use anyhow::{anyhow, Result}; use fixedbitset::FixedBitSet; use nom::{number::complete::*, IResult}; use std::collections::HashMap; use std::path::Path; use std::sync::{Arc, Mutex}; use std::time::Instant; use threadpool::ThreadPool; use crate::block_manager::{AsyncIoEngine, Block, IoEngine}; use crate::pdata::btree::{BTreeWalker, Node, NodeVisitor, Unpack, unpack}; use crate::pdata::space_map::*; use crate::thin::superblock::*; use crate::checksum; //------------------------------------------ struct TopLevelVisitor<'a> { roots: &'a mut HashMap, } impl<'a> NodeVisitor for TopLevelVisitor<'a> { fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node) -> Result<()> { if let Node::Leaf { header: _h, keys, values, } = node { for n in 0..keys.len() { let k = keys[n]; let root = values[n]; self.roots.insert(k as u32, root); } } Ok(()) } } //------------------------------------------ #[allow(dead_code)] struct BlockTime { block: u64, time: u32, } impl Unpack for BlockTime { fn disk_size() -> u32 { 8 } fn unpack(i: &[u8]) -> IResult<&[u8], BlockTime> { let (i, n) = le_u64(i)?; let block = n >> 24; let time = n & ((1 << 24) - 1); Ok(( i, BlockTime { block, time: time as u32, }, )) } } struct BottomLevelVisitor {} impl NodeVisitor for BottomLevelVisitor { fn visit(&mut self, _w: &BTreeWalker, _b: &Block, _node: &Node) -> Result<()> { Ok(()) } } //------------------------------------------ #[derive(Clone)] struct DeviceDetail { mapped_blocks: u64, transaction_id: u64, creation_time: u32, snapshotted_time: u32, } impl Unpack for DeviceDetail { fn disk_size() -> u32 { 24 } fn unpack(i: &[u8]) -> IResult<&[u8], DeviceDetail> { let (i, mapped_blocks) = le_u64(i)?; let (i, transaction_id) = le_u64(i)?; let (i, creation_time) = le_u32(i)?; let (i, snapshotted_time) = le_u32(i)?; Ok(( i, DeviceDetail { mapped_blocks, transaction_id, creation_time, snapshotted_time, }, )) } } struct DeviceVisitor { devs: HashMap, } impl DeviceVisitor { pub fn new() -> DeviceVisitor { DeviceVisitor { devs: HashMap::new(), } } } impl NodeVisitor for DeviceVisitor { fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node) -> Result<()> { if let Node::Leaf { header: _h, keys, values, } = node { for n in 0..keys.len() { let k = keys[n] as u32; let v = values[n].clone(); self.devs.insert(k, v); } } Ok(()) } } //------------------------------------------ struct IndexVisitor { entries: Vec, } impl NodeVisitor for IndexVisitor { fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node) -> Result<()> { if let Node::Leaf { header: _h, keys, values, } = node { for n in 0..keys.len() { // FIXME: check keys are in incremental order let v = values[n].clone(); self.entries.push(v); } } Ok(()) } } //------------------------------------------ // FIXME: move to btree struct ValueCollector { values: Vec<(u64, V)>, } impl ValueCollector { fn new() -> ValueCollector { ValueCollector { values: Vec::new(), } } } impl NodeVisitor for ValueCollector { fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node) -> Result<()> { if let Node::Leaf { header: _h, keys, values, } = node { for n in 0..keys.len() { let k = keys[n]; let v = values[n].clone(); self.values.push((k, v)); } } Ok(()) } } //------------------------------------------ pub fn check(dev: &Path) -> Result<()> { let engine = Arc::new(AsyncIoEngine::new(dev, 256)?); let now = Instant::now(); let sb = read_superblock(engine.as_ref(), SUPERBLOCK_LOCATION)?; eprintln!("{:?}", sb); // device details { let mut visitor = DeviceVisitor::new(); let mut w = BTreeWalker::new(engine.clone(), false); w.walk(&mut visitor, sb.details_root)?; println!("found {} devices", visitor.devs.len()); } // mapping top level let mut roots = HashMap::new(); { let mut visitor = TopLevelVisitor { roots: &mut roots }; let mut w = BTreeWalker::new(engine.clone(), false); let _result = w.walk(&mut visitor, sb.mapping_root)?; println!("read mapping tree in {} ms", now.elapsed().as_millis()); } // mapping bottom level { // FIXME: with a thread pool we need to return errors another way. let nr_workers = 4; let pool = ThreadPool::new(nr_workers); let seen = Arc::new(Mutex::new(FixedBitSet::with_capacity( engine.get_nr_blocks() as usize, ))); for (thin_id, root) in roots { let mut w = BTreeWalker::new_with_seen(engine.clone(), seen.clone(), false); pool.execute(move || { let mut v = BottomLevelVisitor {}; let result = w.walk(&mut v, root).expect("walk failed"); // FIXME: return error eprintln!("checked thin_dev {} -> {:?}", thin_id, result); }); } pool.join(); } // data space map { let root = unpack::(&sb.data_sm_root[0..])?; eprintln!("data root: {:?}", root); // overflow btree let mut overflow: HashMap = HashMap::new(); { let mut v: ValueCollector = ValueCollector::new(); let mut w = BTreeWalker::new(engine.clone(), false); w.walk(&mut v, root.ref_count_root)?; for (k, v) in v.values { overflow.insert(k, v); } } eprintln!("{} overflow entries", overflow.len()); // Bitmaps let mut v = IndexVisitor {entries: Vec::new()}; let mut w = BTreeWalker::new(engine.clone(), false); let _result = w.walk(&mut v, root.bitmap_root); eprintln!("{} index entries", v.entries.len()); for i in v.entries { let mut b = Block::new(i.blocknr); engine.read(&mut b)?; if checksum::metadata_block_type(&b.get_data()) != checksum::BT::BITMAP { return Err(anyhow!("Index entry points to block ({}) that isn't a bitmap", b.loc)); } let _bitmap = unpack::(b.get_data())?; } } Ok(()) } //------------------------------------------