use anyhow::{anyhow, Result}; use std::collections::BTreeMap; use std::io::Cursor; use std::path::Path; use std::sync::{Arc, Mutex}; use std::thread::{self, JoinHandle}; use threadpool::ThreadPool; use crate::checksum; use crate::io_engine::{AsyncIoEngine, IoEngine, SyncIoEngine}; use crate::pdata::btree::{self, *}; use crate::pdata::space_map::*; use crate::pdata::unpack::*; use crate::report::*; use crate::thin::block_time::*; use crate::thin::device_detail::*; use crate::thin::superblock::*; //------------------------------------------ struct BottomLevelVisitor { data_sm: ASpaceMap, } //------------------------------------------ impl NodeVisitor for BottomLevelVisitor { fn visit( &self, _path: &Vec, _kr: &KeyRange, _h: &NodeHeader, _k: &[u64], values: &[BlockTime], ) -> btree::Result<()> { // FIXME: do other checks if values.len() == 0 { return Ok(()); } let mut data_sm = self.data_sm.lock().unwrap(); let mut start = values[0].block; let mut len = 1; for n in 1..values.len() { let block = values[n].block; if block == start + len { len += 1; } else { data_sm.inc(start, len).unwrap(); start = block; len = 1; } } data_sm.inc(start, len).unwrap(); Ok(()) } fn end_walk(&self) -> btree::Result<()> { Ok(()) } } //------------------------------------------ struct OverflowChecker<'a> { data_sm: &'a dyn SpaceMap, } impl<'a> OverflowChecker<'a> { fn new(data_sm: &'a dyn SpaceMap) -> OverflowChecker<'a> { OverflowChecker { data_sm } } } impl<'a> NodeVisitor for OverflowChecker<'a> { fn visit( &self, _path: &Vec, _kr: &KeyRange, _h: &NodeHeader, keys: &[u64], values: &[u32], ) -> btree::Result<()> { for n in 0..keys.len() { let k = keys[n]; let v = values[n]; let expected = self.data_sm.get(k).unwrap(); if expected != v { return Err(value_err(format!("Bad reference count for data block {}. Expected {}, but space map contains {}.", k, expected, v))); } } Ok(()) } fn end_walk(&self) -> btree::Result<()> { Ok(()) } } //------------------------------------------ struct BitmapLeak { blocknr: u64, // blocknr for the first entry in the bitmap loc: u64, // location of the bitmap } // This checks the space map and returns any leak blocks for auto-repair to process. fn check_space_map( path: &mut Vec, ctx: &Context, kind: &str, entries: Vec, metadata_sm: Option, sm: ASpaceMap, root: SMRoot, ) -> Result> { let report = ctx.report.clone(); let engine = ctx.engine.clone(); let sm = sm.lock().unwrap(); // overflow btree { let v = OverflowChecker::new(&*sm); let w; if metadata_sm.is_none() { w = BTreeWalker::new(engine.clone(), false); } else { w = BTreeWalker::new_with_sm(engine.clone(), metadata_sm.unwrap().clone(), false)?; } w.walk(path, &v, root.ref_count_root)?; } let mut blocks = Vec::with_capacity(entries.len()); for i in &entries { blocks.push(i.blocknr); } // FIXME: we should do this in batches let blocks = engine.read_many(&mut blocks)?; let mut leaks = 0; let mut blocknr = 0; let mut bitmap_leaks = Vec::new(); for n in 0..entries.len() { let b = &blocks[n]; match b { Err(_e) => { return Err(anyhow!("Unable to read bitmap block")); } Ok(b) => { if checksum::metadata_block_type(&b.get_data()) != checksum::BT::BITMAP { report.fatal(&format!( "Index entry points to block ({}) that isn't a bitmap", b.loc )); } let bitmap = unpack::(b.get_data())?; let first_blocknr = blocknr; let mut contains_leak = false; for e in bitmap.entries.iter() { if blocknr >= root.nr_blocks { break; } match e { BitmapEntry::Small(actual) => { let expected = sm.get(blocknr)?; if *actual == 1 && expected == 0 { leaks += 1; contains_leak = true; } else if *actual != expected as u8 { report.fatal(&format!("Bad reference count for {} block {}. Expected {}, but space map contains {}.", kind, blocknr, expected, actual)); } } BitmapEntry::Overflow => { let expected = sm.get(blocknr)?; if expected < 3 { report.fatal(&format!("Bad reference count for {} block {}. Expected {}, but space map says it's >= 3.", kind, blocknr, expected)); } } } blocknr += 1; } if contains_leak { bitmap_leaks.push(BitmapLeak { blocknr: first_blocknr, loc: b.loc, }); } } } } if leaks > 0 { report.non_fatal(&format!("{} {} blocks have leaked.", leaks, kind)); } Ok(bitmap_leaks) } // This assumes the only errors in the space map are leaks. Entries should just be // those that contain leaks. fn repair_space_map(ctx: &Context, entries: Vec, sm: ASpaceMap) -> Result<()> { let engine = ctx.engine.clone(); let sm = sm.lock().unwrap(); let mut blocks = Vec::with_capacity(entries.len()); for i in &entries { blocks.push(i.loc); } // FIXME: we should do this in batches let rblocks = engine.read_many(&blocks[0..])?; let mut write_blocks = Vec::new(); let mut i = 0; for rb in rblocks { if rb.is_err() { return Err(anyhow!("Unable to reread bitmap blocks for repair")); } else { let b = rb.unwrap(); let be = &entries[i]; let mut blocknr = be.blocknr; let mut bitmap = unpack::(b.get_data())?; for e in bitmap.entries.iter_mut() { if blocknr >= sm.get_nr_blocks()? { break; } if let BitmapEntry::Small(actual) = e { let expected = sm.get(blocknr)?; if *actual == 1 && expected == 0 { *e = BitmapEntry::Small(0); } } blocknr += 1; } let mut out = Cursor::new(b.get_data()); bitmap.pack(&mut out)?; checksum::write_checksum(b.get_data(), checksum::BT::BITMAP)?; write_blocks.push(b); } i += 1; } engine.write_many(&write_blocks[0..])?; Ok(()) } //------------------------------------------ fn inc_entries(sm: &ASpaceMap, entries: &[IndexEntry]) -> Result<()> { let mut sm = sm.lock().unwrap(); for ie in entries { sm.inc(ie.blocknr, 1)?; } Ok(()) } fn inc_superblock(sm: &ASpaceMap) -> Result<()> { let mut sm = sm.lock().unwrap(); sm.inc(SUPERBLOCK_LOCATION, 1)?; Ok(()) } //------------------------------------------ const MAX_CONCURRENT_IO: u32 = 1024; pub struct ThinCheckOptions<'a> { pub dev: &'a Path, pub async_io: bool, pub sb_only: bool, pub skip_mappings: bool, pub ignore_non_fatal: bool, pub auto_repair: bool, pub report: Arc, } fn spawn_progress_thread( sm: Arc>, nr_allocated_metadata: u64, report: Arc, ) -> Result<(JoinHandle<()>, Arc>)> { let tid; let stop_progress = Arc::new(Mutex::new(false)); { let stop_progress = stop_progress.clone(); tid = thread::spawn(move || { let interval = std::time::Duration::from_millis(250); loop { { let stop_progress = stop_progress.lock().unwrap(); if *stop_progress { break; } } let sm = sm.lock().unwrap(); let mut n = sm.get_nr_allocated().unwrap(); drop(sm); n *= 100; n /= nr_allocated_metadata; let _r = report.progress(n as u8); thread::sleep(interval); } }); } Ok((tid, stop_progress)) } struct Context { report: Arc, engine: Arc, pool: ThreadPool, } // Check the mappings filling in the data_sm as we go. fn check_mapping_bottom_level( ctx: &Context, metadata_sm: &Arc>, data_sm: &Arc>, roots: &BTreeMap, u64)>, ) -> Result<()> { ctx.report.set_sub_title("mapping tree"); let w = Arc::new(BTreeWalker::new_with_sm( ctx.engine.clone(), metadata_sm.clone(), false, )?); // We want to print out errors as we progress, so we aggregate for each thin and print // at that point. let mut failed = false; if roots.len() > 64 { let errs = Arc::new(Mutex::new(Vec::new())); for (_thin_id, (path, root)) in roots { let data_sm = data_sm.clone(); let root = *root; let v = BottomLevelVisitor { data_sm }; let w = w.clone(); let mut path = path.clone(); let errs = errs.clone(); ctx.pool.execute(move || { if let Err(e) = w.walk(&mut path, &v, root) { let mut errs = errs.lock().unwrap(); errs.push(e); } }); } ctx.pool.join(); let errs = Arc::try_unwrap(errs).unwrap().into_inner().unwrap(); if errs.len() > 0 { ctx.report.fatal(&format!("{}", aggregate_error(errs))); failed = true; } } else { for (_thin_id, (path, root)) in roots { let w = w.clone(); let data_sm = data_sm.clone(); let root = *root; let v = Arc::new(BottomLevelVisitor { data_sm }); let mut path = path.clone(); if let Err(e) = walk_threaded(&mut path, w, &ctx.pool, v, root) { failed = true; ctx.report.fatal(&format!("{}", e)); } } } if failed { Err(anyhow!("Check of mappings failed")) } else { Ok(()) } } fn mk_context(opts: &ThinCheckOptions) -> Result { let engine: Arc; let nr_threads; if opts.async_io { nr_threads = std::cmp::min(4, num_cpus::get()); engine = Arc::new(AsyncIoEngine::new( opts.dev, MAX_CONCURRENT_IO, opts.auto_repair, )?); } else { nr_threads = std::cmp::max(8, num_cpus::get() * 2); engine = Arc::new(SyncIoEngine::new(opts.dev, nr_threads, opts.auto_repair)?); } let pool = ThreadPool::new(nr_threads); Ok(Context { report: opts.report.clone(), engine, pool, }) } fn bail_out(ctx: &Context, task: &str) -> Result<()> { use ReportOutcome::*; match ctx.report.get_outcome() { Fatal => Err(anyhow!(format!( "Check of {} failed, ending check early.", task ))), _ => Ok(()), } } pub fn check(opts: ThinCheckOptions) -> Result<()> { let ctx = mk_context(&opts)?; // FIXME: temporarily get these out let report = &ctx.report; let engine = &ctx.engine; report.set_title("Checking thin metadata"); // superblock let sb = read_superblock(engine.as_ref(), SUPERBLOCK_LOCATION)?; report.info(&format!("TRANSACTION_ID={}", sb.transaction_id)); if opts.sb_only { return Ok(()); } let metadata_root = unpack::(&sb.metadata_sm_root[0..])?; let mut path = Vec::new(); path.push(0); // Device details. We read this once to get the number of thin devices, and hence the // maximum metadata ref count. Then create metadata space map, and reread to increment // the ref counts for that metadata. let devs = btree_to_map::(&mut path, engine.clone(), false, sb.details_root)?; let nr_devs = devs.len(); let metadata_sm = core_sm(engine.get_nr_blocks(), nr_devs as u32); inc_superblock(&metadata_sm)?; report.set_sub_title("device details tree"); let _devs = btree_to_map_with_sm::( &mut path, engine.clone(), metadata_sm.clone(), false, sb.details_root, )?; let (tid, stop_progress) = spawn_progress_thread( metadata_sm.clone(), metadata_root.nr_allocated, report.clone(), )?; // mapping top level report.set_sub_title("mapping tree"); let roots = btree_to_map_with_path::( &mut path, engine.clone(), metadata_sm.clone(), false, sb.mapping_root, )?; if opts.skip_mappings { return Ok(()); } // mapping bottom level let root = unpack::(&sb.data_sm_root[0..])?; let data_sm = core_sm(root.nr_blocks, nr_devs as u32); check_mapping_bottom_level(&ctx, &metadata_sm, &data_sm, &roots)?; bail_out(&ctx, "mapping tree")?; report.set_sub_title("data space map"); let root = unpack::(&sb.data_sm_root[0..])?; let entries = btree_to_map_with_sm::( &mut path, engine.clone(), metadata_sm.clone(), false, root.bitmap_root, )?; let entries: Vec = entries.values().cloned().collect(); inc_entries(&metadata_sm, &entries[0..])?; let data_leaks = check_space_map( &mut path, &ctx, "data", entries, Some(metadata_sm.clone()), data_sm.clone(), root, )?; bail_out(&ctx, "data space map")?; report.set_sub_title("metadata space map"); let root = unpack::(&sb.metadata_sm_root[0..])?; report.info(&format!( "METADATA_FREE_BLOCKS={}", root.nr_blocks - root.nr_allocated )); let b = engine.read(root.bitmap_root)?; metadata_sm.lock().unwrap().inc(root.bitmap_root, 1)?; let entries = unpack::(b.get_data())?.indexes; // Unused entries will point to block 0 let entries: Vec = entries .iter() .take_while(|e| e.blocknr != 0) .cloned() .collect(); inc_entries(&metadata_sm, &entries[0..])?; // We call this for the side effect of incrementing the ref counts // for the metadata that holds the tree. let _counts = btree_to_map_with_sm::( &mut path, engine.clone(), metadata_sm.clone(), false, root.ref_count_root, )?; // Now the counts should be correct and we can check it. let metadata_leaks = check_space_map( &mut path, &ctx, "metadata", entries, None, metadata_sm.clone(), root, )?; bail_out(&ctx, "metadata space map")?; if opts.auto_repair { if data_leaks.len() > 0 { ctx.report.info("Repairing data leaks."); repair_space_map(&ctx, data_leaks, data_sm.clone())?; } if metadata_leaks.len() > 0 { ctx.report.info("Repairing metadata leaks."); repair_space_map(&ctx, metadata_leaks, metadata_sm.clone())?; } } { let mut stop_progress = stop_progress.lock().unwrap(); *stop_progress = true; } tid.join().unwrap(); Ok(()) } //------------------------------------------