/*
 * stat.c - cpu/numa related definitions for libprocps
 *
 * Copyright (C) 2015 Craig Small <csmall@dropbear.xyz>
 * Copyright (C) 2015-2021 Jim Warner <james.warner@comcast.net>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>

#include <sys/stat.h>
#include <sys/types.h>

#include <proc/numa.h>

#include <proc/procps-private.h>
#include <proc/stat.h>


#define STAT_FILE "/proc/stat"

#define BUFFER_INCR   8192             // amount i/p buffer allocations grow
#define STACKS_INCR   64               // amount reap stack allocations grow
#define NEWOLD_INCR   64               // amount jiffs hist allocations grow

/* ------------------------------------------------------------------------- +
   this provision can be used to ensure that our Item_table was synchronized |
   with those enumerators found in the associated header file. It's intended |
   to only be used locally (& temporarily) at some point prior to a release! | */
// #define ITEMTABLE_DEBUG //----------------------------------------------- |
// ------------------------------------------------------------------------- +

/* ------------------------------------------------------------------------- +
   because 'reap' would be forced to duplicate the global SYS stuff in every |
   TIC type results stack, the following #define can be used to enforce that |
   only STAT_noop and STAT_extra plus all the STAT_TIC items will be allowed | */
//#define ENFORCE_LOGICAL  // ensure only logical items are accepted by reap |
// ------------------------------------------------------------------------- +

/* --------------------------------------------------------------------------+
   this next define is equivalent to the master top's CPU_ZEROTICS provision |
   except that here in newlib we'll take an opposite approach to our default | */
//#define CPU_IDLE_FORCED  // show as 100% idle if fewer ticks than expected |
// --------------------------------------------------------------------------+

#ifdef CPU_IDLE_FORCED
    /* this is the % used in establishing a ticks threshold below which some |
       cpu will be treated 'idle' rather than reflect misleading tick values | */
#define TICS_THRESHOLD ( 100 / 20 )
#endif

struct stat_jifs {
    unsigned long long user, nice, system, idle, iowait, irq, sirq, stolen, guest, gnice;
    unsigned long long xusr, xsys, xidl, xbsy, xtot;
};

struct stat_data {
    unsigned long intr;
    unsigned long ctxt;
    unsigned long btime;
    unsigned long procs_created;
    unsigned long procs_blocked;
    unsigned long procs_running;
};

struct hist_sys {
    struct stat_data new;
    struct stat_data old;
};

struct hist_tic {
    int id;
    int numa_node;
    int count;
    struct stat_jifs new;
    struct stat_jifs old;
#ifdef CPU_IDLE_FORCED
    unsigned long edge;                // only valued/valid with cpu summary |
#endif
};

struct stacks_extent {
    int ext_numstacks;
    struct stacks_extent *next;
    struct stat_stack **stacks;
};

struct item_support {
    int num;                           // includes 'logical_end' delimiter
    enum stat_item *enums;             // includes 'logical_end' delimiter
};

struct ext_support {
    struct item_support *items;        // how these stacks are configured
    struct stacks_extent *extents;     // anchor for these extents
};

struct tic_support {
    int n_alloc;                       // number of below structs allocated
    int n_inuse;                       // number of below structs occupied
    struct hist_tic *tics;             // actual new/old jiffies
};

struct reap_support {
    int total;                         // independently obtained # of cpus/nodes
    struct ext_support fetch;          // extents plus items details
    struct tic_support hist;           // cpu and node jiffies management
    int n_alloc;                       // last known anchor pointers allocation
    struct stat_stack **anchor;        // reapable stacks (consolidated extents)
    int n_alloc_save;                  // last known results.stacks allocation
    struct stat_reap result;           // summary + stacks returned to caller
};

struct stat_info {
    int refcount;
    FILE *stat_fp;
    char *stat_buf;                    // grows to accommodate all /proc/stat
    int stat_buf_size;                 // current size for the above stat_buf
    struct hist_sys sys_hist;          // SYS type management
    struct hist_tic cpu_hist;          // TIC type management for cpu summary
    struct reap_support cpus;          // TIC type management for real cpus
    struct reap_support nodes;         // TIC type management for numa nodes
    struct ext_support cpu_summary;    // supports /proc/stat line #1 results
    struct ext_support select;         // support for 'procps_stat_select()'
    struct stat_reaped results;        // for return to caller after a reap
    struct stat_result get_this;       // for return to caller after a get
    struct item_support reap_items;    // items used for reap (shared among 3)
    struct item_support select_items;  // items unique to select
    time_t sav_secs;                   // used by procps_stat_get to limit i/o
};


// ___ Results 'Set' Support ||||||||||||||||||||||||||||||||||||||||||||||||||

#define setNAME(e) set_stat_ ## e
#define setDECL(e) static void setNAME(e) \
    (struct stat_result *R, struct hist_sys *S, struct hist_tic *T)

// regular assignment
#define TIC_set(e,t,x) setDECL(e) { \
    (void)S; R->result. t = T->new. x; }
#define SYS_set(e,t,x) setDECL(e) { \
    (void)T; R->result. t = S->new. x; }
// delta assignment
#define TICsetH(e,t,x) setDECL(e) { \
    (void)S; R->result. t = ( T->new. x - T->old. x ); \
    if (R->result. t < 0) R->result. t = 0; }
#define SYSsetH(e,t,x) setDECL(e) { \
    (void)T; R->result. t = ( S->new. x - S->old. x ); }

setDECL(noop)  { (void)R; (void)S; (void)T; }
setDECL(extra) { (void)S; (void)T; R->result.ull_int = 0; }

setDECL(TIC_ID)                 { (void)S; R->result.s_int = T->id;  }
setDECL(TIC_NUMA_NODE)          { (void)S; R->result.s_int = T->numa_node; }
setDECL(TIC_NUM_CONTRIBUTORS)   { (void)S; R->result.s_int = T->count; }

TIC_set(TIC_USER,                 ull_int,  user)
TIC_set(TIC_NICE,                 ull_int,  nice)
TIC_set(TIC_SYSTEM,               ull_int,  system)
TIC_set(TIC_IDLE,                 ull_int,  idle)
TIC_set(TIC_IOWAIT,               ull_int,  iowait)
TIC_set(TIC_IRQ,                  ull_int,  irq)
TIC_set(TIC_SOFTIRQ,              ull_int,  sirq)
TIC_set(TIC_STOLEN,               ull_int,  stolen)
TIC_set(TIC_GUEST,                ull_int,  guest)
TIC_set(TIC_GUEST_NICE,           ull_int,  gnice)

TICsetH(TIC_DELTA_USER,           sl_int,   user)
TICsetH(TIC_DELTA_NICE,           sl_int,   nice)
TICsetH(TIC_DELTA_SYSTEM,         sl_int,   system)
TICsetH(TIC_DELTA_IDLE,           sl_int,   idle)
TICsetH(TIC_DELTA_IOWAIT,         sl_int,   iowait)
TICsetH(TIC_DELTA_IRQ,            sl_int,   irq)
TICsetH(TIC_DELTA_SOFTIRQ,        sl_int,   sirq)
TICsetH(TIC_DELTA_STOLEN,         sl_int,   stolen)
TICsetH(TIC_DELTA_GUEST,          sl_int,   guest)
TICsetH(TIC_DELTA_GUEST_NICE,     sl_int,   gnice)

TIC_set(TIC_SUM_USER,             ull_int,  xusr)
TIC_set(TIC_SUM_SYSTEM,           ull_int,  xsys)
TIC_set(TIC_SUM_IDLE,             ull_int,  xidl)
TIC_set(TIC_SUM_BUSY,             ull_int,  xbsy)
TIC_set(TIC_SUM_TOTAL,            ull_int,  xtot)

TICsetH(TIC_SUM_DELTA_USER,       sl_int,   xusr)
TICsetH(TIC_SUM_DELTA_SYSTEM,     sl_int,   xsys)
TICsetH(TIC_SUM_DELTA_IDLE,       sl_int,   xidl)
TICsetH(TIC_SUM_DELTA_BUSY,       sl_int,   xbsy)
TICsetH(TIC_SUM_DELTA_TOTAL,      sl_int,   xtot)

SYS_set(SYS_CTX_SWITCHES,         ul_int,   ctxt)
SYS_set(SYS_INTERRUPTS,           ul_int,   intr)
SYS_set(SYS_PROC_BLOCKED,         ul_int,   procs_blocked)
SYS_set(SYS_PROC_CREATED,         ul_int,   procs_created)
SYS_set(SYS_PROC_RUNNING,         ul_int,   procs_running)
SYS_set(SYS_TIME_OF_BOOT,         ul_int,   btime)

SYSsetH(SYS_DELTA_CTX_SWITCHES,   s_int,    ctxt)
SYSsetH(SYS_DELTA_INTERRUPTS,     s_int,    intr)
SYSsetH(SYS_DELTA_PROC_BLOCKED,   s_int,    procs_blocked)
SYSsetH(SYS_DELTA_PROC_CREATED,   s_int,    procs_created)
SYSsetH(SYS_DELTA_PROC_RUNNING,   s_int,    procs_running)

#undef setDECL
#undef TIC_set
#undef SYS_set
#undef TICsetH
#undef SYSsetH


// ___ Sorting Support ||||||||||||||||||||||||||||||||||||||||||||||||||||||||

struct sort_parms {
    int offset;
    enum stat_sort_order order;
};

#define srtNAME(t) sort_stat_ ## t
#define srtDECL(t) static int srtNAME(t) \
    (const struct stat_stack **A, const struct stat_stack **B, struct sort_parms *P)

srtDECL(s_int) {
    const struct stat_result *a = (*A)->head + P->offset; \
    const struct stat_result *b = (*B)->head + P->offset; \
    return P->order * (a->result.s_int - b->result.s_int);
}

srtDECL(sl_int) {
    const struct stat_result *a = (*A)->head + P->offset; \
    const struct stat_result *b = (*B)->head + P->offset; \
    return P->order * (a->result.sl_int - b->result.sl_int);
}

srtDECL(ul_int) {
    const struct stat_result *a = (*A)->head + P->offset; \
    const struct stat_result *b = (*B)->head + P->offset; \
    if ( a->result.ul_int > b->result.ul_int ) return P->order > 0 ?  1 : -1; \
    if ( a->result.ul_int < b->result.ul_int ) return P->order > 0 ? -1 :  1; \
    return 0;
}

srtDECL(ull_int) {
    const struct stat_result *a = (*A)->head + P->offset; \
    const struct stat_result *b = (*B)->head + P->offset; \
    if ( a->result.ull_int > b->result.ull_int ) return P->order > 0 ?  1 : -1; \
    if ( a->result.ull_int < b->result.ull_int ) return P->order > 0 ? -1 :  1; \
    return 0;
}

srtDECL(noop) { \
    (void)A; (void)B; (void)P; \
    return 0;
}

#undef srtDECL


// ___ Controlling Table ||||||||||||||||||||||||||||||||||||||||||||||||||||||

typedef void (*SET_t)(struct stat_result *, struct hist_sys *, struct hist_tic *);
#ifdef ITEMTABLE_DEBUG
#define RS(e) (SET_t)setNAME(e), STAT_ ## e, STRINGIFY(STAT_ ## e)
#else
#define RS(e) (SET_t)setNAME(e)
#endif

typedef int  (*QSR_t)(const void *, const void *, void *);
#define QS(t) (QSR_t)srtNAME(t)

#define TS(t) STRINGIFY(t)
#define TS_noop ""

        /*
         * Need it be said?
         * This table must be kept in the exact same order as
         * those 'enum stat_item' guys ! */
static struct {
    SET_t setsfunc;              // the actual result setting routine
#ifdef ITEMTABLE_DEBUG
    int   enumnumb;              // enumerator (must match position!)
    char *enum2str;              // enumerator name as a char* string
#endif
    QSR_t sortfunc;              // sort cmp func for a specific type
    char *type2str;              // the result type as a string value
} Item_table[] = {
/*  setsfunc                     sortfunc      type2str
    ---------------------------  ------------  ----------- */
  { RS(noop),                    QS(noop),     TS_noop     },
  { RS(extra),                   QS(ull_int),  TS_noop     },

  { RS(TIC_ID),                  QS(s_int),    TS(s_int)   },
  { RS(TIC_NUMA_NODE),           QS(s_int),    TS(s_int)   },
  { RS(TIC_NUM_CONTRIBUTORS),    QS(s_int),    TS(s_int)   },
  { RS(TIC_USER),                QS(ull_int),  TS(ull_int) },
  { RS(TIC_NICE),                QS(ull_int),  TS(ull_int) },
  { RS(TIC_SYSTEM),              QS(ull_int),  TS(ull_int) },
  { RS(TIC_IDLE),                QS(ull_int),  TS(ull_int) },
  { RS(TIC_IOWAIT),              QS(ull_int),  TS(ull_int) },
  { RS(TIC_IRQ),                 QS(ull_int),  TS(ull_int) },
  { RS(TIC_SOFTIRQ),             QS(ull_int),  TS(ull_int) },
  { RS(TIC_STOLEN),              QS(ull_int),  TS(ull_int) },
  { RS(TIC_GUEST),               QS(ull_int),  TS(ull_int) },
  { RS(TIC_GUEST_NICE),          QS(ull_int),  TS(ull_int) },

  { RS(TIC_DELTA_USER),          QS(sl_int),   TS(sl_int)  },
  { RS(TIC_DELTA_NICE),          QS(sl_int),   TS(sl_int)  },
  { RS(TIC_DELTA_SYSTEM),        QS(sl_int),   TS(sl_int)  },
  { RS(TIC_DELTA_IDLE),          QS(sl_int),   TS(sl_int)  },
  { RS(TIC_DELTA_IOWAIT),        QS(sl_int),   TS(sl_int)  },
  { RS(TIC_DELTA_IRQ),           QS(sl_int),   TS(sl_int)  },
  { RS(TIC_DELTA_SOFTIRQ),       QS(sl_int),   TS(sl_int)  },
  { RS(TIC_DELTA_STOLEN),        QS(sl_int),   TS(sl_int)  },
  { RS(TIC_DELTA_GUEST),         QS(sl_int),   TS(sl_int)  },
  { RS(TIC_DELTA_GUEST_NICE),    QS(sl_int),   TS(sl_int)  },

  { RS(TIC_SUM_USER),            QS(ull_int),  TS(ull_int) },
  { RS(TIC_SUM_SYSTEM),          QS(ull_int),  TS(ull_int) },
  { RS(TIC_SUM_IDLE),            QS(ull_int),  TS(ull_int) },
  { RS(TIC_SUM_BUSY),            QS(ull_int),  TS(ull_int) },
  { RS(TIC_SUM_TOTAL),           QS(ull_int),  TS(ull_int) },

  { RS(TIC_SUM_DELTA_USER),      QS(sl_int),   TS(sl_int)  },
  { RS(TIC_SUM_DELTA_SYSTEM),    QS(sl_int),   TS(sl_int)  },
  { RS(TIC_SUM_DELTA_IDLE),      QS(sl_int),   TS(sl_int)  },
  { RS(TIC_SUM_DELTA_BUSY),      QS(sl_int),   TS(sl_int)  },
  { RS(TIC_SUM_DELTA_TOTAL),     QS(sl_int),   TS(sl_int)  },

  { RS(SYS_CTX_SWITCHES),        QS(ul_int),   TS(ul_int)  },
  { RS(SYS_INTERRUPTS),          QS(ul_int),   TS(ul_int)  },
  { RS(SYS_PROC_BLOCKED),        QS(ul_int),   TS(ul_int)  },
  { RS(SYS_PROC_CREATED),        QS(ul_int),   TS(ul_int)  },
  { RS(SYS_PROC_RUNNING),        QS(ul_int),   TS(ul_int)  },
  { RS(SYS_TIME_OF_BOOT),        QS(ul_int),   TS(ul_int)  },

  { RS(SYS_DELTA_CTX_SWITCHES),  QS(s_int),    TS(s_int)   },
  { RS(SYS_DELTA_INTERRUPTS),    QS(s_int),    TS(s_int)   },
  { RS(SYS_DELTA_PROC_BLOCKED),  QS(s_int),    TS(s_int)   },
  { RS(SYS_DELTA_PROC_CREATED),  QS(s_int),    TS(s_int)   },
  { RS(SYS_DELTA_PROC_RUNNING),  QS(s_int),    TS(s_int)   },
};

    /* please note,
     * 1st enum MUST be kept in sync with highest TIC type
     * 2nd enum MUST be 1 greater than the highest value of any enum */
#ifdef ENFORCE_LOGICAL
enum stat_item STAT_TIC_highest = STAT_TIC_DELTA_GUEST_NICE;
#endif
enum stat_item STAT_logical_end = MAXTABLE(Item_table);

#undef setNAME
#undef srtNAME
#undef RS
#undef QS


// ___ Private Functions ||||||||||||||||||||||||||||||||||||||||||||||||||||||

static inline void stat_assign_results (
        struct stat_stack *stack,
        struct hist_sys *sys_hist,
        struct hist_tic *tic_hist)
{
    struct stat_result *this = stack->head;

    for (;;) {
        enum stat_item item = this->item;
        if (item >= STAT_logical_end)
            break;
        Item_table[item].setsfunc(this, sys_hist, tic_hist);
        ++this;
    }
    return;
} // end: stat_assign_results


static inline void stat_derive_unique (
        struct hist_tic *this)
{
    /* note: we calculate these derived values in a manner consistent with
             the calculations for cgroup accounting, as nearly as possible
       ( see linux sources: ./kernel/cgroup/rstat.c, root_cgroup_cputime ) */
    this->new.xusr
        = this->new.user
        + this->new.nice;
    this->new.xsys
        = this->new.system
        + this->new.irq
        + this->new.sirq;
    this->new.xidl
        = this->new.idle
        + this->new.iowait;
    this->new.xtot
        = this->new.xusr + this->new.xsys + this->new.xidl
        + this->new.stolen
        + this->new.guest
        + this->new.gnice;
    this->new.xbsy
        = this->new.xtot - this->new.xidl;

    // don't distort deltas when cpus are taken offline or brought online
    if (this->new.xusr < this->old.xusr
    || (this->new.xsys < this->old.xsys)
    || (this->new.xidl < this->old.xidl)
    || (this->new.xbsy < this->old.xbsy)
    || (this->new.xtot < this->old.xtot))
        memcpy(&this->old, &this->new, sizeof(struct stat_jifs));
} // end: stat_derive_unique


static void stat_extents_free_all (
        struct ext_support *this)
{
    while (this->extents) {
        struct stacks_extent *p = this->extents;
        this->extents = this->extents->next;
        free(p);
    };
} // end: stat_extents_free_all


static inline struct stat_result *stat_itemize_stack (
        struct stat_result *p,
        int depth,
        enum stat_item *items)
{
    struct stat_result *p_sav = p;
    int i;

    for (i = 0; i < depth; i++) {
        p->item = items[i];
        ++p;
    }
    return p_sav;
} // end: stat_itemize_stack


static inline int stat_items_check_failed (
        int numitems,
        enum stat_item *items)
{
    int i;

    /* if an enum is passed instead of an address of one or more enums, ol' gcc
     * will silently convert it to an address (possibly NULL).  only clang will
     * offer any sort of warning like the following:
     *
     * warning: incompatible integer to pointer conversion passing 'int' to parameter of type 'enum stat_item *'
     * my_stack = procps_stat_select(info, STAT_noop, num);
     *                                     ^~~~~~~~~~~~~~~~
     */
    if (numitems < 1
    || (void *)items < (void *)(unsigned long)(2 * STAT_logical_end))
        return 1;

    for (i = 0; i < numitems; i++) {
        // a stat_item is currently unsigned, but we'll protect our future
        if (items[i] < 0)
            return 1;
        if (items[i] >= STAT_logical_end) {
            return 1;
        }
    }
    return 0;
} // end: stat_items_check_failed


static int stat_make_numa_hist (
        struct stat_info *info)
{
    struct hist_tic *cpu_ptr, *nod_ptr;
    int i, node;

    /* are numa nodes dynamic like online cpus can be?
       ( and be careful, this libnuma call returns the highest node id in use, )
       ( NOT an actual number of nodes - some of those 'slots' might be unused ) */
    if (!(info->nodes.total = numa_max_node() + 1))
        return 0;

    if (info->nodes.hist.n_alloc == 0
    || (info->nodes.total >= info->nodes.hist.n_alloc)) {
        info->nodes.hist.n_alloc = info->nodes.total + NEWOLD_INCR;
        info->nodes.hist.tics = realloc(info->nodes.hist.tics, info->nodes.hist.n_alloc * sizeof(struct hist_tic));
        if (info->nodes.hist.tics == NULL)
            return -ENOMEM;
    }

    // forget all of the prior node statistics & anticipate unassigned slots
    memset(info->nodes.hist.tics, 0, info->nodes.hist.n_alloc * sizeof(struct hist_tic));
    nod_ptr = info->nodes.hist.tics;
    for (i = 0; i < info->nodes.total; i++) {
        nod_ptr->numa_node = STAT_NODE_INVALID;
        nod_ptr->id = i;
        ++nod_ptr;
    }

    // spin thru each cpu and value the jiffs for it's numa node
    for (i = 0; i < info->cpus.hist.n_inuse; i++) {
        cpu_ptr = info->cpus.hist.tics + i;
        if (-1 < (node = numa_node_of_cpu(cpu_ptr->id))) {
            nod_ptr = info->nodes.hist.tics + node;
            nod_ptr->new.user   += cpu_ptr->new.user;   nod_ptr->old.user   += cpu_ptr->old.user;
            nod_ptr->new.nice   += cpu_ptr->new.nice;   nod_ptr->old.nice   += cpu_ptr->old.nice;
            nod_ptr->new.system += cpu_ptr->new.system; nod_ptr->old.system += cpu_ptr->old.system;
            nod_ptr->new.idle   += cpu_ptr->new.idle;   nod_ptr->old.idle   += cpu_ptr->old.idle;
            nod_ptr->new.iowait += cpu_ptr->new.iowait; nod_ptr->old.iowait += cpu_ptr->old.iowait;
            nod_ptr->new.irq    += cpu_ptr->new.irq;    nod_ptr->old.irq    += cpu_ptr->old.irq;
            nod_ptr->new.sirq   += cpu_ptr->new.sirq;   nod_ptr->old.sirq   += cpu_ptr->old.sirq;
            nod_ptr->new.stolen += cpu_ptr->new.stolen; nod_ptr->old.stolen += cpu_ptr->old.stolen;
            nod_ptr->new.guest  += cpu_ptr->new.guest;  nod_ptr->old.guest  += cpu_ptr->old.guest;
            nod_ptr->new.gnice  += cpu_ptr->new.gnice;  nod_ptr->old.gnice  += cpu_ptr->old.gnice;

            nod_ptr->new.xusr += cpu_ptr->new.xusr;  nod_ptr->old.xusr += cpu_ptr->old.xusr;
            nod_ptr->new.xsys += cpu_ptr->new.xsys;  nod_ptr->old.xsys += cpu_ptr->old.xsys;
            nod_ptr->new.xidl += cpu_ptr->new.xidl;  nod_ptr->old.xidl += cpu_ptr->old.xidl;
            nod_ptr->new.xbsy += cpu_ptr->new.xbsy;  nod_ptr->old.xbsy += cpu_ptr->old.xbsy;
            nod_ptr->new.xtot += cpu_ptr->new.xtot;  nod_ptr->old.xtot += cpu_ptr->old.xtot;

            cpu_ptr->numa_node = nod_ptr->numa_node = node;
            nod_ptr->count++; ;
        }
    }
    info->nodes.hist.n_inuse = info->nodes.total;
    return info->nodes.hist.n_inuse;
} // end: stat_make_numa_hist


static int stat_read_failed (
        struct stat_info *info)
{
    struct hist_tic *sum_ptr, *cpu_ptr;
    char *bp, *b;
    int i, rc, num, tot_read;
    unsigned long long llnum;

    if (!info->cpus.hist.n_alloc) {
        info->cpus.hist.tics = calloc(NEWOLD_INCR, sizeof(struct hist_tic));
        if (!(info->cpus.hist.tics))
            return 1;
        info->cpus.hist.n_alloc = NEWOLD_INCR;
        info->cpus.hist.n_inuse = 0;
    }

    if (!info->stat_fp
    && (!(info->stat_fp = fopen(STAT_FILE, "r"))))
        return 1;
    fflush(info->stat_fp);
    rewind(info->stat_fp);

 #define maxSIZ    info->stat_buf_size
 #define curSIZ  ( maxSIZ - tot_read )
 #define curPOS  ( info->stat_buf + tot_read )
    /* we slurp in the entire directory thus avoiding repeated calls to fread, |
       especially in a massively parallel environment.  additionally, each cpu |
       line is then frozen in time rather than changing until we get around to |
       accessing it.  this helps to minimize (not eliminate) some distortions. | */
    tot_read = 0;
    while ((0 < (num = fread(curPOS, 1, curSIZ, info->stat_fp)))) {
        tot_read += num;
        if (tot_read < maxSIZ)
            break;
        maxSIZ += BUFFER_INCR;
        if (!(info->stat_buf = realloc(info->stat_buf, maxSIZ)))
            return 1;
    };
 #undef maxSIZ
 #undef curSIZ
 #undef curPOS

    if (!feof(info->stat_fp)) {
        errno = EIO;
        return 1;
    }
    info->stat_buf[tot_read] = '\0';
    bp = info->stat_buf;

    sum_ptr = &info->cpu_hist;
    // remember summary from last time around
    memcpy(&sum_ptr->old, &sum_ptr->new, sizeof(struct stat_jifs));

    sum_ptr->id = STAT_SUMMARY_ID;              // mark as summary
    sum_ptr->numa_node = STAT_NODE_INVALID;     // mark as invalid

    // now value the cpu summary tics from line #1
    if (8 > sscanf(bp, "cpu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu"
        , &sum_ptr->new.user,  &sum_ptr->new.nice,   &sum_ptr->new.system
        , &sum_ptr->new.idle,  &sum_ptr->new.iowait, &sum_ptr->new.irq
        , &sum_ptr->new.sirq,  &sum_ptr->new.stolen
        , &sum_ptr->new.guest, &sum_ptr->new.gnice)) {
            errno = ERANGE;
            return 1;
    }
    stat_derive_unique(sum_ptr);
#ifdef CPU_IDLE_FORCED
    /* if any cpu accumulated substantially fewer tics than what is expected |
       we'll force it to be treated as 'idle' so as not to return misleading |
       statistics (and that sum_ptr->count also serves as first time switch) | */
    if (sum_ptr->count) sum_ptr->edge =
        ((sum_ptr->new.xtot - sum_ptr->old.xtot) / sum_ptr->count) / TICS_THRESHOLD;
#endif

    i = 0;
reap_em_again:
    cpu_ptr = info->cpus.hist.tics + i;   // adapt to relocated if reap_em_again

    do {
        bp = 1 + strchr(bp, '\n');
        // remember this cpu from last time around
        memcpy(&cpu_ptr->old, &cpu_ptr->new, sizeof(struct stat_jifs));
        // next can be overridden under 'stat_make_numa_hist'
        cpu_ptr->numa_node = STAT_NODE_INVALID;
        cpu_ptr->count = 1;

        if (8 > (rc = sscanf(bp, "cpu%d %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu"
            , &cpu_ptr->id
            , &cpu_ptr->new.user,  &cpu_ptr->new.nice,   &cpu_ptr->new.system
            , &cpu_ptr->new.idle,  &cpu_ptr->new.iowait, &cpu_ptr->new.irq
            , &cpu_ptr->new.sirq,  &cpu_ptr->new.stolen
            , &cpu_ptr->new.guest, &cpu_ptr->new.gnice))) {
                break;                   // we must tolerate cpus taken offline
        }
        stat_derive_unique(cpu_ptr);
#ifdef CPU_IDLE_FORCED
        // first time through (that priming read) sum_ptr->edge will be zero |
        if (cpu_ptr->new.xtot < sum_ptr->edge) {
            cpu_ptr->old.xtot = cpu_ptr->old.xbsy = cpu_ptr->old.xidl = cpu_ptr->old.xusr = cpu_ptr->old.xsys
                = cpu_ptr->new.xbsy = cpu_ptr->new.xusr = cpu_ptr->new.xsys = 0;
            cpu_ptr->new.xtot = cpu_ptr->new.xidl = 1;
        }
#endif
        ++cpu_ptr;
        ++i;
    } while (i < info->cpus.hist.n_alloc);

    if (i == info->cpus.hist.n_alloc && rc >= 8) {
        info->cpus.hist.n_alloc += NEWOLD_INCR;
        info->cpus.hist.tics = realloc(info->cpus.hist.tics, info->cpus.hist.n_alloc * sizeof(struct hist_tic));
        if (!(info->cpus.hist.tics))
            return 1;
        goto reap_em_again;
    }

    info->cpus.total = info->cpus.hist.n_inuse = sum_ptr->count = i;

    // remember sys_hist stuff from last time around
    memcpy(&info->sys_hist.old, &info->sys_hist.new, sizeof(struct stat_data));

    llnum = 0;
    if ((b = strstr(bp, "intr ")))
        sscanf(b,  "intr %llu", &llnum);
    info->sys_hist.new.intr = llnum;

    llnum = 0;
    if ((b = strstr(bp, "ctxt ")))
        sscanf(b,  "ctxt %llu", &llnum);
    info->sys_hist.new.ctxt = llnum;

    llnum = 0;
    if ((b = strstr(bp, "btime ")))
        sscanf(b,  "btime %llu", &llnum);
    info->sys_hist.new.btime = llnum;

    llnum = 0;
    if ((b = strstr(bp, "processes ")))
        sscanf(b,  "processes %llu", &llnum);
    info->sys_hist.new.procs_created = llnum;

    llnum = 0;
    if ((b = strstr(bp, "procs_blocked ")))
        sscanf(b,  "procs_blocked %llu", &llnum);
    info->sys_hist.new.procs_blocked = llnum;

    llnum = 0;
    if ((b = strstr(bp, "procs_running ")))
        sscanf(b,  "procs_running %llu", &llnum);
    info->sys_hist.new.procs_running = llnum;

    return 0;
} // end: stat_read_failed


/*
 * stat_stacks_alloc():
 *
 * Allocate and initialize one or more stacks each of which is anchored in an
 * associated context structure.
 *
 * All such stacks will have their result structures properly primed with
 * 'items', while the result itself will be zeroed.
 *
 * Returns a stack_extent struct anchoring the 'heads' of each new stack.
 */
static struct stacks_extent *stat_stacks_alloc (
        struct ext_support *this,
        int maxstacks)
{
    struct stacks_extent *p_blob;
    struct stat_stack **p_vect;
    struct stat_stack *p_head;
    size_t vect_size, head_size, list_size, blob_size;
    void *v_head, *v_list;
    int i;

    vect_size  = sizeof(void *) * maxstacks;                     // size of the addr vectors |
    vect_size += sizeof(void *);                                 // plus NULL addr delimiter |
    head_size  = sizeof(struct stat_stack);                      // size of that head struct |
    list_size  = sizeof(struct stat_result) * this->items->num;  // any single results stack |
    blob_size  = sizeof(struct stacks_extent);                   // the extent anchor itself |
    blob_size += vect_size;                                      // plus room for addr vects |
    blob_size += head_size * maxstacks;                          // plus room for head thing |
    blob_size += list_size * maxstacks;                          // plus room for our stacks |

    /* note: all of our memory is allocated in one single blob, facilitating a later free(). |
             as a minimum, it is important that those result structures themselves always be |
             contiguous within each stack since they are accessed through relative position. | */
    if (NULL == (p_blob = calloc(1, blob_size)))
        return NULL;

    p_blob->next = this->extents;                                // push this extent onto... |
    this->extents = p_blob;                                      // ...some existing extents |
    p_vect = (void *)p_blob + sizeof(struct stacks_extent);      // prime our vector pointer |
    p_blob->stacks = p_vect;                                     // set actual vectors start |
    v_head = (void *)p_vect + vect_size;                         // prime head pointer start |
    v_list = v_head + (head_size * maxstacks);                   // prime our stacks pointer |

    for (i = 0; i < maxstacks; i++) {
        p_head = (struct stat_stack *)v_head;
        p_head->head = stat_itemize_stack((struct stat_result *)v_list, this->items->num, this->items->enums);
        p_blob->stacks[i] = p_head;
        v_list += list_size;
        v_head += head_size;
    }
    p_blob->ext_numstacks = maxstacks;
    return p_blob;
} // end: stat_stacks_alloc


static int stat_stacks_fetch (
        struct stat_info *info,
        struct reap_support *this)
{
 #define n_alloc  this->n_alloc
 #define n_inuse  this->hist.n_inuse
 #define n_saved  this->n_alloc_save
    struct stacks_extent *ext;
    int i;

    // initialize stuff -----------------------------------
    if (!this->anchor) {
        if (!(this->anchor = calloc(sizeof(void *), STACKS_INCR)))
            return -1;
        n_alloc = STACKS_INCR;
    }
    if (!this->fetch.extents) {
        if (!(ext = stat_stacks_alloc(&this->fetch, n_alloc)))
            return -1;       // here, errno was set to ENOMEM
        memcpy(this->anchor, ext->stacks, sizeof(void *) * n_alloc);
    }

    // iterate stuff --------------------------------------
    for (i = 0; i < n_inuse; i++) {
        if (!(i < n_alloc)) {
            n_alloc += STACKS_INCR;
            if ((!(this->anchor = realloc(this->anchor, sizeof(void *) * n_alloc)))
            || (!(ext = stat_stacks_alloc(&this->fetch, STACKS_INCR))))
                return -1;   // here, errno was set to ENOMEM
            memcpy(this->anchor + i, ext->stacks, sizeof(void *) * STACKS_INCR);
        }
        stat_assign_results(this->anchor[i], &info->sys_hist, &this->hist.tics[i]);
    }

    // finalize stuff -------------------------------------
    /* note: we go to this trouble of maintaining a duplicate of the consolidated |
             extent stacks addresses represented as our 'anchor' since these ptrs |
             are exposed to a user (um, not that we don't trust 'em or anything). |
             plus, we can NULL delimit these ptrs which we couldn't do otherwise. | */
    if (n_saved < i + 1) {
        n_saved = i + 1;
        if (!(this->result.stacks = realloc(this->result.stacks, sizeof(void *) * n_saved)))
            return -1;
    }
    memcpy(this->result.stacks, this->anchor, sizeof(void *) * i);
    this->result.stacks[i] = NULL;
    this->result.total = i;

    // callers beware, this might be zero (maybe no libnuma.so) ...
    return this->result.total;
 #undef n_alloc
 #undef n_inuse
 #undef n_saved
} // end: stat_stacks_fetch


static int stat_stacks_reconfig_maybe (
        struct ext_support *this,
        enum stat_item *items,
        int numitems)
{
    if (stat_items_check_failed(numitems, items))
        return -1;
    /* is this the first time or have things changed since we were last called?
       if so, gotta' redo all of our stacks stuff ... */
    if (this->items->num != numitems + 1
    || memcmp(this->items->enums, items, sizeof(enum stat_item) * numitems)) {
        // allow for our STAT_logical_end
        if (!(this->items->enums = realloc(this->items->enums, sizeof(enum stat_item) * (numitems + 1))))
            return -1;
        memcpy(this->items->enums, items, sizeof(enum stat_item) * numitems);
        this->items->enums[numitems] = STAT_logical_end;
        this->items->num = numitems + 1;
        stat_extents_free_all(this);
        return 1;
    }
    return 0;
} // end: stat_stacks_reconfig_maybe


static struct stat_stack *stat_update_single_stack (
        struct stat_info *info,
        struct ext_support *this)
{
    if (!this->extents
    && !(stat_stacks_alloc(this, 1)))
       return NULL;

    stat_assign_results(this->extents->stacks[0], &info->sys_hist, &info->cpu_hist);

    return this->extents->stacks[0];
} // end: stat_update_single_stack



// ___ Public Functions |||||||||||||||||||||||||||||||||||||||||||||||||||||||

// --- standard required functions --------------------------------------------

/*
 * procps_stat_new:
 *
 * Create a new container to hold the stat information
 *
 * The initial refcount is 1, and needs to be decremented
 * to release the resources of the structure.
 *
 * Returns: < 0 on failure, 0 on success along with
 *          a pointer to a new context struct
 */
PROCPS_EXPORT int procps_stat_new (
        struct stat_info **info)
{
    struct stat_info *p;

#ifdef ITEMTABLE_DEBUG
    int i, failed = 0;
    for (i = 0; i < MAXTABLE(Item_table); i++) {
        if (i != Item_table[i].enumnumb) {
            fprintf(stderr, "%s: enum/table error: Item_table[%d] was %s, but its value is %d\n"
                , __FILE__, i, Item_table[i].enum2str, Item_table[i].enumnumb);
            failed = 1;
        }
    }
    if (failed) _Exit(EXIT_FAILURE);
#endif

    if (info == NULL || *info != NULL)
        return -EINVAL;
    if (!(p = calloc(1, sizeof(struct stat_info))))
        return -ENOMEM;
    if (!(p->stat_buf = calloc(1, BUFFER_INCR))) {
        free(p);
        return -ENOMEM;
    }
    p->stat_buf_size = BUFFER_INCR;
    p->refcount = 1;

    p->results.cpus = &p->cpus.result;
    p->results.numa = &p->nodes.result;

    // these 3 are for reap, sharing a single set of items
    p->cpu_summary.items = p->cpus.fetch.items = p->nodes.fetch.items = &p->reap_items;

    // the select guy has its own set of items
    p->select.items = &p->select_items;

    numa_init();

    /* do a priming read here for the following potential benefits: |
         1) ensure there will be no problems with subsequent access |
         2) make delta results potentially useful, even if 1st time |
         3) elimnate need for history distortions 1st time 'switch' | */
    if (stat_read_failed(p)) {
        procps_stat_unref(&p);
        return -errno;
    }

    *info = p;
    return 0;
} // end :procps_stat_new


PROCPS_EXPORT int procps_stat_ref (
        struct stat_info *info)
{
    if (info == NULL)
        return -EINVAL;

    info->refcount++;
    return info->refcount;
} // end: procps_stat_ref


PROCPS_EXPORT int procps_stat_unref (
        struct stat_info **info)
{
    if (info == NULL || *info == NULL)
        return -EINVAL;

    (*info)->refcount--;

    if ((*info)->refcount < 1) {
        int errno_sav = errno;

        if ((*info)->stat_fp)
            fclose((*info)->stat_fp);
        if ((*info)->stat_buf)
            free((*info)->stat_buf);

        if ((*info)->cpus.anchor)
            free((*info)->cpus.anchor);
        if ((*info)->cpus.result.stacks)
            free((*info)->cpus.result.stacks);
        if ((*info)->cpus.hist.tics)
            free((*info)->cpus.hist.tics);
        if ((*info)->cpus.fetch.extents)
            stat_extents_free_all(&(*info)->cpus.fetch);

        if ((*info)->nodes.anchor)
            free((*info)->nodes.anchor);
        if ((*info)->nodes.result.stacks)
            free((*info)->nodes.result.stacks);
        if ((*info)->nodes.hist.tics)
            free((*info)->nodes.hist.tics);
        if ((*info)->nodes.fetch.extents)
            stat_extents_free_all(&(*info)->nodes.fetch);

        if ((*info)->cpu_summary.extents)
            stat_extents_free_all(&(*info)->cpu_summary);

        if ((*info)->select.extents)
            stat_extents_free_all(&(*info)->select);

        if ((*info)->reap_items.enums)
            free((*info)->reap_items.enums);
        if ((*info)->select_items.enums)
            free((*info)->select_items.enums);

        numa_uninit();

        free(*info);
        *info = NULL;

        errno = errno_sav;
        return 0;
    }
    return (*info)->refcount;
} // end: procps_stat_unref


// --- variable interface functions -------------------------------------------

PROCPS_EXPORT struct stat_result *procps_stat_get (
        struct stat_info *info,
        enum stat_item item)
{
    time_t cur_secs;

    errno = EINVAL;
    if (info == NULL)
        return NULL;
    if (item < 0 || item >= STAT_logical_end)
        return NULL;
    errno = 0;

    /* we will NOT read the source file with every call - rather, we'll offer
       a granularity of 1 second between reads ... */
    cur_secs = time(NULL);
    if (1 <= cur_secs - info->sav_secs) {
        if (stat_read_failed(info))
            return NULL;
        info->sav_secs = cur_secs;
    }

    info->get_this.item = item;
    //  with 'get', we must NOT honor the usual 'noop' guarantee
    info->get_this.result.ull_int = 0;
    Item_table[item].setsfunc(&info->get_this, &info->sys_hist, &info->cpu_hist);

    return &info->get_this;
} // end: procps_stat_get


/* procps_stat_reap():
 *
 * Harvest all the requested NUMA NODE and/or CPU information providing the
 * result stacks along with totals and the cpu summary.
 *
 * Returns: pointer to a stat_reaped struct on success, NULL on error.
 */
PROCPS_EXPORT struct stat_reaped *procps_stat_reap (
        struct stat_info *info,
        enum stat_reap_type what,
        enum stat_item *items,
        int numitems)
{
    int rc;

    errno = EINVAL;
    if (info == NULL || items == NULL)
        return NULL;
    if (what != STAT_REAP_CPUS_ONLY && what != STAT_REAP_NUMA_NODES_TOO)
        return NULL;

#ifdef ENFORCE_LOGICAL
{   int i;
    // those STAT_SYS_type enum's make sense only to 'select' ...
    for (i = 0; i < numitems; i++) {
        if (items[i] > STAT_TIC_highest)
            return NULL;
    }
}
#endif
    if (0 > (rc = stat_stacks_reconfig_maybe(&info->cpu_summary, items, numitems)))
        return NULL;         // here, errno may be overridden with ENOMEM
    if (rc) {
        stat_extents_free_all(&info->cpus.fetch);
        stat_extents_free_all(&info->nodes.fetch);
    }
    errno = 0;

    if (stat_read_failed(info))
        return NULL;
    info->results.summary = stat_update_single_stack(info, &info->cpu_summary);

    /* unlike the other 'reap' functions, <stat> provides for two separate |
       stacks pointer arrays exposed to callers. Thus, to keep our promise |
       of NULL delimit we must ensure a minimal array for the optional one | */
    if (!info->nodes.result.stacks
    && (!(info->nodes.result.stacks = malloc(sizeof(void *)))))
        return NULL;
    info->nodes.result.total = 0;
    info->nodes.result.stacks[0] = NULL;

    switch (what) {
        case STAT_REAP_CPUS_ONLY:
            if (0 > stat_stacks_fetch(info, &info->cpus))
                return NULL;
            break;
        case STAT_REAP_NUMA_NODES_TOO:
            /* note: if we're doing numa at all, we must do this numa history |
               before we build (fetch) cpu stacks since that stat_read_failed |
               guy always marks (temporarily) all the cpu node ids as invalid | */
            if (0 > stat_make_numa_hist(info))
                return NULL;
            if (0 > stat_stacks_fetch(info, &info->nodes))
                return NULL;
            if (0 > stat_stacks_fetch(info, &info->cpus))
                return NULL;
            break;
        default:
            return NULL;
    };

    return &info->results;
} // end: procps_stat_reap


/* procps_stat_select():
 *
 * Harvest all the requested TIC and/or SYS information then return
 * it in a results stack.
 *
 * Returns: pointer to a stat_stack struct on success, NULL on error.
 */
PROCPS_EXPORT struct stat_stack *procps_stat_select (
        struct stat_info *info,
        enum stat_item *items,
        int numitems)
{
    errno = EINVAL;
    if (info == NULL || items == NULL)
        return NULL;
    if (0 > stat_stacks_reconfig_maybe(&info->select, items, numitems))
        return NULL;         // here, errno may be overridden with ENOMEM
    errno = 0;

    if (stat_read_failed(info))
        return NULL;

    return stat_update_single_stack(info, &info->select);
} // end: procps_stat_select


/*
 * procps_stat_sort():
 *
 * Sort stacks anchored in the passed stack pointers array
 * based on the designated sort enumerator and specified order.
 *
 * Returns those same addresses sorted.
 *
 * Note: all of the stacks must be homogeneous (of equal length and content).
 */
PROCPS_EXPORT struct stat_stack **procps_stat_sort (
        struct stat_info *info,
        struct stat_stack *stacks[],
        int numstacked,
        enum stat_item sortitem,
        enum stat_sort_order order)
{
    struct stat_result *p;
    struct sort_parms parms;
    int offset;

    errno = EINVAL;
    if (info == NULL || stacks == NULL)
        return NULL;
    // a stat_item is currently unsigned, but we'll protect our future
    if (sortitem < 0 || sortitem >= STAT_logical_end)
        return NULL;
    if (order != STAT_SORT_ASCEND && order != STAT_SORT_DESCEND)
        return NULL;
    if (numstacked < 2)
        return stacks;

    offset = 0;
    p = stacks[0]->head;
    for (;;) {
        if (p->item == sortitem)
            break;
        ++offset;
        if (p->item >= STAT_logical_end)
            return NULL;
        ++p;
    }
    errno = 0;

    parms.offset = offset;
    parms.order = order;

    qsort_r(stacks, numstacked, sizeof(void *), (QSR_t)Item_table[p->item].sortfunc, &parms);
    return stacks;
} // end: procps_stat_sort


// --- special debugging function(s) ------------------------------------------
/*
 *  The following isn't part of the normal programming interface.  Rather,
 *  it exists to validate result types referenced in application programs.
 *
 *  It's used only when:
 *      1) the 'XTRA_PROCPS_DEBUG' has been defined, or
 *      2) an #include of 'xtra-procps-debug.h' is used
 */

PROCPS_EXPORT struct stat_result *xtra_stat_get (
        struct stat_info *info,
        enum stat_item actual_enum,
        const char *typestr,
        const char *file,
        int lineno)
{
    struct stat_result *r = procps_stat_get(info, actual_enum);

    if (actual_enum < 0 || actual_enum >= STAT_logical_end) {
        fprintf(stderr, "%s line %d: invalid item = %d, type = %s\n"
            , file, lineno, actual_enum, typestr);
    }
    if (r) {
        char *str = Item_table[r->item].type2str;
        if (str[0]
        && (strcmp(typestr, str)))
            fprintf(stderr, "%s line %d: was %s, expected %s\n", file, lineno, typestr, str);
    }
    return r;
} // end: xtra_stat_get_


PROCPS_EXPORT struct stat_result *xtra_stat_val (
        int relative_enum,
        const char *typestr,
        const struct stat_stack *stack,
        struct stat_info *info,
        const char *file,
        int lineno)
{
    char *str;
    int i;

    for (i = 0; stack->head[i].item < STAT_logical_end; i++)
        ;
    if (relative_enum < 0 || relative_enum >= i) {
        fprintf(stderr, "%s line %d: invalid relative_enum = %d, valid range = 0-%d\n"
            , file, lineno, relative_enum, i-1);
        return NULL;
    }
    str = Item_table[stack->head[relative_enum].item].type2str;
    if (str[0]
    && (strcmp(typestr, str))) {
        fprintf(stderr, "%s line %d: was %s, expected %s\n", file, lineno, typestr, str);
    }
    return &stack->head[relative_enum];
    (void)info;
} // end: xtra_stat_val