#include "gmock/gmock.h" #include "test_utils.h" #include "base/endian_utils.h" #include "persistent-data/data-structures/btree_damage_visitor.h" #include "persistent-data/space-maps/core.h" #include "persistent-data/transaction_manager.h" #include "persistent-data/run.h" using namespace base; using namespace std; using namespace persistent_data; using namespace test; using namespace testing; //---------------------------------------------------------------- namespace { block_address const BLOCK_SIZE = 4096; block_address const NR_BLOCKS = 102400; block_address const SUPERBLOCK = 0; struct thing { thing(uint32_t x_ = 0, uint64_t y_ = 0) : x(x_), y(y_) { } bool operator ==(thing const &rhs) const { return (x == rhs.x) && (y == rhs.y); } uint32_t x; uint64_t y; }; ostream &operator <<(ostream &out, thing const &t) { return out << "thing [" << t.x << ", " << t.y << "]"; } struct thing_disk { le32 x; le64 y; // To ensure we have fewer entries per leaf, and thus more internal nodes. char padding[200]; }; struct thing_traits { typedef thing_disk disk_type; typedef thing value_type; typedef persistent_data::no_op_ref_counter ref_counter; static void unpack(thing_disk const &disk, thing &value) { value.x = to_cpu(disk.x); value.y = to_cpu(disk.y); } static void pack(thing const &value, thing_disk &disk) { disk.x = to_disk(value.x); disk.y = to_disk(value.y); } }; //-------------------------------- struct node_info { typedef std::shared_ptr ptr; btree_detail::btree_path path; bool leaf; unsigned depth; block_address b; run keys; }; bool is_leaf(node_info const &n) { return n.leaf; } bool is_internal(node_info const &n) { return !n.leaf; } typedef vector node_array; typedef vector node_ptr_array; class btree_layout { public: btree_layout(vector const &ns) : nodes_(ns.size(), node_info()) { for (unsigned i = 0; i < ns.size(); i++) nodes_[i] = *ns[i]; } template unsigned get_nr_nodes(Predicate const &pred) const { unsigned nr = 0; node_array::const_iterator it; for (it = nodes_.begin(); it != nodes_.end(); ++it) if (pred(*it)) nr++; return nr; } template node_info get_node(unsigned target, Predicate const &pred) const { unsigned i = 0; node_array::const_iterator it; for (it = nodes_.begin(); it != nodes_.end(); ++it) { if (pred(*it)) { if (!target) break; else target--; } i++; } if (target) throw runtime_error("not that many nodes"); return nodes_[i]; } template node_info random_node(Predicate const &pred) const { unsigned nr = get_nr_nodes(pred); unsigned target = random() % nr; return get_node(target, pred); } template node_array get_random_nodes(unsigned count, Predicate const &pred) const { unsigned nr = get_nr_nodes(pred); unsigned target = count + random() % (nr - count); node_array v; node_array::const_iterator it; for (it = nodes_.begin(); it != nodes_.end(); ++it) { if (!target) break; if (pred(*it)) { if (target <= count) v.push_back(*it); target--; } } return v; } private: node_array nodes_; }; //-------------------------------- template class btree_layout_visitor : public btree::visitor { public: typedef btree_detail::node_location node_location; typedef btree tree; typedef std::shared_ptr ptr; virtual bool visit_internal(node_location const &loc, typename tree::internal_node const &n) { record_node(false, loc, n); return true; } virtual bool visit_internal_leaf(node_location const &loc, typename tree::internal_node const &n) { record_node(true, loc, n); return true; } virtual bool visit_leaf(node_location const &loc, typename tree::leaf_node const &n) { record_node(true, loc, n); return true; } virtual void visit_complete() { } btree_layout get_layout() { return btree_layout(nodes_); } private: // We rely on the visit order being depth first, lowest to highest. template void record_node(bool leaf, node_location const &loc, N const &n) { node_info::ptr ni(new node_info); ni->path = loc.path; ni->leaf = leaf; ni->depth = loc.depth; ni->b = n.get_location(); if (n.get_nr_entries()) ni->keys = run(n.key_at(0)); else { if (loc.key) ni->keys = run(*loc.key); else ni->keys = run(); } if (last_node_at_depth_.size() > loc.depth) { node_info::ptr &last = last_node_at_depth_[loc.depth]; last->keys.end_ = ni->keys.begin_; last_node_at_depth_[loc.depth] = ni; } else last_node_at_depth_.push_back(ni); nodes_.push_back(ni); } node_ptr_array nodes_; node_ptr_array last_node_at_depth_; }; //---------------------------------- MATCHER_P(DamagedKeys, keys, "") { return arg.lost_keys_ == keys; } MATCHER(EmptyPath, "") { return arg == btree_path(); } class value_visitor_mock { public: MOCK_METHOD2(visit, void(btree_path const &, thing const &)); }; class damage_visitor_mock { public: MOCK_METHOD2(visit, void(btree_path const &, btree_detail::damage const &)); }; class DamageTests : public Test { public: DamageTests() : bm_(create_bm(NR_BLOCKS)), sm_(setup_core_map()), tm_(bm_, sm_) { } virtual ~DamageTests() {} void tree_complete() { commit(); discover_layout(); } void run() { commit(); run_(); } void trash_block(block_address b) { ::test::zero_block(bm_, b); } //-------------------------------- void expect_no_values() { EXPECT_CALL(value_visitor_, visit(_, _)).Times(0); } void expect_no_damage() { EXPECT_CALL(damage_visitor_, visit(_, _)).Times(0); } //-------------------------------- with_temp_directory dir_; block_manager::ptr bm_; space_map::ptr sm_; transaction_manager tm_; thing_traits::ref_counter rc_; boost::optional layout_; value_visitor_mock value_visitor_; damage_visitor_mock damage_visitor_; private: space_map::ptr setup_core_map() { space_map::ptr sm(create_core_map(NR_BLOCKS)); sm->inc(SUPERBLOCK); return sm; } void commit() { block_manager::write_ref superblock(bm_->superblock(SUPERBLOCK)); } virtual void discover_layout() = 0; virtual void run_() = 0; }; //-------------------------------- class BTreeDamageVisitorTests : public DamageTests { public: BTreeDamageVisitorTests() : tree_(new btree<1, thing_traits>(tm_, rc_)) { } void insert_values(unsigned nr) { for (unsigned i = 0; i < nr; i++) { uint64_t key[1] = {i}; thing value(i, i + 1234); tree_->insert(key, value); } } void expect_value_run(uint64_t begin, uint64_t end) { while (begin < end) { btree_path path; path.push_back(begin); EXPECT_CALL(value_visitor_, visit(Eq(path), Eq(thing(begin, begin + 1234)))).Times(1); begin++; } } void expect_nr_values(unsigned nr) { expect_value_run(0, nr); } void expect_value(uint64_t n) { btree_path path; path.push_back(n); EXPECT_CALL(value_visitor_, visit(Eq(path), Eq(thing(n, n + 1234)))).Times(1); } void expect_damage(base::run const &keys) { EXPECT_CALL(damage_visitor_, visit(EmptyPath(), DamagedKeys(keys))).Times(1); } btree<1, thing_traits>::ptr tree_; private: virtual void discover_layout() { btree_layout_visitor<1, thing_traits> visitor; tree_->visit_depth_first(visitor); layout_ = visitor.get_layout(); } virtual void run_() { btree_visit_values(*tree_, value_visitor_, damage_visitor_); } }; //-------------------------------- // 2 level btree class BTreeDamageVisitor2Tests : public DamageTests { public: BTreeDamageVisitor2Tests() : tree_(new btree<2, thing_traits>(tm_, rc_)) { } void insert_values(unsigned nr_sub_trees, unsigned nr_values) { for (unsigned i = 0; i < nr_sub_trees; i++) insert_sub_tree_values(i, nr_values); } void insert_sub_tree_values(unsigned sub_tree, unsigned nr_values) { for (unsigned i = 0; i < nr_values; i++) { uint64_t key[2] = {sub_tree, i}; thing value(key_to_value(key)); tree_->insert(key, value); } } void expect_values(unsigned nr_sub_trees, unsigned nr_values) { for (unsigned i = 0; i < nr_sub_trees; i++) expect_sub_tree_values(i, nr_values); } void expect_sub_tree_values(unsigned sub_tree, unsigned nr_values) { for (unsigned i = 0; i < nr_values; i++) { uint64_t key[2] = {sub_tree, i}; btree_path path; path.push_back(sub_tree); path.push_back(i); EXPECT_CALL(value_visitor_, visit(Eq(path), Eq(key_to_value(key)))); } } void expect_values_except(unsigned nr_sub_trees, unsigned nr_values, btree_path const &path, base::run keys) { for (unsigned i = 0; i < nr_sub_trees; i++) expect_sub_tree_values_except(i, nr_values, path, keys); } void expect_sub_tree_values_except(unsigned sub_tree, unsigned nr_values, btree_path const &path, base::run keys) { for (unsigned i = 0; i < nr_values; i++) { uint64_t key[2] = {sub_tree, i}; if (sub_tree == path[0] && keys.contains(i)) continue; btree_path p2; p2.push_back(sub_tree); p2.push_back(i); EXPECT_CALL(value_visitor_, visit(Eq(p2), Eq(key_to_value(key)))); } } void expect_damage(btree_path const &path, base::run const &keys) { EXPECT_CALL(damage_visitor_, visit(Eq(path), DamagedKeys(keys))).Times(1); } btree<2, thing_traits>::ptr tree_; private: thing key_to_value(uint64_t key[2]) { return thing(key[0] * 1000000 + key[1], key[1] + 1234); } virtual void discover_layout() { btree_layout_visitor<2, thing_traits> visitor; tree_->visit_depth_first(visitor); layout_ = visitor.get_layout(); } virtual void run_() { btree_visit_values(*tree_, value_visitor_, damage_visitor_); } }; } //---------------------------------------------------------------- TEST_F(BTreeDamageVisitorTests, an_empty_tree) { expect_no_values(); expect_no_damage(); run(); } TEST_F(BTreeDamageVisitorTests, tree_with_a_trashed_root) { trash_block(tree_->get_root()); expect_no_values(); expect_damage(base::run(0ull)); run(); } TEST_F(BTreeDamageVisitorTests, populated_tree_with_no_damage) { insert_values(10000); expect_nr_values(10000); expect_no_damage(); run(); } TEST_F(BTreeDamageVisitorTests, populated_tree_with_a_damaged_leaf_node) { insert_values(10000); tree_complete(); node_info n = layout_->random_node(is_leaf); trash_block(n.b); expect_value_run(0, *n.keys.begin_); expect_value_run(*n.keys.end_, 10000); expect_damage(n.keys); run(); } TEST_F(BTreeDamageVisitorTests, populated_tree_with_a_sequence_of_damaged_leaf_nodes) { insert_values(10000); tree_complete(); unsigned const COUNT = 5; node_array nodes = layout_->get_random_nodes(COUNT, is_leaf); node_array::const_iterator it; for (it = nodes.begin(); it != nodes.end(); ++it) trash_block(it->b); block_address begin = *nodes[0].keys.begin_; block_address end = *nodes[COUNT - 1].keys.end_; expect_value_run(0, *nodes[0].keys.begin_); expect_value_run(*nodes[COUNT - 1].keys.end_, 10000); expect_damage(base::run(begin, end)); run(); } TEST_F(BTreeDamageVisitorTests, damaged_first_leaf) { insert_values(10000); tree_complete(); node_info n = layout_->get_node(0, is_leaf); block_address end = *n.keys.end_; trash_block(n.b); expect_damage(base::run(0ull, end)); expect_value_run(end, 10000); run(); } TEST_F(BTreeDamageVisitorTests, damaged_last_leaf) { insert_values(10000); tree_complete(); node_info n = layout_->get_node( layout_->get_nr_nodes(is_leaf) - 1, is_leaf); block_address begin = *n.keys.begin_; trash_block(n.b); expect_value_run(0, begin); expect_damage(base::run(begin)); run(); } TEST_F(BTreeDamageVisitorTests, damaged_internal) { insert_values(10000); tree_complete(); node_info n = layout_->random_node(is_internal); boost::optional begin = n.keys.begin_; boost::optional end = n.keys.end_; trash_block(n.b); expect_value_run(0, *begin); expect_damage(base::run(begin, end)); if (end) expect_value_run(*end, 10000); run(); } //---------------------------------------------------------------- TEST_F(BTreeDamageVisitor2Tests, empty_tree) { tree_complete(); expect_no_damage(); expect_no_values(); run(); } TEST_F(BTreeDamageVisitor2Tests, tree_with_a_trashed_root) { tree_complete(); trash_block(tree_->get_root()); expect_no_values(); btree_path path; expect_damage(path, base::run(0ull)); run(); } TEST_F(BTreeDamageVisitor2Tests, populated_tree_with_no_damage) { insert_values(10, 10); tree_complete(); expect_values(10, 10); expect_no_damage(); run(); } namespace { bool leaf1(node_info const &n) { return (n.leaf && n.path.size() == 1 && n.path[0] == 1); } } TEST_F(BTreeDamageVisitor2Tests, damaged_leaf) { insert_values(10, 1000); tree_complete(); node_info n = layout_->random_node(leaf1); trash_block(n.b); expect_damage(n.path, n.keys); expect_values_except(10, 1000, n.path, n.keys); run(); } //----------------------------------------------------------------