#include "block-cache/block_cache.h" #include #include #include #include #include #include #include #include #include #include #include #include using namespace bcache; using namespace file_utils; //---------------------------------------------------------------- #define MIN_BLOCKS 16 #define WRITEBACK_LOW_THRESHOLD_PERCENT 33 #define WRITEBACK_HIGH_THRESHOLD_PERCENT 66 //---------------------------------------------------------------- namespace { void *alloc_aligned(size_t len, size_t alignment) { void *result = NULL; int r = posix_memalign(&result, alignment, len); if (r) return NULL; return result; } } //---------------------------------------------------------------- int block_cache::init_free_list(unsigned count) { size_t block_size = block_size_ << SECTOR_SHIFT; unsigned char *data = static_cast(alloc_aligned(count * block_size, PAGE_SIZE)); /* Allocate the data for each block. We page align the data. */ if (!data) return -ENOMEM; blocks_data_ = data; for (unsigned i = 0; i < count; i++) { block &b = (*blocks_memory_)[i]; b.data_ = data + (block_size * i); free_.push_front(b); } return 0; } void block_cache::exit_free_list() { if (blocks_data_) free(blocks_data_); } block_cache::block * block_cache::__alloc_block() { if (free_.empty()) return NULL; block &b = free_.front(); b.unlink(); return &b; } /*---------------------------------------------------------------- * Low level IO handling * * We cannot have two concurrent writes on the same block. * eg, background writeback, put with dirty, flush? * * To avoid this we introduce some restrictions: * * i) A held block can never be written back. * ii) You cannot get a block until writeback has completed. * *--------------------------------------------------------------*/ /* * This can be called from the context of the aio thread. So we have a * separate 'top half' complete function that we know is only called by the * main cache thread. */ void block_cache::complete_io(block &b, int result) { b.error_ = result; b.clear_flags(BF_IO_PENDING); nr_io_pending_--; b.unlink(); // b is on the io_pending list if (b.error_) errored_.push_back(b); else { if (b.test_flags(BF_DIRTY)) b.clear_flags(BF_DIRTY); link_block(b); } } /* * |b->list| should be valid (either pointing to itself, on one of the other * lists. */ // FIXME: add batch issue void block_cache::issue_low_level(block &b, enum io_iocb_cmd opcode, const char *desc) { int r; iocb *control_blocks[1]; assert(!b.test_flags(BF_IO_PENDING)); b.set_flags(BF_IO_PENDING); nr_io_pending_++; unlink_block(b); io_pending_.push_back(b); b.control_block_.aio_lio_opcode = opcode; control_blocks[0] = &b.control_block_; r = io_submit(aio_context_, 1, control_blocks); if (r != 1) { complete_io(b, EIO); std::ostringstream out; out << "couldn't issue " << desc << " io for block " << b.index_; if (r < 0) out << ": io_submit failed with " << r; else out << ": io_submit succeeded, but queued no io"; throw std::runtime_error(out.str()); } } void block_cache::issue_read(block &b) { assert(!b.test_flags(BF_IO_PENDING)); issue_low_level(b, IO_CMD_PREAD, "read"); } void block_cache::issue_write(block &b) { assert(!b.test_flags(BF_IO_PENDING)); b.v_->prepare(b.data_, b.index_); issue_low_level(b, IO_CMD_PWRITE, "write"); } void block_cache::wait_io() { int r; unsigned i; // FIXME: use a timeout to prevent hanging r = io_getevents(aio_context_, 1, nr_cache_blocks_, &events_[0], NULL); if (r < 0) { std::ostringstream out; out << "io_getevents failed: " << r; throw std::runtime_error(out.str()); } for (i = 0; i < static_cast(r); i++) { io_event const &e = events_[i]; block *b = base::container_of(e.obj, &block::control_block_); if (e.res == block_size_ << SECTOR_SHIFT) complete_io(*b, 0); else if (static_cast(e.res) < 0) complete_io(*b, e.res); else { std::ostringstream out; out << "incomplete io for block " << b->index_ << ", e.res = " << e.res << ", e.res2 = " << e.res2 << ", offset = " << b->control_block_.u.c.offset << ", nbytes = " << b->control_block_.u.c.nbytes; throw std::runtime_error(out.str()); } } } /*---------------------------------------------------------------- * Clean/dirty list management *--------------------------------------------------------------*/ // Always use these two methods to ensure nr_dirty_ is correct. void block_cache::unlink_block(block &b) { if (b.test_flags(BF_DIRTY)) nr_dirty_--; b.unlink(); } void block_cache::link_block(block &b) { if (b.test_flags(BF_DIRTY)) { dirty_.push_back(b); nr_dirty_++; } else clean_.push_back(b); } void block_cache::relink(block &b) { unlink_block(b); link_block(b); } /*---------------------------------------------------------------- * High level IO handling *--------------------------------------------------------------*/ void block_cache::wait_all() { while (!io_pending_.empty()) wait_io(); } void block_cache::wait_specific(block &b) { while (b.test_flags(BF_IO_PENDING)) wait_io(); } unsigned block_cache::writeback(unsigned count) { unsigned actual = 0; // issue_write unlinks b, which invalidates the iteration, so we // keep track of the next element before removing. auto it = dirty_.begin(); auto next = it; while (it != dirty_.end()) { next = it; ++next; if (actual == count) break; // We can't writeback anything that's still in use. if (!it->ref_count_) { issue_write(*it); actual++; } it = next; } return actual; } /*---------------------------------------------------------------- * High level allocation *--------------------------------------------------------------*/ void block_cache::setup_control_block(block &b) { iocb *cb = &b.control_block_; size_t block_size_bytes = block_size_ << SECTOR_SHIFT; memset(cb, 0, sizeof(*cb)); cb->aio_fildes = fd_.fd_; cb->u.c.buf = b.data_; cb->u.c.offset = block_size_bytes * b.index_; cb->u.c.nbytes = block_size_bytes; } // FIXME: return a reference block_cache::block * block_cache::find_unused_clean_block() { for (block &b : clean_) { if (!b.ref_count_) { unlink_block(b); b.unlink_set(); return &b; } } return NULL; } block_cache::block * block_cache::new_block(block_address index) { block *b; b = __alloc_block(); while (!b && nr_locked_ < nr_cache_blocks_) { b = find_unused_clean_block(); if (!b) { if (io_pending_.empty()) writeback(16); wait_io(); } } if (b) { b->bc_ = this; b->ref_count_ = 0; b->error_ = 0; b->flags_ = 0; b->v_ = noop_validator_; b->index_ = index; setup_control_block(*b); block_set_.insert(*b); } return b; } /*---------------------------------------------------------------- * Block reference counting *--------------------------------------------------------------*/ unsigned block_cache::calc_nr_cache_blocks(size_t mem, sector_t block_size) { size_t space_per_block = (block_size << SECTOR_SHIFT) + sizeof(block); unsigned r = mem / space_per_block; return (r < MIN_BLOCKS) ? MIN_BLOCKS : r; } unsigned block_cache::calc_nr_buckets(unsigned nr_blocks) { unsigned r = 8; unsigned n = nr_blocks / 4; if (n < 8) n = 8; while (r < n) r <<= 1; return r; } block_cache::block_cache(file_descriptor &fd, sector_t block_size, uint64_t on_disk_blocks, size_t mem) : fd_(fd), nr_locked_(0), nr_dirty_(0), nr_io_pending_(0), read_hits_(0), read_misses_(0), write_zeroes_(0), write_hits_(0), write_misses_(0), prefetches_(0), noop_validator_(new noop_validator()) { int r; unsigned nr_cache_blocks = calc_nr_cache_blocks(mem, block_size); block_size_ = block_size; nr_data_blocks_ = on_disk_blocks; nr_cache_blocks_ = nr_cache_blocks; events_.resize(nr_cache_blocks); aio_context_ = 0; /* needed or io_setup will fail */ r = io_setup(nr_cache_blocks, &aio_context_); if (r < 0) { perror("io_setup failed"); throw std::runtime_error("io_setup failed"); } blocks_memory_.reset(new std::vector(nr_cache_blocks)); r = init_free_list(nr_cache_blocks); if (r) throw std::runtime_error("couldn't allocate blocks"); } block_cache::~block_cache() { assert(!nr_locked_); flush(); wait_all(); exit_free_list(); if (aio_context_) io_destroy(aio_context_); #if 0 std::cerr << "\nblock cache stats\n" << "=================\n" << "prefetches:\t" << prefetches_ << "\n" << "read hits:\t" << read_hits_ << "\n" << "read misses:\t" << read_misses_ << "\n" << "write hits:\t" << write_hits_ << "\n" << "write misses:\t" << write_misses_ << "\n" << "write zeroes:\t" << write_zeroes_ << std::endl; #endif } uint64_t block_cache::get_nr_blocks() const { return nr_data_blocks_; } uint64_t block_cache::get_nr_locked() const { return nr_locked_; } void block_cache::zero_block(block &b) { write_zeroes_++; memset(b.data_, 0, block_size_ << SECTOR_SHIFT); b.mark_dirty(); } void block_cache::hit(block &b, unsigned flags) { if (flags & (GF_ZERO | GF_DIRTY)) write_hits_++; else read_hits_++; relink(b); } void block_cache::miss(unsigned flags) { if (flags & (GF_ZERO | GF_DIRTY)) write_misses_++; else read_misses_++; } block_cache::block * block_cache::lookup_or_read_block(block_address index, unsigned flags, validator::ptr v) { block *b = NULL; auto it = block_set_.find(index, cmp_index()); if (it != block_set_.end()) { b = &(*it); // FIXME: this is insufficient. We need to also catch a read // lock of a write locked block. Ref count needs to distinguish. if (b->ref_count_ && (flags & (GF_DIRTY | GF_ZERO))) { std::ostringstream out; out << "attempt to write lock block " << index << " concurrently"; throw std::runtime_error(out.str()); } if (b->test_flags(BF_IO_PENDING)) { miss(flags); wait_specific(*b); } else hit(*b, flags); unlink_block(*b); if (flags & GF_ZERO) zero_block(*it); else { // has the validator changed? if (b->v_.get() != v.get()) { if (b->test_flags(BF_DIRTY)) b->v_->prepare(b->data_, b->index_); v->check(b->data_, b->index_); } } b->v_ = v; } else { miss(flags); b = new_block(index); if (b) { if (flags & GF_ZERO) zero_block(*b); else { issue_read(*b); wait_specific(*b); v->check(b->data_, b->index_); // we know the block is clean and unerrored. unlink_block(*b); } b->v_ = v; } } if (b && !b->error_) { if (flags & GF_BARRIER) b->set_flags(BF_FLUSH); if (flags & (GF_DIRTY | GF_ZERO)) b->set_flags(BF_DIRTY); link_block(*b); return b; } return NULL; } block_cache::block & block_cache::get(block_address index, unsigned flags, validator::ptr v) { check_index(index); block *b = lookup_or_read_block(index, flags, v); if (b) { if (!b->ref_count_) nr_locked_++; b->ref_count_++; return *b; } std::ostringstream out; out << "couldn't get block " << index; throw std::runtime_error(out.str()); } void block_cache::preemptive_writeback() { // FIXME: this ignores those blocks that are in the error state. Track // nr_clean instead? unsigned nr_available = nr_cache_blocks_ - (nr_dirty_ - nr_io_pending_); if (nr_available < (WRITEBACK_LOW_THRESHOLD_PERCENT * nr_cache_blocks_ / 100)) writeback((WRITEBACK_HIGH_THRESHOLD_PERCENT * nr_cache_blocks_ / 100) - nr_available); } bool block_cache::maybe_flush(block &b) { if (b.test_flags(BF_FLUSH)) { flush(); b.clear_flags(BF_FLUSH); return true; } return false; } void block_cache::release(block_cache::block &b) { assert(!b.ref_count_); nr_locked_--; if (b.test_flags(BF_DIRTY)) { if (!maybe_flush(b)) preemptive_writeback(); } else maybe_flush(b); } int block_cache::flush() { while (!dirty_.empty()) { block &b = dirty_.front(); if (b.ref_count_ || b.test_flags(BF_IO_PENDING)) // The superblock may well be still locked. continue; issue_write(b); } wait_all(); return errored_.empty() ? 0 : -EIO; } void block_cache::prefetch(block_address index) { check_index(index); auto it = block_set_.find(index, cmp_index()); if (it == block_set_.end()) { prefetches_++; block *b = new_block(index); if (b) issue_read(*b); } } void block_cache::check_index(block_address index) const { if (index >= nr_data_blocks_) { std::ostringstream out; out << "block out of bounds (" << index << " >= " << nr_data_blocks_ << ")\n"; throw std::runtime_error(out.str()); } } //----------------------------------------------------------------