// Copyright (C) 2011 Red Hat, Inc. All rights reserved. // // This file is part of the thin-provisioning-tools source. // // thin-provisioning-tools is free software: you can redistribute it // and/or modify it under the terms of the GNU General Public License // as published by the Free Software Foundation, either version 3 of // the License, or (at your option) any later version. // // thin-provisioning-tools is distributed in the hope that it will be // useful, but WITHOUT ANY WARRANTY; without even the implied warranty // of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License along // with thin-provisioning-tools. If not, see // . #include "thin-provisioning/emitter.h" #include "thin-provisioning/metadata_dumper.h" #include "thin-provisioning/mapping_tree.h" #include "persistent-data/data-structures/simple_traits.h" #include "persistent-data/file_utils.h" #include #include using namespace persistent_data; using namespace thin_provisioning; #define SHOW_WORKING 0 //---------------------------------------------------------------- namespace { void raise_metadata_damage() { throw std::runtime_error("metadata contains errors (run thin_check for details).\n" "perhaps you wanted to run with --repair"); } //-------------------------------- struct ignore_details_damage : public device_tree_detail::damage_visitor { void visit(device_tree_detail::missing_devices const &d) { } }; struct fatal_details_damage : public device_tree_detail::damage_visitor { void visit(device_tree_detail::missing_devices const &d) { raise_metadata_damage(); } }; device_tree_detail::damage_visitor::ptr details_damage_policy(bool repair) { typedef device_tree_detail::damage_visitor::ptr dvp; if (repair) return dvp(new ignore_details_damage()); else return dvp(new fatal_details_damage()); } //-------------------------------- struct ignore_mapping_damage : public mapping_tree_detail::damage_visitor { void visit(mapping_tree_detail::missing_devices const &d) { } void visit(mapping_tree_detail::missing_mappings const &d) { } }; struct fatal_mapping_damage : public mapping_tree_detail::damage_visitor { void visit(mapping_tree_detail::missing_devices const &d) { raise_metadata_damage(); } void visit(mapping_tree_detail::missing_mappings const &d) { raise_metadata_damage(); } }; mapping_tree_detail::damage_visitor::ptr mapping_damage_policy(bool repair) { typedef mapping_tree_detail::damage_visitor::ptr mvp; if (repair) return mvp(new ignore_mapping_damage()); else return mvp(new fatal_mapping_damage()); } //-------------------------------- typedef map dd_map; class details_extractor : public device_tree_detail::device_visitor { public: details_extractor(dump_options const &opts) : opts_(opts) { } void visit(block_address dev_id, device_tree_detail::device_details const &dd) { if (opts_.selected_dev(dev_id)) dd_.insert(make_pair(dev_id, dd)); } dd_map const &get_details() const { return dd_; } private: dump_options const &opts_; dd_map dd_; }; struct d_thin_id_extractor : public device_tree_detail::device_visitor { void visit(block_address dev_id, device_tree_detail::device_details const &dd) { dd_.insert(dev_id); } set dd_; }; set get_dev_ids(transaction_manager &tm, block_address root) { d_thin_id_extractor de; fatal_details_damage dv; auto tree = device_tree(tm, root, device_tree_detail::device_details_traits::ref_counter()); walk_device_tree(tree, de, dv); return de.dd_; } struct m_thin_id_extractor : public mapping_tree_detail::device_visitor { void visit(btree_path const &path, block_address dtree_root) { dd_.insert(path[0]); } set dd_; }; set get_map_ids(transaction_manager &tm, block_address root) { m_thin_id_extractor me; fatal_mapping_damage mv; auto tree = dev_tree(tm, root, mapping_tree_detail::mtree_traits::ref_counter(tm)); walk_mapping_tree(tree, me, mv); return me.dd_; } } // We only need to examine the mapping tree, and device details tree. // The space maps can be inferred. // Repair process: // - We only trigger the repair process if there's damage when walking from // the roots given in the superblock. // - If there is damage, then we try and find the most recent roots with the // least corruption. We're seeing cases where just the superblock has been // trashed so finding the best roots is essential, and sadly non trivial. // Finding roots: // This is about classifying and summarising btree nodes. The use of a btree // node may not be obvious when inspecting it in isolation. But more information // may be gleaned by examining child and sibling nodes. // // So the process is: // - scan every metadata block, summarising it's potential uses. // - repeatedly iterate those summaries until we can glean no more useful information. // - sort candidate roots, choose best // Summary information: // - btree; mapping top level, mapping bottom level, device tree (more than one possible) // - node type; internal or leaf // - age; for mapping trees we can infer a minimum age from the block/time // values. In addition two similar leaf nodes can be compared by looking // at the block/time for _specific_ blocks. This means we can define an ordering // on the ages, but not equality. // - Device details can be aged based on the last_snapshot_time field. // Iteration of summary info: // - constraints propagate both up and down the trees. eg, node 'a' may // be ambiguous (all internal nodes are ambigous). If we find that all it's // children are device details trees, then we infer that this is too and lose // the ambiguity. Now if it has a sibling we can infer on this too. // - Some characteristics only propagate upwards. eg, age. So we need two monoids // for summary info (up and down). namespace { using namespace std; using namespace boost; using namespace persistent_data::btree_detail; using namespace thin_provisioning::device_tree_detail; enum btree_type { TOP_LEVEL, BOTTOM_LEVEL, DEVICE_DETAILS }; struct node_info { node_info() : valid(true), type(TOP_LEVEL), b(0), values(0), key_low(0), key_high(0), age(0), nr_mappings(0) { } bool valid; btree_type type; block_address b; unsigned values; uint64_t key_low; uint64_t key_high; //set devices; uint32_t age; map time_counts; unsigned nr_mappings; }; #if SHOW_WORKING ostream &operator <<(ostream &out, node_info const &n) { out << "b=" << n.b << ", valid=" << n.valid << ", type=" << n.type << ", values=" << n.values; out << ", nr_mapped=" << n.nr_mappings; for (auto const &p : n.time_counts) out << ", t" << p.first << "=" << p.second; return out; } #endif bool cmp_time_counts(pair const &lhs_pair, pair const &rhs_pair) { auto const &lhs = lhs_pair.first.time_counts; auto const &rhs = rhs_pair.first.time_counts; for (auto lhs_it = lhs.crbegin(); lhs_it != lhs.crend(); lhs_it++) { for (auto rhs_it = rhs.crbegin(); rhs_it != rhs.crend(); rhs_it++) { if (lhs_it->first > rhs_it->first) return true; else if (rhs_it->first > lhs_it->first) return false; else if (lhs_it->second > rhs_it->second) return true; else if (rhs_it->second > lhs_it->second) return false; } } return true; } class gatherer { public: gatherer(block_manager<> &bm) : bm_(bm), referenced_(bm.get_nr_blocks(), false), examined_(bm.get_nr_blocks(), false) { } optional> find_best_roots(transaction_manager &tm) { vector mapping_roots; vector device_roots; auto nr_blocks = bm_.get_nr_blocks(); for (block_address b = 0; b < nr_blocks; b++) get_info(b); for (block_address b = 0; b < nr_blocks; b++) { if (referenced(b)) continue; auto info = get_info(b); if (info.valid) { if (info.type == TOP_LEVEL) mapping_roots.push_back(info); else if (info.type == DEVICE_DETAILS) device_roots.push_back(info); } } #if SHOW_WORKING cerr << "mapping candidates (" << mapping_roots.size() << "):\n"; for (auto const &i : mapping_roots) cerr << i << "\n"; cerr << "\ndevice candidates (" << device_roots.size() << "):\n"; for (auto const &i : device_roots) cerr << i << "\n"; #endif auto pairs = find_compatible_roots(tm, device_roots, mapping_roots); #if SHOW_WORKING for (auto const &p : pairs) cerr << "(" << p.first << ", " << p.second << ")\n"; #endif if (pairs.size()) return pairs[0]; else return optional>(); } private: bool set_eq(set const &lhs, set const &rhs) { for (auto v : lhs) if (!rhs.count(v)) return false; return true; } vector > find_compatible_roots(transaction_manager &tm, vector const &device_roots, vector const &mapping_roots) { vector> pairs; set d_roots; set m_roots; // construct pairs that have the same number of entries for (auto const &di : device_roots) for (auto const &mi : mapping_roots) if (di.values == mi.values && di.nr_mappings == mi.nr_mappings) { pairs.push_back(make_pair(di, mi)); d_roots.insert(di.b); m_roots.insert(mi.b); } sort(pairs.begin(), pairs.end(), cmp_time_counts); map> ds; for (auto b : d_roots) ds.insert(make_pair(b, get_dev_ids(tm, b))); map> ms; for (auto b : m_roots) ms.insert(make_pair(b, get_map_ids(tm, b))); // now we check that the thin_ids are identical vector> filtered; for (auto const &p : pairs) { auto lhs = ds.find(p.first.b); if (lhs == ds.end()) continue; auto rhs = ms.find(p.second.b); if (rhs == ms.end()) continue; filtered.push_back(make_pair(p.first.b, p.second.b)); } return filtered; } void mark_referenced(block_address b) { referenced_[b] = true; } bool referenced(block_address b) const { return referenced_[b]; } bool is_btree_node(block_address b) { auto v = create_btree_node_validator(); auto rr = bm_.read_lock(b); return v->check_raw(rr.data()); } // The bottom layer has the block time encoded in it, with the time // in the bottom 24 bits. This means every block/time apart from block 0 // will result in a value that's outside the range of the metadata device. bool is_top_level(node_ref &n) { auto nr_metadata_blocks = bm_.get_nr_blocks(); for (unsigned i = 0; i < n.get_nr_entries(); i++) if (n.value_at(i) >= nr_metadata_blocks) return false; return true; } uint32_t get_dd_age(device_details const &dd) { return max(dd.creation_time_, dd.snapshotted_time_); } void fail(node_info &n, const char *reason) { // cerr << n.b << " failed: " << reason << "\n"; n.valid = false; } bool failed(node_info const &n) { return !n.valid; } void inc_time_count(map &counts, uint32_t time) { auto it = counts.find(time); if (it == counts.end()) { counts.insert(make_pair(time, 1)); } else it->second++; } void merge_time_counts(map &lhs, map const &rhs) { for (auto const &p : rhs) { auto it = lhs.find(p.first); if (it == lhs.end()) lhs.insert(p); else it->second += p.second; } } node_info get_internal_info(block_manager<>::read_ref &rr) { node_info info; info.b = rr.get_location(); // values refer to blocks, so we should have infos for them. auto n = to_node(rr); uint64_t key_low = 0; unsigned values = 0; for (unsigned i = 0; i < n.get_nr_entries(); i++) { auto child = get_info(n.value_at(i)); if (failed(child)) { fail(info, "child failed"); break; } if (!i) info.type = child.type; else if (info.type != child.type) { fail(info, "mismatch types"); break; } // we use the keys to help decide if this is a valid child if (key_low && child.key_low <= key_low) { fail(info, "bad keys"); break; } else key_low = child.key_high; values += child.values; merge_time_counts(info.time_counts, child.time_counts); info.age = max(info.age, child.age); info.nr_mappings += child.nr_mappings; } // We don't clear the orphan flags until we know the parent is good if (!failed(info)) { info.values = values; for (unsigned i = 0; i < n.get_nr_entries(); i++) mark_referenced(n.value_at(i)); } return info; } node_info get_leaf_info(block_manager<>::read_ref &rr, node_header const &hdr) { node_info info; info.b = rr.get_location(); auto vsize = to_cpu(hdr.value_size); info.values = to_cpu(hdr.nr_entries); if (vsize == sizeof(device_details_traits::disk_type)) { auto n = to_node(rr); info.type = DEVICE_DETAILS; if (n.get_nr_entries()) { info.key_low = n.key_at(0); info.key_high = n.key_at(n.get_nr_entries() - 1); } for (unsigned i = 0; i < n.get_nr_entries(); i++) { info.age = max(info.age, get_dd_age(n.value_at(i))); info.nr_mappings += n.value_at(i).mapped_blocks_; } } else if (vsize == sizeof(uint64_t)) { auto n = to_node(rr); if (n.get_nr_entries()) { info.key_low = n.key_at(0); info.key_high = n.key_at(n.get_nr_entries() - 1); } if (is_top_level(n)) { info.type = TOP_LEVEL; for (unsigned i = 0; i < n.get_nr_entries(); i++) { node_info child = get_info(n.value_at(i)); if (!child.valid || (child.type != BOTTOM_LEVEL)) { fail(info, "child not bottom level"); return info; } info.age = max(info.age, child.age); merge_time_counts(info.time_counts, child.time_counts); info.nr_mappings += child.nr_mappings; } for (unsigned i = 0; i < n.get_nr_entries(); i++) mark_referenced(n.value_at(i)); } else { auto n = to_node(rr); info.type = BOTTOM_LEVEL; for (unsigned i = 0; i < n.get_nr_entries(); i++) { auto bt = n.value_at(i); inc_time_count(info.time_counts, bt.time_); info.age = max(info.age, bt.time_); } info.nr_mappings = n.get_nr_entries(); } } return info; } node_info get_info_(block_address b) { if (!is_btree_node(b)) { node_info info; info.b = b; fail(info, "not btree node"); return info; } auto rr = bm_.read_lock(b); auto hdr = reinterpret_cast(rr.data()); auto flags = to_cpu(hdr->flags); if (flags & INTERNAL_NODE) return get_internal_info(rr); else return get_leaf_info(rr, *hdr); } node_info get_info(block_address b) { if (examined_[b]) { auto it = infos_.find(b); if (it == infos_.end()) { node_info info; info.b = b; fail(info, "unknown"); return info; } return it->second; } else { node_info info = get_info_(b); examined_[b] = true; if (!failed(info)) infos_.insert(make_pair(b, info)); return info; } } block_manager<> &bm_; vector referenced_; vector examined_; map infos_; }; } //---------------------------------------------------------------- namespace { class mapping_emitter : public mapping_tree_detail::mapping_visitor { public: mapping_emitter(emitter::ptr e) : e_(e), in_range_(false) { } ~mapping_emitter() { end_mapping(); } typedef mapping_tree_detail::block_time block_time; void visit(btree_path const &path, block_time const &bt) { add_mapping(path[0], bt); } private: void start_mapping(uint64_t origin_block, block_time const &bt) { origin_start_ = origin_block; dest_start_ = bt.block_; time_ = bt.time_; len_ = 1; in_range_ = true; } void end_mapping() { if (in_range_) { if (len_ == 1) e_->single_map(origin_start_, dest_start_, time_); else e_->range_map(origin_start_, dest_start_, time_, len_); in_range_ = false; } } void add_mapping(uint64_t origin_block, block_time const &bt) { if (!in_range_) start_mapping(origin_block, bt); else if (origin_block == origin_start_ + len_ && bt.block_ == dest_start_ + len_ && time_ == bt.time_) len_++; else { end_mapping(); start_mapping(origin_block, bt); } } emitter::ptr e_; block_address origin_start_; block_address dest_start_; uint32_t time_; block_address len_; bool in_range_; }; class mapping_tree_emitter : public mapping_tree_detail::device_visitor { public: mapping_tree_emitter(dump_options const &opts, metadata::ptr md, emitter::ptr e, dd_map const &dd, mapping_tree_detail::damage_visitor::ptr damage_policy) : opts_(opts), md_(md), e_(e), dd_(dd), damage_policy_(damage_policy) { } void visit(btree_path const &path, block_address tree_root) { block_address dev_id = path[0]; if (!opts_.selected_dev(dev_id)) return; dd_map::const_iterator it = dd_.find(path[0]); if (it != dd_.end()) { device_tree_detail::device_details const &d = it->second; e_->begin_device(dev_id, d.mapped_blocks_, d.transaction_id_, d.creation_time_, d.snapshotted_time_); try { if (!opts_.skip_mappings_) emit_mappings(dev_id, tree_root); } catch (std::exception &e) { cerr << e.what(); e_->end_device(); throw; } e_->end_device(); } else { ostringstream msg; msg << "mappings present for device " << dev_id << ", but it isn't present in device tree"; throw runtime_error(msg.str()); } } private: void emit_mappings(uint64_t dev_id, block_address subtree_root) { mapping_emitter me(e_); single_mapping_tree tree(*md_->tm_, subtree_root, mapping_tree_detail::block_time_ref_counter(md_->data_sm_)); walk_mapping_tree(tree, dev_id, static_cast(me), *damage_policy_); } dump_options const &opts_; metadata::ptr md_; emitter::ptr e_; dd_map const &dd_; mapping_tree_detail::damage_visitor::ptr damage_policy_; }; block_address get_nr_blocks(metadata::ptr md) { if (md->data_sm_) return md->data_sm_->get_nr_blocks(); else if (md->sb_.blocknr_ == superblock_detail::SUPERBLOCK_LOCATION) // grab from the root structure of the space map return get_nr_blocks_in_data_sm(*md->tm_, &md->sb_.data_space_map_root_); else // metadata snap, we really don't know return 0ull; } } //---------------------------------------------------------------- void thin_provisioning::metadata_dump(metadata::ptr md, emitter::ptr e, dump_options const &opts) { details_extractor de(opts); device_tree_detail::damage_visitor::ptr dd_policy(details_damage_policy(false)); walk_device_tree(*md->details_, de, *dd_policy); e->begin_superblock("", md->sb_.time_, md->sb_.trans_id_, md->sb_.flags_, md->sb_.version_, md->sb_.data_block_size_, get_nr_blocks(md), boost::optional()); { mapping_tree_detail::damage_visitor::ptr md_policy(mapping_damage_policy(false)); mapping_tree_emitter mte(opts, md, e, de.get_details(), mapping_damage_policy(false)); walk_mapping_tree(*md->mappings_top_level_, mte, *md_policy); } e->end_superblock(); } void thin_provisioning::metadata_repair(block_manager<>::ptr bm, emitter::ptr e) { // We assume the superblock is wrong, and find the best roots // for ourselves. We've had a few cases where people have // activated a pool on multiple hosts at once, which results in // the superblock being over written. gatherer g(*bm); auto tm = open_tm(bm, superblock_detail::SUPERBLOCK_LOCATION); auto p = g.find_best_roots(*tm); metadata::ptr md; if (p) { // We found good roots, so we fill out our own superblock, // with some help from the old sb. // FIXME: what happens if the superblock can't be read? // catch and fill out defaults? what should the data_block_size be? auto sb = read_superblock(*bm); sb.metadata_snap_ = 0; sb.device_details_root_ = p->first; sb.data_mapping_root_ = p->second; sb.metadata_nr_blocks_ = bm->get_nr_blocks(); md.reset(new metadata(bm, sb)); } else { // We couldn't find any good roots, so we'll fall back to using the // on disk superblock. md.reset(new metadata(bm, false)); } dump_options opts; details_extractor de(opts); device_tree_detail::damage_visitor::ptr dd_policy(details_damage_policy(true)); walk_device_tree(*md->details_, de, *dd_policy); e->begin_superblock("", md->sb_.time_, md->sb_.trans_id_, md->sb_.flags_, md->sb_.version_, md->sb_.data_block_size_, get_nr_blocks(md), boost::optional()); { mapping_tree_detail::damage_visitor::ptr md_policy(mapping_damage_policy(true)); mapping_tree_emitter mte(opts, md, e, de.get_details(), mapping_damage_policy(true)); walk_mapping_tree(*md->mappings_top_level_, mte, *md_policy); } e->end_superblock(); } //---------------------------------------------------------------- void thin_provisioning::metadata_dump_subtree(metadata::ptr md, emitter::ptr e, bool repair, uint64_t subtree_root) { mapping_emitter me(e); single_mapping_tree tree(*md->tm_, subtree_root, mapping_tree_detail::block_time_ref_counter(md->data_sm_)); // FIXME: pass the current device id instead of zero walk_mapping_tree(tree, 0, static_cast(me), *mapping_damage_policy(repair)); } //----------------------------------------------------------------