busybox/libbb/sha1.c

466 lines
12 KiB
C
Raw Normal View History

/* vi: set sw=4 ts=4: */
/*
* Based on shasum from http://www.netsw.org/crypto/hash/
* Majorly hacked up to use Dr Brian Gladman's sha1 code
*
* Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
* Copyright (C) 2003 Glenn L. McGrath
* Copyright (C) 2003 Erik Andersen
2006-09-17 16:28:10 +00:00
*
* Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
*
* ---------------------------------------------------------------------------
* Issue Date: 10/11/2002
*
* This is a byte oriented version of SHA1 that operates on arrays of bytes
* stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
*
* ---------------------------------------------------------------------------
*
* SHA256 and SHA512 parts are:
* Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
2009-03-12 16:05:02 +00:00
* Shrank by Denys Vlasenko.
*
* ---------------------------------------------------------------------------
*
* The best way to test random blocksizes is to go to coreutils/md5_sha1_sum.c
* and replace "4096" with something like "2000 + time(NULL) % 2097",
* then rebuild and compare "shaNNNsum bigfile" results.
*/
#include "libbb.h"
#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
/* for sha512: */
#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
#if BB_LITTLE_ENDIAN
static inline uint64_t hton64(uint64_t v)
{
return (((uint64_t)htonl(v)) << 32) | htonl(v >> 32);
}
#else
#define hton64(v) (v)
#endif
#define ntoh64(v) hton64(v)
/* To check alignment gcc has an appropriate operator. Other
compilers don't. */
#if defined(__GNUC__) && __GNUC__ >= 2
# define UNALIGNED_P(p,type) (((uintptr_t) p) % __alignof__(type) != 0)
#else
# define UNALIGNED_P(p,type) (((uintptr_t) p) % sizeof(type) != 0)
#endif
static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx)
{
unsigned t;
uint32_t W[80], a, b, c, d, e;
const uint32_t *words = (uint32_t*) ctx->wbuffer;
for (t = 0; t < 16; ++t) {
W[t] = ntohl(*words);
words++;
}
for (/*t = 16*/; t < 80; ++t) {
uint32_t T = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
W[t] = rotl32(T, 1);
}
a = ctx->hash[0];
b = ctx->hash[1];
c = ctx->hash[2];
d = ctx->hash[3];
e = ctx->hash[4];
/* Reverse byte order in 32-bit words */
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define parity(x,y,z) ((x) ^ (y) ^ (z))
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
/* A normal version as set out in the FIPS. This version uses */
/* partial loop unrolling and is optimised for the Pentium 4 */
#define rnd(f,k) \
do { \
uint32_t T = a; \
a = rotl32(a, 5) + f(b, c, d) + e + k + W[t]; \
e = d; \
d = c; \
c = rotl32(b, 30); \
b = T; \
} while (0)
for (t = 0; t < 20; ++t)
rnd(ch, 0x5a827999);
for (/*t = 20*/; t < 40; ++t)
rnd(parity, 0x6ed9eba1);
for (/*t = 40*/; t < 60; ++t)
rnd(maj, 0x8f1bbcdc);
for (/*t = 60*/; t < 80; ++t)
rnd(parity, 0xca62c1d6);
#undef ch
#undef parity
#undef maj
#undef rnd
ctx->hash[0] += a;
ctx->hash[1] += b;
ctx->hash[2] += c;
ctx->hash[3] += d;
ctx->hash[4] += e;
}
/* Constants for SHA512 from FIPS 180-2:4.2.3.
* SHA256 constants from FIPS 180-2:4.2.2
* are the most significant half of first 64 elements
* of the same array.
*/
static const uint64_t sha_K[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, /* [64]+ are used for sha512 only */
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx)
{
unsigned t;
uint32_t W[64], a, b, c, d, e, f, g, h;
const uint32_t *words = (uint32_t*) ctx->wbuffer;
/* Operators defined in FIPS 180-2:4.1.2. */
#define Ch(x, y, z) ((x & y) ^ (~x & z))
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22))
#define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25))
#define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3))
#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))
/* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
for (t = 0; t < 16; ++t) {
W[t] = ntohl(*words);
words++;
}
for (/*t = 16*/; t < 64; ++t)
W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
a = ctx->hash[0];
b = ctx->hash[1];
c = ctx->hash[2];
d = ctx->hash[3];
e = ctx->hash[4];
f = ctx->hash[5];
g = ctx->hash[6];
h = ctx->hash[7];
/* The actual computation according to FIPS 180-2:6.2.2 step 3. */
for (t = 0; t < 64; ++t) {
2009-03-28 19:08:23 +00:00
/* Need to fetch upper half of sha_K[t]
* (I hope compiler is clever enough to just fetch
* upper half)
*/
uint32_t K_t = sha_K[t] >> 32;
uint32_t T1 = h + S1(e) + Ch(e, f, g) + K_t + W[t];
uint32_t T2 = S0(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
#undef Ch
#undef Maj
#undef S0
#undef S1
#undef R0
#undef R1
/* Add the starting values of the context according to FIPS 180-2:6.2.2
step 4. */
ctx->hash[0] += a;
ctx->hash[1] += b;
ctx->hash[2] += c;
ctx->hash[3] += d;
ctx->hash[4] += e;
ctx->hash[5] += f;
ctx->hash[6] += g;
ctx->hash[7] += h;
}
static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx)
{
unsigned t;
uint64_t W[80];
/* On i386, having assignments here (not later as sha256 does)
* produces 99 bytes smaller code with gcc 4.3.1
*/
uint64_t a = ctx->hash[0];
uint64_t b = ctx->hash[1];
uint64_t c = ctx->hash[2];
uint64_t d = ctx->hash[3];
uint64_t e = ctx->hash[4];
uint64_t f = ctx->hash[5];
uint64_t g = ctx->hash[6];
uint64_t h = ctx->hash[7];
const uint64_t *words = (uint64_t*) ctx->wbuffer;
/* Operators defined in FIPS 180-2:4.1.2. */
#define Ch(x, y, z) ((x & y) ^ (~x & z))
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39))
#define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41))
#define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7))
#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))
/* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
for (t = 0; t < 16; ++t) {
W[t] = ntoh64(*words);
words++;
}
for (/*t = 16*/; t < 80; ++t)
W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
/* The actual computation according to FIPS 180-2:6.3.2 step 3. */
for (t = 0; t < 80; ++t) {
uint64_t T1 = h + S1(e) + Ch(e, f, g) + sha_K[t] + W[t];
uint64_t T2 = S0(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
#undef Ch
#undef Maj
#undef S0
#undef S1
#undef R0
#undef R1
/* Add the starting values of the context according to FIPS 180-2:6.3.2
step 4. */
ctx->hash[0] += a;
ctx->hash[1] += b;
ctx->hash[2] += c;
ctx->hash[3] += d;
ctx->hash[4] += e;
ctx->hash[5] += f;
ctx->hash[6] += g;
ctx->hash[7] += h;
}
void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
{
ctx->hash[0] = 0x67452301;
ctx->hash[1] = 0xefcdab89;
ctx->hash[2] = 0x98badcfe;
ctx->hash[3] = 0x10325476;
ctx->hash[4] = 0xc3d2e1f0;
ctx->total64 = 0;
ctx->process_block = sha1_process_block64;
}
static const uint32_t init256[] = {
0x6a09e667,
0xbb67ae85,
0x3c6ef372,
0xa54ff53a,
0x510e527f,
0x9b05688c,
0x1f83d9ab,
0x5be0cd19
};
static const uint32_t init512_lo[] = {
0xf3bcc908,
0x84caa73b,
0xfe94f82b,
0x5f1d36f1,
0xade682d1,
0x2b3e6c1f,
0xfb41bd6b,
0x137e2179
};
/* Initialize structure containing state of computation.
(FIPS 180-2:5.3.2) */
void FAST_FUNC sha256_begin(sha256_ctx_t *ctx)
{
memcpy(ctx->hash, init256, sizeof(init256));
ctx->total64 = 0;
ctx->process_block = sha256_process_block64;
}
/* Initialize structure containing state of computation.
(FIPS 180-2:5.3.3) */
void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
{
int i;
for (i = 0; i < 8; i++)
ctx->hash[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i];
ctx->total64[0] = ctx->total64[1] = 0;
}
/* Used also for sha256 */
void FAST_FUNC sha1_hash(const void *buffer, size_t len, sha1_ctx_t *ctx)
{
unsigned in_buf = ctx->total64 & 63;
unsigned add = 64 - in_buf;
ctx->total64 += len;
while (len >= add) { /* transfer whole blocks while possible */
memcpy(ctx->wbuffer + in_buf, buffer, add);
buffer = (const char *)buffer + add;
len -= add;
add = 64;
in_buf = 0;
ctx->process_block(ctx);
}
memcpy(ctx->wbuffer + in_buf, buffer, len);
}
void FAST_FUNC sha512_hash(const void *buffer, size_t len, sha512_ctx_t *ctx)
{
unsigned in_buf = ctx->total64[0] & 127;
unsigned add = 128 - in_buf;
/* First increment the byte count. FIPS 180-2 specifies the possible
length of the file up to 2^128 _bits_.
We compute the number of _bytes_ and convert to bits later. */
ctx->total64[0] += len;
if (ctx->total64[0] < len)
ctx->total64[1]++;
while (len >= add) { /* transfer whole blocks while possible */
memcpy(ctx->wbuffer + in_buf, buffer, add);
buffer = (const char *)buffer + add;
len -= add;
add = 128;
in_buf = 0;
sha512_process_block128(ctx);
}
memcpy(ctx->wbuffer + in_buf, buffer, len);
}
/* Used also for sha256 */
void FAST_FUNC sha1_end(void *resbuf, sha1_ctx_t *ctx)
{
unsigned i, pad, in_buf;
in_buf = ctx->total64 & 63;
/* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */
ctx->wbuffer[in_buf++] = 0x80;
/* This loop iterates either once or twice, no more, no less */
while (1) {
pad = 64 - in_buf;
memset(ctx->wbuffer + in_buf, 0, pad);
in_buf = 0;
/* Do we have enough space for the length count? */
if (pad >= 8) {
/* Store the 64-bit counter of bits in the buffer in BE format */
uint64_t t = ctx->total64 << 3;
t = hton64(t);
/* wbuffer is suitably aligned for this */
*(uint64_t *) (&ctx->wbuffer[64 - 8]) = t;
}
ctx->process_block(ctx);
if (pad >= 8)
break;
}
in_buf = (ctx->process_block == sha1_process_block64) ? 5 : 8;
/* This way we do not impose alignment constraints on resbuf: */
#if BB_LITTLE_ENDIAN
for (i = 0; i < in_buf; ++i)
ctx->hash[i] = htonl(ctx->hash[i]);
#endif
memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * in_buf);
}
void FAST_FUNC sha512_end(void *resbuf, sha512_ctx_t *ctx)
{
unsigned i, pad, in_buf;
in_buf = ctx->total64[0] & 127;
/* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0...
* (FIPS 180-2:5.1.2)
*/
ctx->wbuffer[in_buf++] = 0x80;
while (1) {
pad = 128 - in_buf;
memset(ctx->wbuffer + in_buf, 0, pad);
in_buf = 0;
if (pad >= 16) {
/* Store the 128-bit counter of bits in the buffer in BE format */
uint64_t t;
t = ctx->total64[0] << 3;
t = hton64(t);
*(uint64_t *) (&ctx->wbuffer[128 - 8]) = t;
t = (ctx->total64[1] << 3) | (ctx->total64[0] >> 61);
t = hton64(t);
*(uint64_t *) (&ctx->wbuffer[128 - 16]) = t;
}
sha512_process_block128(ctx);
if (pad >= 16)
break;
}
#if BB_LITTLE_ENDIAN
for (i = 0; i < ARRAY_SIZE(ctx->hash); ++i)
ctx->hash[i] = hton64(ctx->hash[i]);
#endif
memcpy(resbuf, ctx->hash, sizeof(ctx->hash));
}