citra-shitamoto-network/src/core/core_timing.cpp
2015-02-13 10:48:32 -05:00

550 lines
14 KiB
C++

// Copyright (c) 2012- PPSSPP Project / Dolphin Project.
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <atomic>
#include <cstdio>
#include <mutex>
#include <vector>
#include "common/assert.h"
#include "common/chunk_file.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_timing.h"
int g_clock_rate_arm11 = 268123480;
// is this really necessary?
#define INITIAL_SLICE_LENGTH 20000
#define MAX_SLICE_LENGTH 100000000
namespace CoreTiming
{
struct EventType
{
EventType() {}
EventType(TimedCallback cb, const char* n)
: callback(cb), name(n) {}
TimedCallback callback;
const char* name;
};
static std::vector<EventType> event_types;
struct BaseEvent
{
s64 time;
u64 userdata;
int type;
};
typedef LinkedListItem<BaseEvent> Event;
static Event* first;
static Event* ts_first;
static Event* ts_last;
// event pools
static Event* event_pool = nullptr;
static Event* event_ts_pool = nullptr;
static int allocated_ts_events = 0;
// Optimization to skip MoveEvents when possible.
static std::atomic<bool> has_ts_events(false);
int g_slice_length;
static s64 global_timer;
static s64 idled_cycles;
static s64 last_global_time_ticks;
static s64 last_global_time_us;
static std::recursive_mutex external_event_section;
// Warning: not included in save state.
using AdvanceCallback = void(int cycles_executed);
static AdvanceCallback* advance_callback = nullptr;
static std::vector<MHzChangeCallback> mhz_change_callbacks;
static void FireMhzChange() {
for (auto callback : mhz_change_callbacks)
callback();
}
void SetClockFrequencyMHz(int cpu_mhz) {
// When the mhz changes, we keep track of what "time" it was before hand.
// This way, time always moves forward, even if mhz is changed.
last_global_time_us = GetGlobalTimeUs();
last_global_time_ticks = GetTicks();
g_clock_rate_arm11 = cpu_mhz * 1000000;
// TODO: Rescale times of scheduled events?
FireMhzChange();
}
int GetClockFrequencyMHz() {
return g_clock_rate_arm11 / 1000000;
}
u64 GetGlobalTimeUs() {
s64 ticks_since_last = GetTicks() - last_global_time_ticks;
int freq = GetClockFrequencyMHz();
s64 us_since_last = ticks_since_last / freq;
return last_global_time_us + us_since_last;
}
static Event* GetNewEvent() {
if (!event_pool)
return new Event;
Event* event = event_pool;
event_pool = event->next;
return event;
}
static Event* GetNewTsEvent() {
allocated_ts_events++;
if (!event_ts_pool)
return new Event;
Event* event = event_ts_pool;
event_ts_pool = event->next;
return event;
}
static void FreeEvent(Event* event) {
event->next = event_pool;
event_pool = event;
}
static void FreeTsEvent(Event* event) {
event->next = event_ts_pool;
event_ts_pool = event;
allocated_ts_events--;
}
int RegisterEvent(const char* name, TimedCallback callback) {
event_types.push_back(EventType(callback, name));
return (int)event_types.size() - 1;
}
static void AntiCrashCallback(u64 userdata, int cycles_late) {
LOG_CRITICAL(Core_Timing, "Savestate broken: an unregistered event was called.");
Core::Halt("invalid timing events");
}
void RestoreRegisterEvent(int event_type, const char* name, TimedCallback callback) {
if (event_type >= (int)event_types.size())
event_types.resize(event_type + 1, EventType(AntiCrashCallback, "INVALID EVENT"));
event_types[event_type] = EventType(callback, name);
}
void UnregisterAllEvents() {
if (first)
PanicAlert("Cannot unregister events with events pending");
event_types.clear();
}
void Init() {
Core::g_app_core->down_count = INITIAL_SLICE_LENGTH;
g_slice_length = INITIAL_SLICE_LENGTH;
global_timer = 0;
idled_cycles = 0;
last_global_time_ticks = 0;
last_global_time_us = 0;
has_ts_events = 0;
mhz_change_callbacks.clear();
}
void Shutdown() {
MoveEvents();
ClearPendingEvents();
UnregisterAllEvents();
while (event_pool) {
Event* event = event_pool;
event_pool = event->next;
delete event;
}
std::lock_guard<std::recursive_mutex> lock(external_event_section);
while (event_ts_pool) {
Event* event = event_ts_pool;
event_ts_pool = event->next;
delete event;
}
}
u64 GetTicks() {
return (u64)global_timer + g_slice_length - Core::g_app_core->down_count;
}
u64 GetIdleTicks() {
return (u64)idled_cycles;
}
// This is to be called when outside threads, such as the graphics thread, wants to
// schedule things to be executed on the main thread.
void ScheduleEvent_Threadsafe(s64 cycles_into_future, int event_type, u64 userdata) {
std::lock_guard<std::recursive_mutex> lock(external_event_section);
Event* new_event = GetNewTsEvent();
new_event->time = GetTicks() + cycles_into_future;
new_event->type = event_type;
new_event->next = 0;
new_event->userdata = userdata;
if (!ts_first)
ts_first = new_event;
if (ts_last)
ts_last->next = new_event;
ts_last = new_event;
has_ts_events = true;
}
// Same as ScheduleEvent_Threadsafe(0, ...) EXCEPT if we are already on the CPU thread
// in which case the event will get handled immediately, before returning.
void ScheduleEvent_Threadsafe_Immediate(int event_type, u64 userdata) {
if (false) //Core::IsCPUThread())
{
std::lock_guard<std::recursive_mutex> lock(external_event_section);
event_types[event_type].callback(userdata, 0);
}
else
ScheduleEvent_Threadsafe(0, event_type, userdata);
}
void ClearPendingEvents() {
while (first) {
Event* event = first->next;
FreeEvent(first);
first = event;
}
}
static void AddEventToQueue(Event* new_event) {
Event* prev_event = nullptr;
Event** next_event = &first;
for (;;) {
Event*& next = *next_event;
if (!next || new_event->time < next->time) {
new_event->next = next;
next = new_event;
break;
}
prev_event = next;
next_event = &prev_event->next;
}
}
void ScheduleEvent(s64 cycles_into_future, int event_type, u64 userdata) {
Event* new_event = GetNewEvent();
new_event->userdata = userdata;
new_event->type = event_type;
new_event->time = GetTicks() + cycles_into_future;
AddEventToQueue(new_event);
}
s64 UnscheduleEvent(int event_type, u64 userdata) {
s64 result = 0;
if (!first)
return result;
while (first) {
if (first->type == event_type && first->userdata == userdata) {
result = first->time - GetTicks();
Event* next = first->next;
FreeEvent(first);
first = next;
} else {
break;
}
}
if (!first)
return result;
Event* prev_event = first;
Event* ptr = prev_event->next;
while (ptr) {
if (ptr->type == event_type && ptr->userdata == userdata) {
result = ptr->time - GetTicks();
prev_event->next = ptr->next;
FreeEvent(ptr);
ptr = prev_event->next;
} else {
prev_event = ptr;
ptr = ptr->next;
}
}
return result;
}
s64 UnscheduleThreadsafeEvent(int event_type, u64 userdata) {
s64 result = 0;
std::lock_guard<std::recursive_mutex> lock(external_event_section);
if (!ts_first)
return result;
while (ts_first) {
if (ts_first->type == event_type && ts_first->userdata == userdata) {
result = ts_first->time - GetTicks();
Event* next = ts_first->next;
FreeTsEvent(ts_first);
ts_first = next;
} else {
break;
}
}
if (!ts_first)
{
ts_last = nullptr;
return result;
}
Event* prev_event = ts_first;
Event* next = prev_event->next;
while (next) {
if (next->type == event_type && next->userdata == userdata) {
result = next->time - GetTicks();
prev_event->next = next->next;
if (next == ts_last)
ts_last = prev_event;
FreeTsEvent(next);
next = prev_event->next;
} else {
prev_event = next;
next = next->next;
}
}
return result;
}
// Warning: not included in save state.
void RegisterAdvanceCallback(AdvanceCallback* callback) {
advance_callback = callback;
}
void RegisterMHzChangeCallback(MHzChangeCallback callback) {
mhz_change_callbacks.push_back(callback);
}
bool IsScheduled(int event_type) {
if (!first)
return false;
Event* event = first;
while (event) {
if (event->type == event_type)
return true;
event = event->next;
}
return false;
}
void RemoveEvent(int event_type) {
if (!first)
return;
while (first) {
if (first->type == event_type) {
Event *next = first->next;
FreeEvent(first);
first = next;
} else {
break;
}
}
if (!first)
return;
Event* prev = first;
Event* next = prev->next;
while (next) {
if (next->type == event_type) {
prev->next = next->next;
FreeEvent(next);
next = prev->next;
} else {
prev = next;
next = next->next;
}
}
}
void RemoveThreadsafeEvent(int event_type) {
std::lock_guard<std::recursive_mutex> lock(external_event_section);
if (!ts_first)
return;
while (ts_first) {
if (ts_first->type == event_type) {
Event* next = ts_first->next;
FreeTsEvent(ts_first);
ts_first = next;
} else {
break;
}
}
if (!ts_first) {
ts_last = nullptr;
return;
}
Event* prev = ts_first;
Event* next = prev->next;
while (next) {
if (next->type == event_type) {
prev->next = next->next;
if (next == ts_last)
ts_last = prev;
FreeTsEvent(next);
next = prev->next;
} else {
prev = next;
next = next->next;
}
}
}
void RemoveAllEvents(int event_type) {
RemoveThreadsafeEvent(event_type);
RemoveEvent(event_type);
}
// This raise only the events required while the fifo is processing data
void ProcessFifoWaitEvents() {
while (first) {
if (first->time <= (s64)GetTicks()) {
Event* evt = first;
first = first->next;
event_types[evt->type].callback(evt->userdata, (int)(GetTicks() - evt->time));
FreeEvent(evt);
} else {
break;
}
}
}
void MoveEvents() {
has_ts_events = false;
std::lock_guard<std::recursive_mutex> lock(external_event_section);
// Move events from async queue into main queue
while (ts_first) {
Event* next = ts_first->next;
AddEventToQueue(ts_first);
ts_first = next;
}
ts_last = nullptr;
// Move free events to threadsafe pool
while (allocated_ts_events > 0 && event_pool) {
Event* event = event_pool;
event_pool = event->next;
event->next = event_ts_pool;
event_ts_pool = event;
allocated_ts_events--;
}
}
void ForceCheck() {
int cycles_executed = g_slice_length - Core::g_app_core->down_count;
global_timer += cycles_executed;
// This will cause us to check for new events immediately.
Core::g_app_core->down_count = 0;
// But let's not eat a bunch more time in Advance() because of this.
g_slice_length = 0;
}
void Advance() {
int cycles_executed = g_slice_length - Core::g_app_core->down_count;
global_timer += cycles_executed;
Core::g_app_core->down_count = g_slice_length;
if (has_ts_events)
MoveEvents();
ProcessFifoWaitEvents();
if (!first) {
if (g_slice_length < 10000) {
g_slice_length += 10000;
Core::g_app_core->down_count += g_slice_length;
}
} else {
// Note that events can eat cycles as well.
int target = (int)(first->time - global_timer);
if (target > MAX_SLICE_LENGTH)
target = MAX_SLICE_LENGTH;
const int diff = target - g_slice_length;
g_slice_length += diff;
Core::g_app_core->down_count += diff;
}
if (advance_callback)
advance_callback(cycles_executed);
}
void LogPendingEvents() {
Event* event = first;
while (event) {
//LOG_TRACE(Core_Timing, "PENDING: Now: %lld Pending: %lld Type: %d", globalTimer, next->time, next->type);
event = event->next;
}
}
void Idle(int max_idle) {
int cycles_down = Core::g_app_core->down_count;
if (max_idle != 0 && cycles_down > max_idle)
cycles_down = max_idle;
if (first && cycles_down > 0) {
int cycles_executed = g_slice_length - Core::g_app_core->down_count;
int cycles_next_event = (int)(first->time - global_timer);
if (cycles_next_event < cycles_executed + cycles_down) {
cycles_down = cycles_next_event - cycles_executed;
// Now, now... no time machines, please.
if (cycles_down < 0)
cycles_down = 0;
}
}
LOG_TRACE(Core_Timing, "Idle for %i cycles! (%f ms)", cycles_down, cycles_down / (float)(g_clock_rate_arm11 * 0.001f));
idled_cycles += cycles_down;
Core::g_app_core->down_count -= cycles_down;
if (Core::g_app_core->down_count == 0)
Core::g_app_core->down_count = -1;
}
std::string GetScheduledEventsSummary() {
Event* event = first;
std::string text = "Scheduled events\n";
text.reserve(1000);
while (event) {
unsigned int t = event->type;
if (t >= event_types.size())
PanicAlert("Invalid event type"); // %i", t);
const char* name = event_types[event->type].name;
if (!name)
name = "[unknown]";
text += Common::StringFromFormat("%s : %i %08x%08x\n", name, (int)event->time,
(u32)(event->userdata >> 32), (u32)(event->userdata));
event = event->next;
}
return text;
}
} // namespace