Can select developers by programming language. Colorize dots by country, employment status.
482 lines
17 KiB
Plaintext
482 lines
17 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "74e4cf25-6649-4633-89ea-03ffc2e23caa",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from collections import Counter\n",
|
|
"\n",
|
|
"import pandas as pd\n",
|
|
"import seaborn as sb\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"# avoid burning my eyes @ night\n",
|
|
"plt.style.use(\"dark_background\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f2b80545-2481-4ee8-8d43-ffd4a612a397",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"FILE = \"data/survey_results_public.csv\"\n",
|
|
"so_df = pd.read_csv(FILE)\n",
|
|
"\n",
|
|
"print(so_df.keys())\n",
|
|
"so_df.describe()\n",
|
|
"\n",
|
|
"# check for people who aren't paying attention\n",
|
|
"count_not_apple = (so_df[\"Check\"] != \"Apples\").sum()\n",
|
|
"print(count_not_apple)\n",
|
|
"print(so_df.shape)\n",
|
|
"assert(count_not_apple == 0)\n",
|
|
"# print(so_df[:3])\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "35b9727a-176c-4193-a1f9-a508aecd2d1c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# get popularity of different programming languages\n",
|
|
"\n",
|
|
"#keys re: languages are:\n",
|
|
"#LanguageHaveWorkedWith,LanguageWantToWorkWith,LanguageAdmired,LanguageDesired\n",
|
|
"\n",
|
|
"# draw as strip chart\n",
|
|
"# https://seaborn.pydata.org/generated/seaborn.stripplot.html#seaborn.stripplot\n",
|
|
"\n",
|
|
"def get_langs(dataset, key=\"LanguageHaveWorkedWith\"):\n",
|
|
" lang_count = Counter()\n",
|
|
" assert(key in dataset.keys())\n",
|
|
" for response in dataset[key]:\n",
|
|
" if type(response) == str:\n",
|
|
" lang_count.update(response.split(';'))\n",
|
|
" langs_by_popularity = dict(\n",
|
|
" sorted(lang_count.items(), key=lambda item: item[1], reverse=True)\n",
|
|
" )\n",
|
|
" return langs_by_popularity\n",
|
|
"\n",
|
|
"def visualize_langs(langs, langs2, label1 = \"condition1\", label2 = \"condition2\", saveto=None):\n",
|
|
" DOT_COLOR1 = \"lightblue\"\n",
|
|
" DOT_COLOR2 = \"red\"\n",
|
|
" BG_COLOR = \"black\" \n",
|
|
" df = pd.DataFrame(langs.items(), columns=['Languages', 'Count'])\n",
|
|
" df2 = pd.DataFrame(langs2.items(), columns=['Languages', 'Count'])\n",
|
|
" \n",
|
|
" plt.figure(figsize=(10,15)) \n",
|
|
" \n",
|
|
" sb.stripplot(x='Count', y='Languages', data=df, \\\n",
|
|
" size=5, color=DOT_COLOR1, label=\"have worked with\", jitter=True)\n",
|
|
" sb.stripplot(x='Count', y='Languages', data=df2, \\\n",
|
|
" size=5, color=DOT_COLOR2, label=\"want to work with\", jitter=True)\n",
|
|
" \n",
|
|
" # chatgpt draws my legend\n",
|
|
" # Create custom legend handles to avoid duplicates\n",
|
|
" # color = 'w' means do not draw line bissecting point\n",
|
|
" blue_patch = plt.Line2D(\n",
|
|
" [0], [0], marker='o', color=BG_COLOR, \\\n",
|
|
" label=label1, markerfacecolor=DOT_COLOR1, markersize=10)\n",
|
|
" red_patch = plt.Line2D(\n",
|
|
" [0], [0], marker='o', color=BG_COLOR, \\\n",
|
|
" label=label2, markerfacecolor=DOT_COLOR2, markersize=10)\n",
|
|
" \n",
|
|
" # Show the legend with custom handles\n",
|
|
" plt.legend(handles=[blue_patch, red_patch], loc=\"center right\")\n",
|
|
" \n",
|
|
" plt.grid(axis='x', linestyle='--', alpha=0.75) \n",
|
|
" plt.title(\"%s vs %s\" % (label1, label2))\n",
|
|
" if saveto is not None:\n",
|
|
" plt.savefig(saveto, bbox_inches='tight')\n",
|
|
" del df, df2\n",
|
|
"\n",
|
|
"l1 = get_langs( so_df )\n",
|
|
"l2 = get_langs( so_df, \"LanguageWantToWorkWith\" )\n",
|
|
"visualize_langs(l1,l2, \n",
|
|
" label1=\"have worked with\", label2=\"want to work with\",\n",
|
|
" saveto=\"images/used-vs-want2use.png\")\n",
|
|
"\n",
|
|
"l3 = get_langs( so_df, \"LanguageAdmired\")\n",
|
|
"l4 = get_langs( so_df, \"LanguageWantToWorkWith\")\n",
|
|
"visualize_langs(l3, l4, \n",
|
|
" label1=\"admired\", label2=\"want to work with\",\n",
|
|
" saveto=\"images/admired-vs-want2use.png\")\n",
|
|
" "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d0bfdb92-378a-4452-91cc-4d21afd2d6cc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# draw horizontal bar plot\n",
|
|
"# https://seaborn.pydata.org/examples/part_whole_bars.html\n",
|
|
"\n",
|
|
"# investigate extrinsic vs intrinsic motivation\n",
|
|
"def get_difference(dict1, dict2, proportion=False):\n",
|
|
" keys = dict1.keys()\n",
|
|
" result = dict()\n",
|
|
" for key in keys:\n",
|
|
" if proportion:\n",
|
|
" result[key] = round((dict1[key] - dict2[key])/dict2[key],2)\n",
|
|
" else:\n",
|
|
" result[key] = dict1[key] - dict2[key]\n",
|
|
" return result\n",
|
|
"\n",
|
|
"def visualize_diff(diff_dict, color=\"lightblue\", saveto=None):\n",
|
|
" diff_sorted = dict(\n",
|
|
" sorted(diff_dict.items(), key=lambda item: item[1], reverse=True)\n",
|
|
" )\n",
|
|
" KEY = \"Value\"\n",
|
|
" df = pd.DataFrame(diff_sorted.items(), columns=['Languages', 'Value'])\n",
|
|
" plt.figure(figsize=(15,20)) \n",
|
|
" sb.barplot(x=KEY, y='Languages', data=df, color=color)\n",
|
|
" DELTA = '\\u0394'\n",
|
|
" for index, value in enumerate(df[KEY]):\n",
|
|
" # chatgpt annotates my chart\n",
|
|
" # Position the text at the base of the bar\n",
|
|
" if value >= 0:\n",
|
|
" # Adjust the x position for positive values\n",
|
|
" plt.text(value, index, DELTA+str(value), va='center', ha=\"left\") \n",
|
|
" else:\n",
|
|
" # Adjust the x position for negative values\n",
|
|
" plt.text(value, index, DELTA+str(value), va='center', ha='right') \n",
|
|
" lowest = 0\n",
|
|
" offset = 0\n",
|
|
" positive_values = df[df[KEY] > 0][KEY]\n",
|
|
" if not positive_values.empty:\n",
|
|
" lowest = positive_values.min()\n",
|
|
" offset = list(positive_values).count(lowest) \n",
|
|
" if len(positive_values) < len(df):\n",
|
|
" # don't draw the line if every value is greater than 0_\n",
|
|
" plt.axhline(y=df[KEY].tolist().index(lowest) + (offset-0.5), \n",
|
|
" color='red', linestyle='--', zorder=-1)\n",
|
|
" if saveto is not None:\n",
|
|
" plt.savefig(saveto, bbox_inches='tight')\n",
|
|
" \n",
|
|
"motiv_diff = get_difference(l2, l1, proportion=True)\n",
|
|
"# print(motiv_diff)\n",
|
|
"visualize_diff(motiv_diff, saveto=\"images/delta.png\")\n",
|
|
"motiv_diff = get_difference(l2, l1)\n",
|
|
"visualize_diff(motiv_diff, saveto=\"images/delta-b.png\")\n",
|
|
"\n",
|
|
"# no clear description of what \"admired\" is\n",
|
|
"# in the schema\n",
|
|
"# but generally people want to use the languages\n",
|
|
"# they admire\n",
|
|
"\n",
|
|
"# determine level of hype\n",
|
|
"# hype = get_difference(l4, l3)\n",
|
|
"# print(hype)\n",
|
|
"# visualize_diff(hype, color=\"red\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f6b1a935-eeda-416f-8adf-5e854d3aa066",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# do people fall out of love with langs\n",
|
|
"# the more they are used professionally?\n",
|
|
"\n",
|
|
"def visualize_favor(df, key_x, key_y, MAGIC_X=0, MAGIC_Y=0, title=str(), saveto=None):\n",
|
|
" plt.figure()\n",
|
|
" OFFSET = 1 # push text away from point slightly\n",
|
|
" for i in range(merged.shape[0]):\n",
|
|
" # label points that aren't un a cluster\n",
|
|
" if merged[key_x][i] > MAGIC_X or merged[key_y][i] > MAGIC_Y:\n",
|
|
" plt.text(merged[key_x].iloc[i]+OFFSET, \n",
|
|
" merged[key_y].iloc[i]+OFFSET, \n",
|
|
" merged[\"Language\"].iloc[i], \n",
|
|
" ha=\"left\",\n",
|
|
" size='medium')\n",
|
|
"\n",
|
|
" sb.scatterplot(data=merged, x=key_x, y=key_y, hue=\"Language\")\n",
|
|
" plt.legend(loc='lower left', bbox_to_anchor=(0, -1.25), ncol=3) \n",
|
|
" plt.title(title)\n",
|
|
" if saveto is not None:\n",
|
|
" plt.savefig(saveto, bbox_inches='tight')\n",
|
|
" pass\n",
|
|
"key_x = \"Users\"\n",
|
|
"key_y = \"Potential '\\u0394'Users\"\n",
|
|
"df1 = pd.DataFrame(l1.items(), columns=['Language', key_x])\n",
|
|
"df2 = pd.DataFrame(motiv_diff.items(), columns=['Language', key_y])\n",
|
|
"# chatgpt tells me how to combine df\n",
|
|
"merged = pd.merge(df1, df2[[\"Language\", key_y]], on='Language', how='left')\n",
|
|
"visualize_favor(merged, key_x, key_y, \n",
|
|
" MAGIC_X=5000, MAGIC_Y=2000, \n",
|
|
" saveto=\"images/favor.png\")\n",
|
|
"del df1, df2, merged"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e90cf119-c50d-468a-bc87-72dac41176ce",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# see how much money are people making\n",
|
|
"\n",
|
|
"def get_mean_by_category(df, category, key=\"ConvertedCompYearly\"):\n",
|
|
" unique = df[category].unique()\n",
|
|
" result = dict()\n",
|
|
" for u in unique:\n",
|
|
" mean = df[df[category] == u][key].mean()\n",
|
|
" result[u] = mean\n",
|
|
" return result\n",
|
|
"\n",
|
|
"def show_me_the_money(df, saveto=None):\n",
|
|
" key_x = \"ConvertedCompYearly\"\n",
|
|
" key_y = \"DevType\"\n",
|
|
" \n",
|
|
" means = get_mean_by_category(df, key_y) \n",
|
|
" mean_df = pd.DataFrame(means.items(), columns=[key_y, key_x])\n",
|
|
"\n",
|
|
" plt.figure(figsize=(14,18)) \n",
|
|
" plt.axvline(x=1e5, color='red', linestyle='--', label=\"x = $100,000\")\n",
|
|
" plt.axvline(x=1e6, color='lightgreen', linestyle='--', label=\"x = millionaire\")\n",
|
|
" sb.barplot(x=key_x, y=key_y, data=mean_df.sort_values(by=key_x), \\\n",
|
|
" color='lavender', alpha=0.7, label=\"average compensation\")\n",
|
|
" sb.stripplot(x=key_x, y=key_y, data=df, \\\n",
|
|
" size=3, jitter=True)\n",
|
|
" if saveto is not None:\n",
|
|
" plt.savefig(saveto, bbox_inches='tight')\n",
|
|
" \n",
|
|
"# print survey ans\n",
|
|
"#employment_status = Counter(so_df[\"MainBranch\"])\n",
|
|
"#print(employment_status)\n",
|
|
"\n",
|
|
"#employment_type = Counter(so_df[\"DevType\"])\n",
|
|
"#print(employment_type)\n",
|
|
"\n",
|
|
"key = \"ConvertedCompYearly\"\n",
|
|
"# answers = so_df[:-1][key].count()\n",
|
|
"# print(answers, \"people answered re: \", key)\n",
|
|
"df_no_na = so_df.dropna(subset=[key])\n",
|
|
"indices = df_no_na[key].nlargest(15).index\n",
|
|
"\n",
|
|
"show_me_the_money( df_no_na.drop(indices), saveto=\"images/compensation-by-profession.png\" )\n",
|
|
"# could also ask myself what portion of developers \n",
|
|
"# earn less than the mean compensation\n",
|
|
"# (what titles have high standard deviations in earnings)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "cdf21b1c-1316-422f-ad14-48150f80366c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"# key = \"DevType\"\n",
|
|
"# prof = \"Developer, full-stack\"\n",
|
|
"\n",
|
|
"key = \"MainBranch\"\n",
|
|
"prof = \"I am a developer by profession\"\n",
|
|
"col = \"ConvertedCompYearly\"\n",
|
|
"\n",
|
|
"devs = df_no_na[df_no_na[key] == prof ] \n",
|
|
"pd.set_option('display.float_format', '{:.2f}'.format)\n",
|
|
"devs.describe()[col]\n",
|
|
"\n",
|
|
"# who the hell is making $1/yr \n",
|
|
"# devs[devs[col] == 1.0]\n",
|
|
"\n",
|
|
"# who are the millionaires\n",
|
|
"# devs[devs[col] > 1e6]\n",
|
|
"\n",
|
|
"# who make more than the mean\n",
|
|
"# devs[devs[col] > 76230.84]\n",
|
|
"\n",
|
|
"# who make more than the median\n",
|
|
"# devs[devs[col] > 63316.00]\n",
|
|
"\n",
|
|
"# the ancient ones\n",
|
|
"so_df[so_df[\"YearsCodePro\"] == 'More than 50 years']\n",
|
|
"# should drop the 18-24 year old who is either bullshitting or recalls a past life\n",
|
|
"# 55-64 years old\n",
|
|
"# 65 years or older"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "0e9b0c49-eac6-45e1-83f1-92813e734ef5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# draw count plot of developers based on age\n",
|
|
"\n",
|
|
"def visualize_devs(df, lang, key=\"Age\",):\n",
|
|
" plt.figure()\n",
|
|
" plt.xticks(rotation=45)\n",
|
|
" # from:\n",
|
|
" # print(df[key].unique())\n",
|
|
" order = ['Under 18 years old', '18-24 years old', \\\n",
|
|
" '25-34 years old','35-44 years old',\\\n",
|
|
" '45-54 years old', '55-64 years old', \\\n",
|
|
" '65 years or older', 'Prefer not to say']\n",
|
|
" sb.countplot(x=key, data=df, order=order)\n",
|
|
" title=\"Ages of %s Programmers\" % lang\n",
|
|
" plt.title(title)\n",
|
|
" filename= \"images/%s-of-%s-programmers.png\" % (key, lang)\n",
|
|
" plt.savefig(filename, bbox_inches=\"tight\")\n",
|
|
"\n",
|
|
"def get_lang_devs(df, lang):\n",
|
|
" col = \"LanguageHaveWorkedWith\"\n",
|
|
" # will not work for single character languages (C, R)\n",
|
|
" # will mangle Java and JavaScript, Python and MicroPython\n",
|
|
" return df[ df[col].str.contains(lang, na=False) ] \n",
|
|
"\n",
|
|
"def get_c_devs(df, lang=\"C\"):\n",
|
|
" key = \"LanguageHaveWorkedWith\"\n",
|
|
" cdevs = []\n",
|
|
" for index, dev in df.iterrows():\n",
|
|
" try:\n",
|
|
" # split string into list\n",
|
|
" langs_used = dev[key].split(';')\n",
|
|
" if lang in langs_used:\n",
|
|
" cdevs.append(dev)\n",
|
|
" except AttributeError:\n",
|
|
"# print(dev[key])\n",
|
|
" pass\n",
|
|
" return pd.DataFrame(cdevs)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "11a1b9fb-db48-4749-8d77-4241a99d7bad",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"visualize_devs( get_c_devs(so_df) , \"C\")\n",
|
|
"\n",
|
|
"for lang in [\"Cobol\", \"Prolog\", \"Ada\", \"Python\"]:\n",
|
|
" foo = get_lang_devs(so_df, lang)\n",
|
|
" visualize_devs(foo, lang)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "67b56700-5847-4af8-87ec-74249aa95749",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"# focus on people who have given ...\n",
|
|
"key = \"ConvertedCompYearly\"\n",
|
|
"key2 = \"YearsCodePro\"\n",
|
|
"df = so_df.dropna(subset=[key, key2])\n",
|
|
"\n",
|
|
"criteria = {\"MainBranch\":\"I am a developer by profession\"}\n",
|
|
"\n",
|
|
"#print(df[\"Country\"].unique)\n",
|
|
"\n",
|
|
"# criteria[\"Country\"] = \"United States of America\"\n",
|
|
"for k in criteria:\n",
|
|
" df = df[df[k] == criteria[k] ] \n",
|
|
"\n",
|
|
"jobs = None\n",
|
|
"# expected C jobs\n",
|
|
"#jobs = [\"Developer, embedded applications or devices\", \n",
|
|
"# \"Developer, game or graphics\",\n",
|
|
"# \"Engineering manager\" , \n",
|
|
"# \"Project manager\", \n",
|
|
"# \"Product manager\"\n",
|
|
"#]\n",
|
|
"\n",
|
|
"# expected python jobs\n",
|
|
"#jobs = [\"Data scientist or machine learning specialist\",\n",
|
|
"# \"Data or business analyst\",\n",
|
|
"# \"Data engineer\",\n",
|
|
"# \"DevOps specialist\",\n",
|
|
"# \"Developer, QA or test\"\n",
|
|
"#]\n",
|
|
"\n",
|
|
"# chatgpt tells me about filtering with multiple strings\n",
|
|
"if jobs:\n",
|
|
" df = df[df.isin(jobs).any(axis=1)]\n",
|
|
"\n",
|
|
"# play with these\n",
|
|
"language = \"Cobol\"\n",
|
|
"legend = True\n",
|
|
"NUM_OF_TOO_RICH = 3\n",
|
|
"# \"Employment\"\n",
|
|
"hue = \"Country\"\n",
|
|
"\n",
|
|
"devs = None\n",
|
|
"if len(language) > 1:\n",
|
|
" devs = get_lang_devs(df, language)\n",
|
|
"else:\n",
|
|
" devs = get_c_devs(df, lang=language)\n",
|
|
"replacement_dict = {\n",
|
|
" 'Less than 1 year': '0.5',\n",
|
|
" 'More than 50 years': '51',\n",
|
|
"}\n",
|
|
"\n",
|
|
"# https://stackoverflow.com/questions/47443134/update-column-in-pandas-dataframe-without-warning\n",
|
|
"pd.options.mode.chained_assignment = None # default='warn'\n",
|
|
"new_column = devs[key2].replace(replacement_dict)\n",
|
|
"devs[key2] = pd.to_numeric(new_column, errors='coerce')\n",
|
|
"# print( devs[key2].unique() )\n",
|
|
"\n",
|
|
"indices = devs[key].nlargest(NUM_OF_TOO_RICH).index\n",
|
|
"devs = devs.drop(indices)\n",
|
|
"print( len (devs) )\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"plt.xticks(rotation=90)\n",
|
|
"sb.scatterplot(data=devs, x=key2, y=key, hue=hue, legend=legend)\n",
|
|
"plt.legend(loc='lower center', bbox_to_anchor=(1.5,0)) \n",
|
|
"plt.title(\"Annual Salary of %s Developers Over Years of Experience\" %language)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b954a811-e401-48dc-9ba4-263a5f2cf5c5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.12.7"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|