S; (void)T; } setDECL(extra) { (void)S; (void)T; R->result.ull_int = 0; } setDECL(TIC_ID) { (void)S; R->result.s_int = T->id; } setDECL(TIC_ID_CORE) { (void)S; R->result.s_int = (T->core) ? T->core->id : -1; } setDECL(TIC_NUMA_NODE) { (void)S; R->result.s_int = T->numa_node; } setDECL(TIC_NUM_CONTRIBUTORS) { (void)S; R->result.s_int = T->count; } setDECL(TIC_TYPE_CORE) { (void)S; R->result.s_int = (T->core) ? T->core->type : 0; } TIC_set(TIC_USER, ull_int, user) TIC_set(TIC_NICE, ull_int, nice) TIC_set(TIC_SYSTEM, ull_int, system) TIC_set(TIC_IDLE, ull_int, idle) TIC_set(TIC_IOWAIT, ull_int, iowait) TIC_set(TIC_IRQ, ull_int, irq) TIC_set(TIC_SOFTIRQ, ull_int, sirq) TIC_set(TIC_STOLEN, ull_int, stolen) TIC_set(TIC_GUEST, ull_int, guest) TIC_set(TIC_GUEST_NICE, ull_int, gnice) TICsetH(TIC_DELTA_USER, sl_int, user) TICsetH(TIC_DELTA_NICE, sl_int, nice) TICsetH(TIC_DELTA_SYSTEM, sl_int, system) TICsetH(TIC_DELTA_IDLE, sl_int, idle) TICsetH(TIC_DELTA_IOWAIT, sl_int, iowait) TICsetH(TIC_DELTA_IRQ, sl_int, irq) TICsetH(TIC_DELTA_SOFTIRQ, sl_int, sirq) TICsetH(TIC_DELTA_STOLEN, sl_int, stolen) TICsetH(TIC_DELTA_GUEST, sl_int, guest) TICsetH(TIC_DELTA_GUEST_NICE, sl_int, gnice) TIC_set(TIC_SUM_USER, ull_int, xusr) TIC_set(TIC_SUM_SYSTEM, ull_int, xsys) TIC_set(TIC_SUM_IDLE, ull_int, xidl) TIC_set(TIC_SUM_BUSY, ull_int, xbsy) TIC_set(TIC_SUM_TOTAL, ull_int, xtot) TICsetH(TIC_SUM_DELTA_USER, sl_int, xusr) TICsetH(TIC_SUM_DELTA_SYSTEM, sl_int, xsys) TICsetH(TIC_SUM_DELTA_IDLE, sl_int, xidl) TICsetH(TIC_SUM_DELTA_BUSY, sl_int, xbsy) TICsetH(TIC_SUM_DELTA_TOTAL, sl_int, xtot) SYS_set(SYS_CTX_SWITCHES, ul_int, ctxt) SYS_set(SYS_INTERRUPTS, ul_int, intr) SYS_set(SYS_PROC_BLOCKED, ul_int, procs_blocked) SYS_set(SYS_PROC_CREATED, ul_int, procs_created) SYS_set(SYS_PROC_RUNNING, ul_int, procs_running) SYS_set(SYS_TIME_OF_BOOT, ul_int, btime) SYSsetH(SYS_DELTA_CTX_SWITCHES, s_int, ctxt) SYSsetH(SYS_DELTA_INTERRUPTS, s_int, intr) SYSsetH(SYS_DELTA_PROC_BLOCKED, s_int, procs_blocked) SYSsetH(SYS_DELTA_PROC_CREATED, s_int, procs_created) SYSsetH(SYS_DELTA_PROC_RUNNING, s_int, procs_running) #undef setDECL #undef TIC_set #undef SYS_set #undef TICsetH #undef SYSsetH // ___ Sorting Support |||||||||||||||||||||||||||||||||||||||||||||||||||||||| struct sort_parms { int offset; enum stat_sort_order order; }; #define srtNAME(t) sort_stat_ ## t #define srtDECL(t) static int srtNAME(t) \ (const struct stat_stack **A, const struct stat_stack **B, struct sort_parms *P) srtDECL(s_int) { const struct stat_result *a = (*A)->head + P->offset; \ const struct stat_result *b = (*B)->head + P->offset; \ return P->order * (a->result.s_int - b->result.s_int); } srtDECL(sl_int) { const struct stat_result *a = (*A)->head + P->offset; \ const struct stat_result *b = (*B)->head + P->offset; \ return P->order * (a->result.sl_int - b->result.sl_int); } srtDECL(ul_int) { const struct stat_result *a = (*A)->head + P->offset; \ const struct stat_result *b = (*B)->head + P->offset; \ if ( a->result.ul_int > b->result.ul_int ) return P->order > 0 ? 1 : -1; \ if ( a->result.ul_int < b->result.ul_int ) return P->order > 0 ? -1 : 1; \ return 0; } srtDECL(ull_int) { const struct stat_result *a = (*A)->head + P->offset; \ const struct stat_result *b = (*B)->head + P->offset; \ if ( a->result.ull_int > b->result.ull_int ) return P->order > 0 ? 1 : -1; \ if ( a->result.ull_int < b->result.ull_int ) return P->order > 0 ? -1 : 1; \ return 0; } srtDECL(noop) { \ (void)A; (void)B; (void)P; \ return 0; } #undef srtDECL // ___ Controlling Table |||||||||||||||||||||||||||||||||||||||||||||||||||||| typedef void (*SET_t)(struct stat_result *, struct hist_sys *, struct hist_tic *); #ifdef ITEMTABLE_DEBUG #define RS(e) (SET_t)setNAME(e), STAT_ ## e, STRINGIFY(STAT_ ## e) #else #define RS(e) (SET_t)setNAME(e) #endif typedef int (*QSR_t)(const void *, const void *, void *); #define QS(t) (QSR_t)srtNAME(t) #define TS(t) STRINGIFY(t) #define TS_noop "" /* * Need it be said? * This table must be kept in the exact same order as * those 'enum stat_item' guys ! */ static struct { SET_t setsfunc; // the actual result setting routine #ifdef ITEMTABLE_DEBUG int enumnumb; // enumerator (must match position!) char *enum2str; // enumerator name as a char* string #endif QSR_t sortfunc; // sort cmp func for a specific type char *type2str; // the result type as a string value } Item_table[] = { /* setsfunc sortfunc type2str --------------------------- ------------ ----------- */ { RS(noop), QS(noop), TS_noop }, { RS(extra), QS(ull_int), TS_noop }, { RS(TIC_ID), QS(s_int), TS(s_int) }, { RS(TIC_ID_CORE), QS(s_int), TS(s_int) }, { RS(TIC_NUMA_NODE), QS(s_int), TS(s_int) }, { RS(TIC_NUM_CONTRIBUTORS), QS(s_int), TS(s_int) }, { RS(TIC_TYPE_CORE), QS(s_int), TS(s_int) }, { RS(TIC_USER), QS(ull_int), TS(ull_int) }, { RS(TIC_NICE), QS(ull_int), TS(ull_int) }, { RS(TIC_SYSTEM), QS(ull_int), TS(ull_int) }, { RS(TIC_IDLE), QS(ull_int), TS(ull_int) }, { RS(TIC_IOWAIT), QS(ull_int), TS(ull_int) }, { RS(TIC_IRQ), QS(ull_int), TS(ull_int) }, { RS(TIC_SOFTIRQ), QS(ull_int), TS(ull_int) }, { RS(TIC_STOLEN), QS(ull_int), TS(ull_int) }, { RS(TIC_GUEST), QS(ull_int), TS(ull_int) }, { RS(TIC_GUEST_NICE), QS(ull_int), TS(ull_int) }, { RS(TIC_DELTA_USER), QS(sl_int), TS(sl_int) }, { RS(TIC_DELTA_NICE), QS(sl_int), TS(sl_int) }, { RS(TIC_DELTA_SYSTEM), QS(sl_int), TS(sl_int) }, { RS(TIC_DELTA_IDLE), QS(sl_int), TS(sl_int) }, { RS(TIC_DELTA_IOWAIT), QS(sl_int), TS(sl_int) }, { RS(TIC_DELTA_IRQ), QS(sl_int), TS(sl_int) }, { RS(TIC_DELTA_SOFTIRQ), QS(sl_int), TS(sl_int) }, { RS(TIC_DELTA_STOLEN), QS(sl_int), TS(sl_int) }, { RS(TIC_DELTA_GUEST), QS(sl_int), TS(sl_int) }, { RS(TIC_DELTA_GUEST_NICE), QS(sl_int), TS(sl_int) }, { RS(TIC_SUM_USER), QS(ull_int), TS(ull_int) }, { RS(TIC_SUM_SYSTEM), QS(ull_int), TS(ull_int) }, { RS(TIC_SUM_IDLE), QS(ull_int), TS(ull_int) }, { RS(TIC_SUM_BUSY), QS(ull_int), TS(ull_int) }, { RS(TIC_SUM_TOTAL), QS(ull_int), TS(ull_int) }, { RS(TIC_SUM_DELTA_USER), QS(sl_int), TS(sl_int) }, { RS(TIC_SUM_DELTA_SYSTEM), QS(sl_int), TS(sl_int) }, { RS(TIC_SUM_DELTA_IDLE), QS(sl_int), TS(sl_int) }, { RS(TIC_SUM_DELTA_BUSY), QS(sl_int), TS(sl_int) }, { RS(TIC_SUM_DELTA_TOTAL), QS(sl_int), TS(sl_int) }, { RS(SYS_CTX_SWITCHES), QS(ul_int), TS(ul_int) }, { RS(SYS_INTERRUPTS), QS(ul_int), TS(ul_int) }, { RS(SYS_PROC_BLOCKED), QS(ul_int), TS(ul_int) }, { RS(SYS_PROC_CREATED), QS(ul_int), TS(ul_int) }, { RS(SYS_PROC_RUNNING), QS(ul_int), TS(ul_int) }, { RS(SYS_TIME_OF_BOOT), QS(ul_int), TS(ul_int) }, { RS(SYS_DELTA_CTX_SWITCHES), QS(s_int), TS(s_int) }, { RS(SYS_DELTA_INTERRUPTS), QS(s_int), TS(s_int) }, { RS(SYS_DELTA_PROC_BLOCKED), QS(s_int), TS(s_int) }, { RS(SYS_DELTA_PROC_CREATED), QS(s_int), TS(s_int) }, { RS(SYS_DELTA_PROC_RUNNING), QS(s_int), TS(s_int) }, }; /* please note, * 1st enum MUST be kept in sync with highest TIC type * 2nd enum MUST be 1 greater than the highest value of any enum */ #ifdef ENFORCE_LOGICAL enum stat_item STAT_TIC_highest = STAT_TIC_DELTA_GUEST_NICE; #endif enum stat_item STAT_logical_end = MAXTABLE(Item_table); #undef setNAME #undef srtNAME #undef RS #undef QS // ___ Private Functions |||||||||||||||||||||||||||||||||||||||||||||||||||||| static inline void stat_assign_results ( struct stat_stack *stack, struct hist_sys *sys_hist, struct hist_tic *tic_hist) { struct stat_result *this = stack->head; for (;;) { enum stat_item item = this->item; if (item >= STAT_logical_end) break; Item_table[item].setsfunc(this, sys_hist, tic_hist); ++this; } return; } // end: stat_assign_results #define E_CORE 1 #define P_CORE 2 #define VACANT -1 static int stat_core_add ( struct stat_info *info, int a_core, int a_cpu) { struct stat_core *last = NULL, *core = info->cores; while (core) { if (core->id == a_core) { if (a_cpu == core->thread_1 || (a_cpu == core->thread_2)) return 1; core->thread_2 = a_cpu; core->type = P_CORE; return 1; } last = core; core = core->next; } if (!(core = calloc(1, sizeof(struct stat_core)))) return 0; if (last) last->next = core; else info->cores = core; core->id = a_core; core->thread_1 = a_cpu; core->thread_2 = VACANT; return 1; } // end: stat_core_add static void stat_cores_check ( struct stat_info *info) { struct stat_core *core; #ifndef PRETEND_E_CORES int p_core = 0; core = info->cores; while (core) { if (core->type == P_CORE) { p_core = 1; break; } core = core->next; } if (p_core) { core = info->cores; do { if (core->thread_2 == VACANT) core->type = E_CORE; } while ((core = core->next)); } #else core = info->cores; while (core) { core->type = P_CORE; if (core->thread_1 > ECORE_BEGIN || (core->thread_2 > ECORE_BEGIN)) core->type = E_CORE; core = core->next; } #endif } // end: stat_cores_check #undef E_CORE #undef P_CORE #undef VACANT static void stat_cores_link ( struct stat_info *info, struct hist_tic *this) { struct stat_core *core = info->cores; while (core) { if (this->id == core->thread_1 || (this->id == core->thread_2)) { this->core = core; break; } core = core->next; } } // end: stat_cores_link static int stat_cores_verify ( struct stat_info *info) { char buf[CORE_BUFSIZ]; int a_cpu, a_core; FILE *fp; // be tolerant of a missing CORE_FILE ... if (!(fp = fopen(CORE_FILE, "r"))) return 1; for (;;) { if (NULL == fgets(buf, sizeof(buf), fp)) break; if (buf[0] != 'p') continue; if (!strstr(buf, "processor")) continue; sscanf(buf, "processor : %d", &a_cpu); for (;;) { // be tolerant of missing empty line on last processor entry ... if (NULL == fgets(buf, sizeof(buf), fp)) goto wrap_up; // be tolerant of a missing 'core id' on any processor entry ... if (buf[0] == '\n') { a_core = a_cpu; break; } if (buf[0] != 'c') continue; if (!strstr(buf, "core id")) continue; sscanf(buf, "core id : %d", &a_core); break; } if (!stat_core_add(info, a_core, a_cpu)) { fclose(fp); return 0; } } wrap_up: fclose(fp); stat_cores_check(info); return 1; } // end: stat_cores_verify static inline void stat_derive_unique ( struct hist_tic *this) { /* note: we calculate these derived values in a manner consistent with the calculations for cgroup accounting, as nearly as possible ( see linux sources: ./kernel/cgroup/rstat.c, root_cgroup_cputime ) */ this->new.xusr = this->new.user + this->new.nice; this->new.xsys = this->new.system + this->new.irq + this->new.sirq; this->new.xidl = this->new.idle + this->new.iowait; this->new.xtot = this->new.xusr + this->new.xsys + this->new.xidl + this->new.stolen + this->new.guest + this->new.gnice; this->new.xbsy = this->new.xtot - this->new.xidl; // don't distort deltas when cpus are taken offline or brought online if (this->new.xusr < this->old.xusr || (this->new.xsys < this->old.xsys) || (this->new.xidl < this->old.xidl) || (this->new.xbsy < this->old.xbsy) || (this->new.xtot < this->old.xtot)) memcpy(&this->old, &this->new, sizeof(struct stat_jifs)); } // end: stat_derive_unique static void stat_extents_free_all ( struct ext_support *this) { while (this->extents) { struct stacks_extent *p = this->extents; this->extents = this->extents->next; free(p); }; } // end: stat_extents_free_all static inline struct stat_result *stat_itemize_stack ( struct stat_result *p, int depth, enum stat_item *items) { struct stat_result *p_sav = p; int i; for (i = 0; i < depth; i++) { p->item = items[i]; ++p; } return p_sav; } // end: stat_itemize_stack static inline int stat_items_check_failed ( int numitems, enum stat_item *items) { int i; /* if an enum is passed instead of an address of one or more enums, ol' gcc * will silently convert it to an address (possibly NULL). only clang will * offer any sort of warning like the following: * * warning: incompatible integer to pointer conversion passing 'int' to parameter of type 'enum stat_item *' * my_stack = procps_stat_select(info, STAT_noop, num); * ^~~~~~~~~~~~~~~~ */ if (numitems < 1 || (void *)items < (void *)(unsigned long)(2 * STAT_logical_end)) return 1; for (i = 0; i < numitems; i++) { // a stat_item is currently unsigned, but we'll protect our future if (items[i] < 0) return 1; if (items[i] >= STAT_logical_end) { return 1; } } return 0; } // end: stat_items_check_failed static int stat_make_numa_hist ( struct stat_info *info) { struct hist_tic *cpu_ptr, *nod_ptr; int i, node; /* are numa nodes dynamic like online cpus can be? ( and be careful, this libnuma call returns the highest node id in use, ) ( NOT an actual number of nodes - some of those 'slots' might be unused ) */ if (!(info->nodes.total = numa_max_node() + 1)) return 0; if (info->nodes.hist.n_alloc == 0 || (info->nodes.total >= info->nodes.hist.n_alloc)) { info->nodes.hist.n_alloc = info->nodes.total + NEWOLD_INCR; info->nodes.hist.tics = realloc(info->nodes.hist.tics, info->nodes.hist.n_alloc * sizeof(struct hist_tic)); if (info->nodes.hist.tics == NULL) return -ENOMEM; } // forget all of the prior node statistics & anticipate unassigned slots memset(info->nodes.hist.tics, 0, info->nodes.hist.n_alloc * sizeof(struct hist_tic)); nod_ptr = info->nodes.hist.tics; for (i = 0; i < info->nodes.total; i++) { nod_ptr->numa_node = STAT_NODE_INVALID; nod_ptr->id = i; ++nod_ptr; } // spin thru each cpu and value the jiffs for it's numa node for (i = 0; i < info->cpus.hist.n_inuse; i++) { cpu_ptr = info->cpus.hist.tics + i; if (-1 < (node = numa_node_of_cpu(cpu_ptr->id))) { nod_ptr = info->nodes.hist.tics + node; nod_ptr->new.user += cpu_ptr->new.user; nod_ptr->old.user += cpu_ptr->old.user; nod_ptr->new.nice += cpu_ptr->new.nice; nod_ptr->old.nice += cpu_ptr->old.nice; nod_ptr->new.system += cpu_ptr->new.system; nod_ptr->old.system += cpu_ptr->old.system; nod_ptr->new.idle += cpu_ptr->new.idle; nod_ptr->old.idle += cpu_ptr->old.idle; nod_ptr->new.iowait += cpu_ptr->new.iowait; nod_ptr->old.iowait += cpu_ptr->old.iowait; nod_ptr->new.irq += cpu_ptr->new.irq; nod_ptr->old.irq += cpu_ptr->old.irq; nod_ptr->new.sirq += cpu_ptr->new.sirq; nod_ptr->old.sirq += cpu_ptr->old.sirq; nod_ptr->new.stolen += cpu_ptr->new.stolen; nod_ptr->old.stolen += cpu_ptr->old.stolen; nod_ptr->new.guest += cpu_ptr->new.guest; nod_ptr->old.guest += cpu_ptr->old.guest; nod_ptr->new.gnice += cpu_ptr->new.gnice; nod_ptr->old.gnice += cpu_ptr->old.gnice; nod_ptr->new.xusr += cpu_ptr->new.xusr; nod_ptr->old.xusr += cpu_ptr->old.xusr; nod_ptr->new.xsys += cpu_ptr->new.xsys; nod_ptr->old.xsys += cpu_ptr->old.xsys; nod_ptr->new.xidl += cpu_ptr->new.xidl; nod_ptr->old.xidl += cpu_ptr->old.xidl; nod_ptr->new.xbsy += cpu_ptr->new.xbsy; nod_ptr->old.xbsy += cpu_ptr->old.xbsy; nod_ptr->new.xtot += cpu_ptr->new.xtot; nod_ptr->old.xtot += cpu_ptr->old.xtot; cpu_ptr->numa_node = nod_ptr->numa_node = node; nod_ptr->count++; ; } } info->nodes.hist.n_inuse = info->nodes.total; return info->nodes.hist.n_inuse; } // end: stat_make_numa_hist static int stat_read_failed ( struct stat_info *info) { struct hist_tic *sum_ptr, *cpu_ptr; char *bp, *b; int i, rc, num, tot_read; unsigned long long llnum; if (!info->cpus.hist.n_alloc) { info->cpus.hist.tics = calloc(NEWOLD_INCR, sizeof(struct hist_tic)); if (!(info->cpus.hist.tics)) return 1; info->cpus.hist.n_alloc = NEWOLD_INCR; info->cpus.hist.n_inuse = 0; } if (!info->stat_fp && (!(info->stat_fp = fopen(STAT_FILE, "r")))) return 1; fflush(info->stat_fp); rewind(info->stat_fp); #define maxSIZ info->stat_buf_size #define curSIZ ( maxSIZ - tot_read ) #define curPOS ( info->stat_buf + tot_read ) /* we slurp in the entire directory thus avoiding repeated calls to fread, | especially for a massively parallel environment. additionally, each cpu | line is then frozen in time rather than changing until we get around to | accessing it. this helps to minimize (not eliminate) some distortions. | */ tot_read = 0; while ((0 < (num = fread(curPOS, 1, curSIZ, info->stat_fp)))) { tot_read += num; if (tot_read < maxSIZ) break; maxSIZ += BUFFER_INCR; if (!(info->stat_buf = realloc(info->stat_buf, maxSIZ))) return 1; }; #undef maxSIZ #undef curSIZ #undef curPOS if (!feof(info->stat_fp)) { errno = EIO; return 1; } info->stat_buf[tot_read] = '\0'; bp = info->stat_buf; sum_ptr = &info->cpu_hist; // remember summary from last time around memcpy(&sum_ptr->old, &sum_ptr->new, sizeof(struct stat_jifs)); sum_ptr->id = STAT_SUMMARY_ID; // mark as summary sum_ptr->numa_node = STAT_NODE_INVALID; // mark as invalid // now value the cpu summary tics from line #1 #ifdef __CYGWIN__ if (4 > sscanf(bp, "cpu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu" #else if (8 > sscanf(bp, "cpu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu" #endif , &sum_ptr->new.user, &sum_ptr->new.nice, &sum_ptr->new.system , &sum_ptr->new.idle, &sum_ptr->new.iowait, &sum_ptr->new.irq , &sum_ptr->new.sirq, &sum_ptr->new.stolen , &sum_ptr->new.guest, &sum_ptr->new.gnice)) { errno = ERANGE; return 1; } stat_derive_unique(sum_ptr); #ifdef CPU_IDLE_FORCED /* if any cpu accumulated substantially fewer tics than what is expected | we'll force it to be treated as 'idle' so as not to return misleading | statistics (and that sum_ptr->count also serves as first time switch) | */ if (sum_ptr->count) sum_ptr->edge = ((sum_ptr->new.xtot - sum_ptr->old.xtot) / sum_ptr->count) / TICS_THRESHOLD; #endif i = 0; reap_em_again: cpu_ptr = info->cpus.hist.tics + i; // adapt to relocated if reap_em_again do { static int once_sw; bp = 1 + strchr(bp, '\n'); // remember this cpu from last time around memcpy(&cpu_ptr->old, &cpu_ptr->new, sizeof(struct stat_jifs)); // next can be overridden under 'stat_make_numa_hist' cpu_ptr->numa_node = STAT_NODE_INVALID; cpu_ptr->count = 1; #ifdef __CYGWIN__ if (4 > (rc = sscanf(bp, "cpu%d %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu" #else if (8 > (rc = sscanf(bp, "cpu%d %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu" #endif , &cpu_ptr->id , &cpu_ptr->new.user, &cpu_ptr->new.nice, &cpu_ptr->new.system , &cpu_ptr->new.idle, &cpu_ptr->new.iowait, &cpu_ptr->new.irq , &cpu_ptr->new.sirq, &cpu_ptr->new.stolen , &cpu_ptr->new.guest, &cpu_ptr->new.gnice))) { break; // we must tolerate cpus taken offline } stat_derive_unique(cpu_ptr); // force a one time core link for cpu0 (if possible) ... if (!once_sw) once_sw = cpu_ptr->saved_id = -1; /* this happens if cpus are taken offline/brought back online so we better force the proper current core association ... */ if (cpu_ptr->saved_id != cpu_ptr->id) { cpu_ptr->saved_id = cpu_ptr->id; cpu_ptr->core = NULL; stat_cores_link(info, cpu_ptr); } #ifdef CPU_IDLE_FORCED // first time through (that priming read) sum_ptr->edge will be zero | if (cpu_ptr->new.xtot < sum_ptr->edge) { cpu_ptr->old.xtot = cpu_ptr->old.xbsy = cpu_ptr->old.xidl = cpu_ptr->old.xusr = cpu_ptr->old.xsys = cpu_ptr->new.xbsy = cpu_ptr->new.xusr = cpu_ptr->new.xsys = 0; cpu_ptr->new.xtot = cpu_ptr->new.xidl = 1; } #endif ++cpu_ptr; ++i; } while (i < info->cpus.hist.n_alloc); if (i == info->cpus.hist.n_alloc && rc >= 8) { info->cpus.hist.n_alloc += NEWOLD_INCR; info->cpus.hist.tics = realloc(info->cpus.hist.tics, info->cpus.hist.n_alloc * sizeof(struct hist_tic)); if (!(info->cpus.hist.tics)) return 1; goto reap_em_again; } info->cpus.total = info->cpus.hist.n_inuse = sum_ptr->count = i; /* whoa, if a new cpu was brought online, we better ensure that no new cores have now become visible */ if (info->cpu_count_hwm < info->cpus.total) { /* next means it's not the first time, so we'll re-verify. otherwise, procps_stat_new() already setup any cores so that they could be linked above during tics processing. */ if (info->cpu_count_hwm) { if (!stat_cores_verify(info)) return 1; } info->cpu_count_hwm = info->cpus.total; } // remember sys_hist stuff from last time around memcpy(&info->sys_hist.old, &info->sys_hist.new, sizeof(struct stat_data)); llnum = 0; if ((b = strstr(bp, "intr "))) sscanf(b, "intr %llu", &llnum); info->sys_hist.new.intr = llnum; llnum = 0; if ((b = strstr(bp, "ctxt "))) sscanf(b, "ctxt %llu", &llnum); info->sys_hist.new.ctxt = llnum; llnum = 0; if ((b = strstr(bp, "btime "))) sscanf(b, "btime %llu", &llnum); info->sys_hist.new.btime = llnum; llnum = 0; if ((b = strstr(bp, "processes "))) sscanf(b, "processes %llu", &llnum); info->sys_hist.new.procs_created = llnum; llnum = 0; if ((b = strstr(bp, "procs_blocked "))) sscanf(b, "procs_blocked %llu", &llnum); info->sys_hist.new.procs_blocked = llnum; llnum = 0; if ((b = strstr(bp, "procs_running "))) sscanf(b, "procs_running %llu", &llnum); info->sys_hist.new.procs_running = llnum; return 0; } // end: stat_read_failed /* * stat_stacks_alloc(): * * Allocate and initialize one or more stacks each of which is anchored in an * associated context structure. * * All such stacks will have their result structures properly primed with * 'items', while the result itself will be zeroed. * * Returns a stack_extent struct anchoring the 'heads' of each new stack. */ static struct stacks_extent *stat_stacks_alloc ( struct ext_support *this, int maxstacks) { struct stacks_extent *p_blob; struct stat_stack **p_vect; struct stat_stack *p_head; size_t vect_size, head_size, list_size, blob_size; void *v_head, *v_list; int i; vect_size = sizeof(void *) * maxstacks; // size of the addr vectors | vect_size += sizeof(void *); // plus NULL addr delimiter | head_size = sizeof(struct stat_stack); // size of that head struct | list_size = sizeof(struct stat_result) * this->items->num; // any single results stack | blob_size = sizeof(struct stacks_extent); // the extent anchor itself | blob_size += vect_size; // plus room for addr vects | blob_size += head_size * maxstacks; // plus room for head thing | blob_size += list_size * maxstacks; // plus room for our stacks | /* note: all of our memory is allocated in one single blob, facilitating a later free(). | as a minimum, it is important that those result structures themselves always be | contiguous within each stack since they are accessed through relative position. | */ if (NULL == (p_blob = calloc(1, blob_size))) return NULL; p_blob->next = this->extents; // push this extent onto... | this->extents = p_blob; // ...some existing extents | p_vect = (void *)p_blob + sizeof(struct stacks_extent); // prime our vector pointer | p_blob->stacks = p_vect; // set actual vectors start | v_head = (void *)p_vect + vect_size; // prime head pointer start | v_list = v_head + (head_size * maxstacks); // prime our stacks pointer | for (i = 0; i < maxstacks; i++) { p_head = (struct stat_stack *)v_head; p_head->head = stat_itemize_stack((struct stat_result *)v_list, this->items->num, this->items->enums); p_blob->stacks[i] = p_head; v_list += list_size; v_head += head_size; } p_blob->ext_numstacks = maxstacks; return p_blob; } // end: stat_stacks_alloc static int stat_stacks_fetch ( struct stat_info *info, struct reap_support *this) { #define n_alloc this->n_alloc #define n_inuse this->hist.n_inuse #define n_saved this->n_alloc_save struct stacks_extent *ext; int i; // initialize stuff ----------------------------------- if (!this->anchor) { if (!(this->anchor = calloc(sizeof(void *), STACKS_INCR))) return -1; n_alloc = STACKS_INCR; } if (!this->fetch.extents) { if (!(ext = stat_stacks_alloc(&this->fetch, n_alloc))) return -1; // here, errno was set to ENOMEM memcpy(this->anchor, ext->stacks, sizeof(void *) * n_alloc); } // iterate stuff -------------------------------------- for (i = 0; i < n_inuse; i++) { if (!(i < n_alloc)) { n_alloc += STACKS_INCR; if ((!(this->anchor = realloc(this->anchor, sizeof(void *) * n_alloc))) || (!(ext = stat_stacks_alloc(&this->fetch, STACKS_INCR)))) return -1; // here, errno was set to ENOMEM memcpy(this->anchor + i, ext->stacks, sizeof(void *) * STACKS_INCR); } stat_assign_results(this->anchor[i], &info->sys_hist, &this->hist.tics[i]); } // finalize stuff ------------------------------------- /* note: we go to this trouble of maintaining a duplicate of the consolidated | extent stacks addresses represented as our 'anchor' since these ptrs | are exposed to a user (um, not that we don't trust 'em or anything). | plus, we can NULL delimit these ptrs which we couldn't do otherwise. | */ if (n_saved < i + 1) { n_saved = i + 1; if (!(this->result.stacks = realloc(this->result.stacks, sizeof(void *) * n_saved))) return -1; } memcpy(this->result.stacks, this->anchor, sizeof(void *) * i); this->result.stacks[i] = NULL; this->result.total = i; // callers beware, this might be zero (maybe no libnuma.so) ... return this->result.total; #undef n_alloc #undef n_inuse #undef n_saved } // end: stat_stacks_fetch static int stat_stacks_reconfig_maybe ( struct ext_support *this, enum stat_item *items, int numitems) { if (stat_items_check_failed(numitems, items)) return -1; /* is this the first time or have things changed since we were last called? if so, gotta' redo all of our stacks stuff ... */ if (this->items->num != numitems + 1 || memcmp(this->items->enums, items, sizeof(enum stat_item) * numitems)) { // allow for our STAT_logical_end if (!(this->items->enums = realloc(this->items->enums, sizeof(enum stat_item) * (numitems + 1)))) return -1; memcpy(this->items->enums, items, sizeof(enum stat_item) * numitems); this->items->enums[numitems] = STAT_logical_end; this->items->num = numitems + 1; stat_extents_free_all(this); return 1; } return 0; } // end: stat_stacks_reconfig_maybe static struct stat_stack *stat_update_single_stack ( struct stat_info *info, struct ext_support *this) { if (!this->extents && !(stat_stacks_alloc(this, 1))) return NULL; stat_assign_results(this->extents->stacks[0], &info->sys_hist, &info->cpu_hist); return this->extents->stacks[0]; } // end: stat_update_single_stack // ___ Public Functions ||||||||||||||||||||||||||||||||||||||||||||||||||||||| // --- standard required functions -------------------------------------------- /* * procps_stat_new: * * Create a new container to hold the stat information * * The initial refcount is 1, and needs to be decremented * to release the resources of the structure. * * Returns: < 0 on failure, 0 on success along with * a pointer to a new context struct */ PROCPS_EXPORT int procps_stat_new ( struct stat_info **info) { struct stat_info *p; #ifdef ITEMTABLE_DEBUG int i, failed = 0; for (i = 0; i < MAXTABLE(Item_table); i++) { if (i != Item_table[i].enumnumb) { fprintf(stderr, "%s: enum/table error: Item_table[%d] was %s, but its value is %d\n" , __FILE__, i, Item_table[i].enum2str, Item_table[i].enumnumb); failed = 1; } } if (failed) _Exit(EXIT_FAILURE); #endif if (info == NULL || *info != NULL) return -EINVAL; if (!(p = calloc(1, sizeof(struct stat_info)))) return -ENOMEM; if (!(p->stat_buf = calloc(1, BUFFER_INCR))) { free(p); return -ENOMEM; } p->stat_buf_size = BUFFER_INCR; p->refcount = 1; p->results.cpus = &p->cpus.result; p->results.numa = &p->nodes.result; // these 3 are for reap, sharing a single set of items p->cpu_summary.items = p->cpus.fetch.items = p->nodes.fetch.items = &p->reap_items; // the select guy has its own set of items p->select.items = &p->select_items; numa_init(); // identify the current P-cores and E-cores, if any if (!stat_cores_verify(p)) { procps_stat_unref(&p); return -errno; } /* do a priming read here for the following potential benefits: | 1) ensure there will be no problems with subsequent access | 2) make delta results potentially useful, even if 1st time | 3) elimnate need for history distortions 1st time 'switch' | */ if (stat_read_failed(p)) { procps_stat_unref(&p); return -errno; } *info = p; return 0; } // end :procps_stat_new PROCPS_EXPORT int procps_stat_ref ( struct stat_info *info) { if (info == NULL) return -EINVAL; info->refcount++; return info->refcount; } // end: procps_stat_ref PROCPS_EXPORT int procps_stat_unref ( struct stat_info **info) { if (info == NULL || *info == NULL) return -EINVAL; (*info)->refcount--; if ((*info)->refcount < 1) { int errno_sav = errno; if ((*info)->stat_fp) fclose((*info)->stat_fp); if ((*info)->stat_buf) free((*info)->stat_buf); if ((*info)->cpus.anchor) free((*info)->cpus.anchor); if ((*info)->cpus.result.stacks) free((*info)->cpus.result.stacks); if ((*info)->cpus.hist.tics) free((*info)->cpus.hist.tics); if ((*info)->cpus.fetch.extents) stat_extents_free_all(&(*info)->cpus.fetch); if ((*info)->nodes.anchor) free((*info)->nodes.anchor); if ((*info)->nodes.result.stacks) free((*info)->nodes.result.stacks); if ((*info)->nodes.hist.tics) free((*info)->nodes.hist.tics); if ((*info)->nodes.fetch.extents) stat_extents_free_all(&(*info)->nodes.fetch); if ((*info)->cpu_summary.extents) stat_extents_free_all(&(*info)->cpu_summary); if ((*info)->select.extents) stat_extents_free_all(&(*info)->select); if ((*info)->reap_items.enums) free((*info)->reap_items.enums); if ((*info)->select_items.enums) free((*info)->select_items.enums); if ((*info)->cores) { struct stat_core *next, *this = (*info)->cores; while (this) { next = this->next; free(this); this = next; }; } numa_uninit(); free(*info); *info = NULL; errno = errno_sav; return 0; } return (*info)->refcount; } // end: procps_stat_unref // --- variable interface functions ------------------------------------------- PROCPS_EXPORT struct stat_result *procps_stat_get ( struct stat_info *info, enum stat_item item) { time_t cur_secs; errno = EINVAL; if (info == NULL) return NULL; if (item < 0 || item >= STAT_logical_end) return NULL; errno = 0; /* we will NOT read the source file with every call - rather, we'll offer a granularity of 1 second between reads ... */ cur_secs = time(NULL); if (1 <= cur_secs - info->sav_secs) { if (stat_read_failed(info)) return NULL; info->sav_secs = cur_secs; } info->get_this.item = item; // with 'get', we must NOT honor the usual 'noop' guarantee info->get_this.result.ull_int = 0; Item_table[item].setsfunc(&info->get_this, &info->sys_hist, &info->cpu_hist); return &info->get_this; } // end: procps_stat_get /* procps_stat_reap(): * * Harvest all the requested NUMA NODE and/or CPU information providing the * result stacks along with totals and the cpu summary. * * Returns: pointer to a stat_reaped struct on success, NULL on error. */ PROCPS_EXPORT struct stat_reaped *procps_stat_reap ( struct stat_info *info, enum stat_reap_type what, enum stat_item *items, int numitems) { int rc; errno = EINVAL; if (info == NULL || items == NULL) return NULL; if (what != STAT_REAP_CPUS_ONLY && what != STAT_REAP_NUMA_NODES_TOO) return NULL; #ifdef ENFORCE_LOGICAL { int i; // those STAT_SYS_type enum's make sense only to 'select' ... for (i = 0; i < numitems; i++) { if (items[i] > STAT_TIC_highest) return NULL; } } #endif if (0 > (rc = stat_stacks_reconfig_maybe(&info->cpu_summary, items, numitems))) return NULL; // here, errno may be overridden with ENOMEM if (rc) { stat_extents_free_all(&info->cpus.fetch); stat_extents_free_all(&info->nodes.fetch); } errno = 0; if (stat_read_failed(info)) return NULL; info->results.summary = stat_update_single_stack(info, &info->cpu_summary); /* unlike the other 'reap' functions, provides for two separate | stacks pointer arrays exposed to callers. Thus, to keep our promise | of NULL delimit we must ensure a minimal array for the optional one | */ if (!info->nodes.result.stacks && (!(info->nodes.result.stacks = malloc(sizeof(void *))))) return NULL; info->nodes.result.total = 0; info->nodes.result.stacks[0] = NULL; switch (what) { case STAT_REAP_CPUS_ONLY: if (0 > stat_stacks_fetch(info, &info->cpus)) return NULL; break; case STAT_REAP_NUMA_NODES_TOO: /* note: if we're doing numa at all, we must do this numa history | before we build (fetch) cpu stacks since that stat_read_failed | guy always marks (temporarily) all the cpu node ids as invalid | */ if (0 > stat_make_numa_hist(info)) return NULL; if (0 > stat_stacks_fetch(info, &info->nodes)) return NULL; if (0 > stat_stacks_fetch(info, &info->cpus)) return NULL; break; default: return NULL; }; return &info->results; } // end: procps_stat_reap /* procps_stat_select(): * * Harvest all the requested TIC and/or SYS information then return * it in a results stack. * * Returns: pointer to a stat_stack struct on success, NULL on error. */ PROCPS_EXPORT struct stat_stack *procps_stat_select ( struct stat_info *info, enum stat_item *items, int numitems) { errno = EINVAL; if (info == NULL || items == NULL) return NULL; if (0 > stat_stacks_reconfig_maybe(&info->select, items, numitems)) return NULL; // here, errno may be overridden with ENOMEM errno = 0; if (stat_read_failed(info)) return NULL; return stat_update_single_stack(info, &info->select); } // end: procps_stat_select /* * procps_stat_sort(): * * Sort stacks anchored in the passed stack pointers array * based on the designated sort enumerator and specified order. * * Returns those same addresses sorted. * * Note: all of the stacks must be homogeneous (of equal length and content). */ PROCPS_EXPORT struct stat_stack **procps_stat_sort ( struct stat_info *info, struct stat_stack *stacks[], int numstacked, enum stat_item sortitem, enum stat_sort_order order) { struct stat_result *p; struct sort_parms parms; int offset; errno = EINVAL; if (info == NULL || stacks == NULL) return NULL; // a stat_item is currently unsigned, but we'll protect our future if (sortitem < 0 || sortitem >= STAT_logical_end) return NULL; if (order != STAT_SORT_ASCEND && order != STAT_SORT_DESCEND) return NULL; if (numstacked < 2) return stacks; offset = 0; p = stacks[0]->head; for (;;) { if (p->item == sortitem) break; ++offset; if (p->item >= STAT_logical_end) return NULL; ++p; } errno = 0; parms.offset = offset; parms.order = order; qsort_r(stacks, numstacked, sizeof(void *), (QSR_t)Item_table[p->item].sortfunc, &parms); return stacks; } // end: procps_stat_sort // --- special debugging function(s) ------------------------------------------ /* * The following isn't part of the normal programming interface. Rather, * it exists to validate result types referenced in application programs. * * It's used only when: * 1) the 'XTRA_PROCPS_DEBUG' has been defined, or * 2) an #include of 'xtra-procps-debug.h' is used */ PROCPS_EXPORT struct stat_result *xtra_stat_get ( struct stat_info *info, enum stat_item actual_enum, const char *typestr, const char *file, int lineno) { struct stat_result *r = procps_stat_get(info, actual_enum); if (actual_enum < 0 || actual_enum >= STAT_logical_end) { fprintf(stderr, "%s line %d: invalid item = %d, type = %s\n" , file, lineno, actual_enum, typestr); } if (r) { char *str = Item_table[r->item].type2str; if (str[0] && (strcmp(typestr, str))) fprintf(stderr, "%s line %d: was %s, expected %s\n", file, lineno, typestr, str); } return r; } // end: xtra_stat_get_ PROCPS_EXPORT struct stat_result *xtra_stat_val ( int relative_enum, const char *typestr, const struct stat_stack *stack, struct stat_info *info, const char *file, int lineno) { char *str; int i; for (i = 0; stack->head[i].item < STAT_logical_end; i++) ; if (relative_enum < 0 || relative_enum >= i) { fprintf(stderr, "%s line %d: invalid relative_enum = %d, valid range = 0-%d\n" , file, lineno, relative_enum, i-1); return NULL; } str = Item_table[stack->head[relative_enum].item].type2str; if (str[0] && (strcmp(typestr, str))) { fprintf(stderr, "%s line %d: was %s, expected %s\n", file, lineno, typestr, str); } return &stack->head[relative_enum]; (void)info; } // end: xtra_stat_val