/* * Copyright (C) 2013 Red Hat, GmbH * * This file is released under the GPL * * Calculates device-mapper thin privisioning * metadata device size based on pool, block size and * maximum expected thin provisioned devices and snapshots. * */ #include #include #include #include #include #include /*----------------------------------------------------------------*/ static char *prg; /* program name */ enum numeric_options { BLOCKSIZE, POOLSIZE, MAXTHINS, NUMERIC, OPT_END}; enum return_units { RETURN_BYTES, RETURN_SECTORS }; struct global { #define UNIT_ARRAY_SZ 18 struct { char *chars; char *strings[UNIT_ARRAY_SZ]; unsigned long long factors[UNIT_ARRAY_SZ]; } unit; struct options { unsigned long long n[OPT_END]; char unit; } options; }; #define bytes_per_sector g->unit.factors[1] static struct global *init(void) { unsigned u; static struct global r; static char *unit_strings[] = { "bytes", "sectors", "kilobytes", "kibibytes", "megabytes", "mebibytes", "gigabytes", "gibibytes", "terabytes", "tebibytes", "petabytes", "pebibytes", "exabytes", "ebibytes", "zetabytes", "zebibytes", "yottabytes", "yobibytes" }; memset(&r, 0, sizeof(r)); r.unit.chars = "bskKmMgGtTpPeEzZyY"; u = 0; r.unit.factors[u++] = 1; r.unit.factors[u++] = 512; r.unit.factors[u++] = 1024; r.unit.factors[u++] = 1000; for ( ; u < UNIT_ARRAY_SZ; u += 2) { r.unit.factors[u] = r.unit.factors[2] * r.unit.factors[u - 2]; r.unit.factors[u+1] = r.unit.factors[3] * r.unit.factors[u - 1]; } for (u = UNIT_ARRAY_SZ; u--; ) r.unit.strings[u] = unit_strings[u]; r.options.unit = 's'; return &r; } static unsigned get_index(struct global *g, char unit_char) { char *o = strchr(g->unit.chars, unit_char); return o ? o - g->unit.chars : 1; } static void abort_prg(const char *msg) { fprintf(stderr, "%s - %s\n", prg, msg); exit(1); } static void check_opts(struct options *options) { if (!options->n[BLOCKSIZE] || !options->n[POOLSIZE] || !options->n[MAXTHINS]) abort_prg("3 arguments required!"); else if (options->n[BLOCKSIZE] & (options->n[BLOCKSIZE] - 1)) abort_prg("block size must be 2^^N"); else if (options->n[POOLSIZE] < options->n[BLOCKSIZE]) abort_prg("POOLSIZE must be much larger than BLOCKSIZE"); else if (!options->n[MAXTHINS]) abort_prg("maximum number of thin provisioned devices must be > 0"); } static unsigned long long to_bytes(struct global *g, char *sz, enum return_units unit) { unsigned len = strlen(sz); unsigned long long r; char uc = 's', *us = strchr(g->unit.chars, sz[len-1]); if (us) uc = *us, sz[len-1] = 0; r = atoll(sz) * g->unit.factors[get_index(g, uc)]; return (!us || unit == RETURN_SECTORS) ? r / bytes_per_sector : r; } static void printf_aligned(struct global *g, char *a, char *b, char *c, int units) { char buf[80]; strcpy(buf, b); if (units) strcat(buf, "["), strcat(buf, g->unit.chars), strcat(buf, "]"); printf("\t%-4s%-45s%s\n", a, buf, c); } static void help(struct global *g) { printf ("Thin Provisioning Metadata Device Size Calculator.\nUsage: %s [opts]\n", prg); printf_aligned(g, "-b", "--block-size BLOCKSIZE", "Block size of thin provisioned devices.", 1); printf_aligned(g, "-s", "--pool-size SIZE", "Size of pool device.", 1); printf_aligned(g, "-m", "--max-thins #MAXTHINS", "Maximum sum of all thin devices and snapshots.", 1); printf_aligned(g, "-u", "--unit ", "Output unit specifier.", 1); printf_aligned(g, "-n", "--numeric-only", "Output numeric value only.", 0); printf_aligned(g, "-h", "--help", "This help.", 0); exit(0); } static void check_unit(struct global *g, char *arg) { if (*(arg + 1)) abort_prg("only one unit specifier allowed!"); else if (!strchr(g->unit.chars, *arg)) abort_prg("output unit specifier invalid!"); g->options.unit = *arg; } static struct global *parse_command_line(struct global *g, int argc, char **argv) { int c; static struct option long_options[] = { {"block-size", required_argument, 0, 'b' }, {"pool-size", required_argument, 0, 's' }, {"max-thins", required_argument, 0, 'm' }, {"unit", required_argument, 0, 'u' }, {"numeric-only",required_argument, 0, 'n' }, {"help", no_argument, 0, 'h' }, {NULL, 0, 0, 0 } }; while ((c = getopt_long(argc, argv, "b:s:m:u:nh", long_options, NULL)) != -1) { if (c == 'b') g->options.n[BLOCKSIZE] = to_bytes(g, optarg, RETURN_SECTORS); else if (c == 's') g->options.n[POOLSIZE] = to_bytes(g, optarg, RETURN_SECTORS); else if (c == 'm') g->options.n[MAXTHINS] = to_bytes(g, optarg, RETURN_BYTES); else if (c == 'u') check_unit(g, optarg); else if (c == 'n') g->options.n[NUMERIC] = 1; else if (c == 'h') help(g); else abort_prg("Invalid option!"); } check_opts(&g->options); return g; } static const unsigned mappings_per_block(void) { const struct { const unsigned node; const unsigned node_header; const unsigned entry; } btree_size = { 4096, 64, 16 }; return (btree_size.node - btree_size.node_header) / btree_size.entry; } static void printf_precision(double r, int full, char *unit_str) { double rtrunc = truncl(r); if (full) printf("%s - estimated metadata area size is ", prg); if (r == rtrunc) printf("%llu", (unsigned long long) r); else printf(r - truncl(r) < 1E-2 ? "%0.2e" : "%0.2f", r); if (full) printf(" %s", unit_str); putchar('\n'); } static void estimated_result(struct global *g) { unsigned idx = get_index(g, g->options.unit); double r; /* double-fold # of nodes, because they aren't fully populated in average */ r = (1.0 + (2 * g->options.n[POOLSIZE] / g->options.n[BLOCKSIZE] / mappings_per_block() + g->options.n[MAXTHINS])) * 8 * bytes_per_sector; /* in bytes! */ r /= g->unit.factors[idx]; /* in requested unit */ printf_precision(r, !g->options.n[NUMERIC], g->unit.strings[idx]); } int main(int argc, char **argv) { prg = basename(*argv); estimated_result(parse_command_line(init(), argc, argv)); return 0; }