2484 lines
87 KiB
C
Raw Normal View History

/*
* Copyright (C) 2017 Denys Vlasenko
*
* Licensed under GPLv2, see file LICENSE in this source tree.
*/
//config:config TLS
//config: bool #No description makes it a hidden option
//config: default n
//Note:
//Config.src also defines FEATURE_TLS_SHA1 option
//kbuild:lib-$(CONFIG_TLS) += tls.o
//kbuild:lib-$(CONFIG_TLS) += tls_pstm.o
//kbuild:lib-$(CONFIG_TLS) += tls_pstm_montgomery_reduce.o
//kbuild:lib-$(CONFIG_TLS) += tls_pstm_mul_comba.o
//kbuild:lib-$(CONFIG_TLS) += tls_pstm_sqr_comba.o
//kbuild:lib-$(CONFIG_TLS) += tls_aes.o
//kbuild:lib-$(CONFIG_TLS) += tls_aesgcm.o
//kbuild:lib-$(CONFIG_TLS) += tls_rsa.o
//kbuild:lib-$(CONFIG_TLS) += tls_fe.o
//kbuild:lib-$(CONFIG_TLS) += tls_sp_c32.o
#include "tls.h"
// Usually enabled. You can disable some of them to force only
// specific ciphers to be advertized to server.
// (this would not exclude code to handle disabled ciphers, no code size win)
#define ALLOW_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 1
#define ALLOW_ECDHE_RSA_WITH_AES_128_CBC_SHA256 1
#define ALLOW_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 1
#define ALLOW_ECDHE_RSA_WITH_AES_128_GCM_SHA256 1
#define ALLOW_RSA_WITH_AES_128_CBC_SHA256 1
#define ALLOW_RSA_WITH_AES_256_CBC_SHA256 1
#define ALLOW_RSA_WITH_AES_128_GCM_SHA256 1
#define ALLOW_CURVE_P256 1
#define ALLOW_CURVE_X25519 1
// For testing (does everything except encrypting).
// works against "openssl s_server -cipher NULL"
// and against wolfssl-3.9.10-stable/examples/server/server.c:
#define ALLOW_RSA_NULL_SHA256 0
#define TLS_DEBUG 0
#define TLS_DEBUG_HASH 0
#define TLS_DEBUG_DER 0
#define TLS_DEBUG_FIXED_SECRETS 0
#if 0
# define dump_raw_out(...) dump_hex(__VA_ARGS__)
#else
# define dump_raw_out(...) ((void)0)
#endif
#if 0
# define dump_raw_in(...) dump_hex(__VA_ARGS__)
#else
# define dump_raw_in(...) ((void)0)
#endif
#if TLS_DEBUG
# define dbg(...) fprintf(stderr, __VA_ARGS__)
#else
# define dbg(...) ((void)0)
#endif
#if TLS_DEBUG_DER
# define dbg_der(...) fprintf(stderr, __VA_ARGS__)
#else
# define dbg_der(...) ((void)0)
#endif
//TLS 1.2
#define TLS_MAJ 3
#define TLS_MIN 3
#define RECORD_TYPE_CHANGE_CIPHER_SPEC 20 /* 0x14 */
#define RECORD_TYPE_ALERT 21 /* 0x15 */
#define RECORD_TYPE_HANDSHAKE 22 /* 0x16 */
#define RECORD_TYPE_APPLICATION_DATA 23 /* 0x17 */
#define HANDSHAKE_HELLO_REQUEST 0 /* 0x00 */
#define HANDSHAKE_CLIENT_HELLO 1 /* 0x01 */
#define HANDSHAKE_SERVER_HELLO 2 /* 0x02 */
#define HANDSHAKE_HELLO_VERIFY_REQUEST 3 /* 0x03 */
#define HANDSHAKE_NEW_SESSION_TICKET 4 /* 0x04 */
#define HANDSHAKE_CERTIFICATE 11 /* 0x0b */
#define HANDSHAKE_SERVER_KEY_EXCHANGE 12 /* 0x0c */
#define HANDSHAKE_CERTIFICATE_REQUEST 13 /* 0x0d */
#define HANDSHAKE_SERVER_HELLO_DONE 14 /* 0x0e */
#define HANDSHAKE_CERTIFICATE_VERIFY 15 /* 0x0f */
#define HANDSHAKE_CLIENT_KEY_EXCHANGE 16 /* 0x10 */
#define HANDSHAKE_FINISHED 20 /* 0x14 */
#define TLS_EMPTY_RENEGOTIATION_INFO_SCSV 0x00FF /* not a real cipher id... */
#define SSL_NULL_WITH_NULL_NULL 0x0000
#define SSL_RSA_WITH_NULL_MD5 0x0001
#define SSL_RSA_WITH_NULL_SHA 0x0002
#define SSL_RSA_WITH_RC4_128_MD5 0x0004
#define SSL_RSA_WITH_RC4_128_SHA 0x0005
#define TLS_RSA_WITH_IDEA_CBC_SHA 0x0007 /* 7 */
#define SSL_RSA_WITH_3DES_EDE_CBC_SHA 0x000A /* 10 */
#define SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA 0x0016 /* 22 */
#define SSL_DH_anon_WITH_RC4_128_MD5 0x0018 /* 24 */
#define SSL_DH_anon_WITH_3DES_EDE_CBC_SHA 0x001B /* 27 */
#define TLS_RSA_WITH_AES_128_CBC_SHA 0x002F /*SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1 */
#define TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x0033 /* 51 */
#define TLS_DH_anon_WITH_AES_128_CBC_SHA 0x0034 /* 52 */
#define TLS_RSA_WITH_AES_256_CBC_SHA 0x0035 /* 53 */
#define TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x0039 /* 57 */
#define TLS_DH_anon_WITH_AES_256_CBC_SHA 0x003A /* 58 */
#define TLS_RSA_WITH_NULL_SHA256 0x003B /* 59 */
#define TLS_RSA_WITH_AES_128_CBC_SHA256 0x003C /* 60 */
#define TLS_RSA_WITH_AES_256_CBC_SHA256 0x003D /* 61 */
#define TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 0x0067 /* 103 */
#define TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 0x006B /* 107 */
#define TLS_PSK_WITH_AES_128_CBC_SHA 0x008C /* 140 */
#define TLS_PSK_WITH_AES_256_CBC_SHA 0x008D /* 141 */
#define TLS_DHE_PSK_WITH_AES_128_CBC_SHA 0x0090 /* 144 */
#define TLS_DHE_PSK_WITH_AES_256_CBC_SHA 0x0091 /* 145 */
#define TLS_RSA_WITH_SEED_CBC_SHA 0x0096 /* 150 */
#define TLS_RSA_WITH_AES_128_GCM_SHA256 0x009C /*TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=AEAD */
#define TLS_RSA_WITH_AES_256_GCM_SHA384 0x009D /*TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD */
#define TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 0x009E /*TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(128) Mac=AEAD */
#define TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 0x009F /*TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(256) Mac=AEAD */
#define TLS_DH_anon_WITH_AES_128_GCM_SHA256 0x00A6 /* RFC 5288 */
#define TLS_DH_anon_WITH_AES_256_GCM_SHA384 0x00A7 /* RFC 5288 */
#define TLS_PSK_WITH_AES_128_CBC_SHA256 0x00AE /* 174 */
#define TLS_PSK_WITH_AES_256_CBC_SHA384 0x00AF /* 175 */
#define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 0xC004 /* 49156 */
#define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 0xC005 /* 49157 */
#define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0xC009 /*TLSv1 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1 */
#define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0xC00A /*TLSv1 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1 */
#define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA 0xC00E /* 49166 */
#define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA 0xC00F /* 49167 */
#define TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0xC012 /* 49170 */
#define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0xC013 /*TLSv1 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1 */
#define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0xC014 /*TLSv1 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1 */
#define TLS_ECDH_anon_WITH_AES_128_CBC_SHA 0xC018 /* RFC 4492 */
#define TLS_ECDH_anon_WITH_AES_256_CBC_SHA 0xC019 /* RFC 4492 */
#define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0xC023 /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256 */
#define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0xC024 /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384 */
#define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 0xC025 /* 49189 */
#define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 0xC026 /* 49190 */
#define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0xC027 /*TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256 */
#define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0xC028 /*TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384 */
#define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 0xC029 /* 49193 */
#define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 0xC02A /* 49194 */
/* RFC 5288 "AES Galois Counter Mode (GCM) Cipher Suites for TLS" */
#define TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xC02B /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD */
#define TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xC02C /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD */
#define TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 0xC02D /* 49197 */
#define TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 0xC02E /* 49198 */
#define TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0xC02F /*TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD */
#define TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0xC030 /*TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD */
#define TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 0xC031 /* 49201 */
#define TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 0xC032 /* 49202 */
#define TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA 0xC035
#define TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA 0xC036
#define TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 0xC037
#define TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 0xC038
/* From http://wiki.mozilla.org/Security/Server_Side_TLS */
/* and 'openssl ciphers -V -stdname' */
#define TLS_RSA_WITH_AES_128_CCM 0xC09C /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM(128) Mac=AEAD */
#define TLS_RSA_WITH_AES_256_CCM 0xC09D /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM(256) Mac=AEAD */
#define TLS_DHE_RSA_WITH_AES_128_CCM 0xC09E /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM(128) Mac=AEAD */
#define TLS_DHE_RSA_WITH_AES_256_CCM 0xC09F /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM(256) Mac=AEAD */
#define TLS_RSA_WITH_AES_128_CCM_8 0xC0A0 /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM8(128) Mac=AEAD */
#define TLS_RSA_WITH_AES_256_CCM_8 0xC0A1 /*TLSv1.2 Kx=RSA Au=RSA Enc=AESCCM8(256) Mac=AEAD */
#define TLS_DHE_RSA_WITH_AES_128_CCM_8 0xC0A2 /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM8(128) Mac=AEAD */
#define TLS_DHE_RSA_WITH_AES_256_CCM_8 0xC0A3 /*TLSv1.2 Kx=DH Au=RSA Enc=AESCCM8(256) Mac=AEAD */
#define TLS_ECDHE_ECDSA_WITH_AES_128_CCM 0xC0AC /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM(128) Mac=AEAD */
#define TLS_ECDHE_ECDSA_WITH_AES_256_CCM 0xC0AD /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM(256) Mac=AEAD */
#define TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 0xC0AE /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM8(128) Mac=AEAD */
#define TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 0xC0AF /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESCCM8(256) Mac=AEAD */
#define TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA8 /*TLSv1.2 Kx=ECDH Au=RSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */
#define TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA9 /*TLSv1.2 Kx=ECDH Au=ECDSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */
#define TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xCCAA /*TLSv1.2 Kx=DH Au=RSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */
#define TLS_AES_128_GCM_SHA256 0x1301 /*TLSv1.3 Kx=any Au=any Enc=AESGCM(128) Mac=AEAD */
#define TLS_AES_256_GCM_SHA384 0x1302 /*TLSv1.3 Kx=any Au=any Enc=AESGCM(256) Mac=AEAD */
#define TLS_CHACHA20_POLY1305_SHA256 0x1303 /*TLSv1.3 Kx=any Au=any Enc=CHACHA20/POLY1305(256) Mac=AEAD */
#define TLS_AES_128_CCM_SHA256 0x1304 /*TLSv1.3 Kx=any Au=any Enc=AESCCM(128) Mac=AEAD */
/* Might go to libbb.h */
#define TLS_MAX_CRYPTBLOCK_SIZE 16
#define TLS_MAX_OUTBUF (1 << 14)
enum {
SHA_INSIZE = 64,
AES128_KEYSIZE = 16,
AES256_KEYSIZE = 32,
RSA_PREMASTER_SIZE = 48,
RECHDR_LEN = 5,
/* 8 = 3+5. 3 extra bytes result in record data being 32-bit aligned */
OUTBUF_PFX = 8 + AES_BLOCK_SIZE, /* header + IV */
OUTBUF_SFX = TLS_MAX_MAC_SIZE + TLS_MAX_CRYPTBLOCK_SIZE, /* MAC + padding */
// RFC 5246:
// | 6.2.1. Fragmentation
// | The record layer fragments information blocks into TLSPlaintext
// | records carrying data in chunks of 2^14 bytes or less. Client
// | message boundaries are not preserved in the record layer (i.e.,
// | multiple client messages of the same ContentType MAY be coalesced
// | into a single TLSPlaintext record, or a single message MAY be
// | fragmented across several records)
// |...
// | length
// | The length (in bytes) of the following TLSPlaintext.fragment.
// | The length MUST NOT exceed 2^14.
// |...
// | 6.2.2. Record Compression and Decompression
// |...
// | Compression must be lossless and may not increase the content length
// | by more than 1024 bytes. If the decompression function encounters a
// | TLSCompressed.fragment that would decompress to a length in excess of
// | 2^14 bytes, it MUST report a fatal decompression failure error.
// |...
// | length
// | The length (in bytes) of the following TLSCompressed.fragment.
// | The length MUST NOT exceed 2^14 + 1024.
// |...
// | 6.2.3. Record Payload Protection
// | The encryption and MAC functions translate a TLSCompressed
// | structure into a TLSCiphertext. The decryption functions reverse
// | the process. The MAC of the record also includes a sequence
// | number so that missing, extra, or repeated messages are
// | detectable.
// |...
// | length
// | The length (in bytes) of the following TLSCiphertext.fragment.
// | The length MUST NOT exceed 2^14 + 2048.
MAX_INBUF = RECHDR_LEN + (1 << 14) + 2048,
/* Bits for tls->flags */
NEED_EC_KEY = 1 << 0,
GOT_CERT_RSA_KEY_ALG = 1 << 1,
GOT_CERT_ECDSA_KEY_ALG = 1 << 2, // so far unused
GOT_EC_KEY = 1 << 3,
GOT_EC_CURVE_X25519 = 1 << 4, // else P256
ENCRYPTION_AESGCM = 1 << 5, // else AES-SHA (or NULL-SHA if ALLOW_RSA_NULL_SHA256=1)
ENCRYPT_ON_WRITE = 1 << 6,
};
struct record_hdr {
uint8_t type;
uint8_t proto_maj, proto_min;
uint8_t len16_hi, len16_lo;
};
struct tls_handshake_data {
/* In bbox, md5/sha1/sha256 ctx's are the same structure */
md5sha_ctx_t handshake_hash_ctx;
uint8_t client_and_server_rand32[2 * 32];
uint8_t master_secret[48];
//TODO: store just the DER key here, parse/use/delete it when sending client key
//this way it will stay key type agnostic here.
psRsaKey_t server_rsa_pub_key;
/* peer's elliptic curve key data */
/* for x25519, it contains one point in first 32 bytes */
/* for P256, it contains x,y point pair, each 32 bytes long */
uint8_t ecc_pub_key32[2 * 32];
/* HANDSHAKE HASH: */
//unsigned saved_client_hello_size;
//uint8_t saved_client_hello[1];
};
static unsigned get24be(const uint8_t *p)
{
return 0x100*(0x100*p[0] + p[1]) + p[2];
}
#if TLS_DEBUG
/* Nondestructively see the current hash value */
# if TLS_DEBUG_HASH
static unsigned sha_peek(md5sha_ctx_t *ctx, void *buffer)
{
md5sha_ctx_t ctx_copy = *ctx; /* struct copy */
return sha_end(&ctx_copy, buffer);
}
# endif
static void dump_hex(const char *fmt, const void *vp, int len)
{
char hexbuf[32 * 1024 + 4];
const uint8_t *p = vp;
bin2hex(hexbuf, (void*)p, len)[0] = '\0';
dbg(fmt, hexbuf);
}
static void dump_tls_record(const void *vp, int len)
{
const uint8_t *p = vp;
while (len > 0) {
unsigned xhdr_len;
if (len < RECHDR_LEN) {
dump_hex("< |%s|\n", p, len);
return;
}
xhdr_len = 0x100*p[3] + p[4];
dbg("< hdr_type:%u ver:%u.%u len:%u", p[0], p[1], p[2], xhdr_len);
p += RECHDR_LEN;
len -= RECHDR_LEN;
if (len >= 4 && p[-RECHDR_LEN] == RECORD_TYPE_HANDSHAKE) {
unsigned len24 = get24be(p + 1);
dbg(" type:%u len24:%u", p[0], len24);
}
if (xhdr_len > len)
xhdr_len = len;
dump_hex(" |%s|\n", p, xhdr_len);
p += xhdr_len;
len -= xhdr_len;
}
}
#else
# define dump_hex(...) ((void)0)
# define dump_tls_record(...) ((void)0)
#endif
void FAST_FUNC tls_get_random(void *buf, unsigned len)
{
if (len != open_read_close("/dev/urandom", buf, len))
xfunc_die();
}
static void xorbuf3(void *dst, const void *src1, const void *src2, unsigned count)
{
uint8_t *d = dst;
const uint8_t *s1 = src1;
const uint8_t* s2 = src2;
while (count--)
*d++ = *s1++ ^ *s2++;
}
void FAST_FUNC xorbuf(void *dst, const void *src, unsigned count)
{
xorbuf3(dst, dst, src, count);
}
void FAST_FUNC xorbuf_aligned_AES_BLOCK_SIZE(void *dst, const void *src)
{
unsigned long *d = dst;
const unsigned long *s = src;
d[0] ^= s[0];
#if ULONG_MAX <= 0xffffffffffffffff
d[1] ^= s[1];
#if ULONG_MAX == 0xffffffff
d[2] ^= s[2];
d[3] ^= s[3];
#endif
#endif
}
#if !TLS_DEBUG_HASH
# define hash_handshake(tls, fmt, buffer, len) \
hash_handshake(tls, buffer, len)
#endif
static void hash_handshake(tls_state_t *tls, const char *fmt, const void *buffer, unsigned len)
{
md5sha_hash(&tls->hsd->handshake_hash_ctx, buffer, len);
#if TLS_DEBUG_HASH
{
uint8_t h[TLS_MAX_MAC_SIZE];
dump_hex(fmt, buffer, len);
dbg(" (%u bytes) ", (int)len);
len = sha_peek(&tls->hsd->handshake_hash_ctx, h);
if (ENABLE_FEATURE_TLS_SHA1 && len == SHA1_OUTSIZE)
dump_hex("sha1:%s\n", h, len);
else
if (len == SHA256_OUTSIZE)
dump_hex("sha256:%s\n", h, len);
else
dump_hex("sha???:%s\n", h, len);
}
#endif
}
#if !ENABLE_FEATURE_TLS_SHA1
# define TLS_MAC_SIZE(tls) SHA256_OUTSIZE
#else
# define TLS_MAC_SIZE(tls) (tls)->MAC_size
#endif
// RFC 2104:
// HMAC(key, text) based on a hash H (say, sha256) is:
// ipad = [0x36 x INSIZE]
// opad = [0x5c x INSIZE]
// HMAC(key, text) = H((key XOR opad) + H((key XOR ipad) + text))
//
// H(key XOR opad) and H(key XOR ipad) can be precomputed
// if we often need HMAC hmac with the same key.
//
// text is often given in disjoint pieces.
typedef struct hmac_precomputed {
md5sha_ctx_t hashed_key_xor_ipad;
md5sha_ctx_t hashed_key_xor_opad;
} hmac_precomputed_t;
typedef void md5sha_begin_func(md5sha_ctx_t *ctx) FAST_FUNC;
#if !ENABLE_FEATURE_TLS_SHA1
#define hmac_begin(pre,key,key_size,begin) \
hmac_begin(pre,key,key_size)
#define begin sha256_begin
#endif
static void hmac_begin(hmac_precomputed_t *pre, uint8_t *key, unsigned key_size, md5sha_begin_func *begin)
{
uint8_t key_xor_ipad[SHA_INSIZE];
uint8_t key_xor_opad[SHA_INSIZE];
// uint8_t tempkey[SHA1_OUTSIZE < SHA256_OUTSIZE ? SHA256_OUTSIZE : SHA1_OUTSIZE];
unsigned i;
// "The authentication key can be of any length up to INSIZE, the
// block length of the hash function. Applications that use keys longer
// than INSIZE bytes will first hash the key using H and then use the
// resultant OUTSIZE byte string as the actual key to HMAC."
if (key_size > SHA_INSIZE) {
libbb: reduce the overhead of single parameter bb_error_msg() calls Back in 2007, commit 0c97c9d43707 ("'simple' error message functions by Loic Grenie") introduced bb_simple_perror_msg() to allow for a lower overhead call to bb_perror_msg() when only a string was being printed with no parameters. This saves space for some CPU architectures because it avoids the overhead of a call to a variadic function. However there has never been a simple version of bb_error_msg(), and since 2007 many new calls to bb_perror_msg() have been added that only take a single parameter and so could have been using bb_simple_perror_message(). This changeset introduces 'simple' versions of bb_info_msg(), bb_error_msg(), bb_error_msg_and_die(), bb_herror_msg() and bb_herror_msg_and_die(), and replaces all calls that only take a single parameter, or use something like ("%s", arg), with calls to the corresponding 'simple' version. Since it is likely that single parameter calls to the variadic functions may be accidentally reintroduced in the future a new debugging config option WARN_SIMPLE_MSG has been introduced. This uses some macro magic which will cause any such calls to generate a warning, but this is turned off by default to avoid use of the unpleasant macros in normal circumstances. This is a large changeset due to the number of calls that have been replaced. The only files that contain changes other than simple substitution of function calls are libbb.h, libbb/herror_msg.c, libbb/verror_msg.c and libbb/xfuncs_printf.c. In miscutils/devfsd.c, networking/udhcp/common.h and util-linux/mdev.c additonal macros have been added for logging so that single parameter and multiple parameter logging variants exist. The amount of space saved varies considerably by architecture, and was found to be as follows (for 'defconfig' using GCC 7.4): Arm: -92 bytes MIPS: -52 bytes PPC: -1836 bytes x86_64: -938 bytes Note that for the MIPS architecture only an exception had to be made disabling the 'simple' calls for 'udhcp' (in networking/udhcp/common.h) because it made these files larger on MIPS. Signed-off-by: James Byrne <james.byrne@origamienergy.com> Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
2019-07-02 11:35:03 +02:00
bb_simple_error_msg_and_die("HMAC key>64"); //does not happen (yet?)
// md5sha_ctx_t ctx;
// begin(&ctx);
// md5sha_hash(&ctx, key, key_size);
// key_size = sha_end(&ctx, tempkey);
// //key = tempkey; - right? RIGHT? why does it work without this?
// // because SHA_INSIZE is 64, but hmac() is always called with
// // key_size = tls->MAC_size = SHA1/256_OUTSIZE (20 or 32),
// // and prf_hmac_sha256() -> hmac_sha256() key sizes are:
// // - RSA_PREMASTER_SIZE is 48
// // - CURVE25519_KEYSIZE is 32
// // - master_secret[] is 48
}
for (i = 0; i < key_size; i++) {
key_xor_ipad[i] = key[i] ^ 0x36;
key_xor_opad[i] = key[i] ^ 0x5c;
}
for (; i < SHA_INSIZE; i++) {
key_xor_ipad[i] = 0x36;
key_xor_opad[i] = 0x5c;
}
begin(&pre->hashed_key_xor_ipad);
begin(&pre->hashed_key_xor_opad);
md5sha_hash(&pre->hashed_key_xor_ipad, key_xor_ipad, SHA_INSIZE);
md5sha_hash(&pre->hashed_key_xor_opad, key_xor_opad, SHA_INSIZE);
}
#undef begin
static unsigned hmac_sha_precomputed_v(
hmac_precomputed_t *pre,
uint8_t *out,
va_list va)
{
uint8_t *text;
unsigned len;
/* pre->hashed_key_xor_ipad contains unclosed "H((key XOR ipad) +" state */
/* pre->hashed_key_xor_opad contains unclosed "H((key XOR opad) +" state */
/* calculate out = H((key XOR ipad) + text) */
while ((text = va_arg(va, uint8_t*)) != NULL) {
unsigned text_size = va_arg(va, unsigned);
md5sha_hash(&pre->hashed_key_xor_ipad, text, text_size);
}
len = sha_end(&pre->hashed_key_xor_ipad, out);
/* out = H((key XOR opad) + out) */
md5sha_hash(&pre->hashed_key_xor_opad, out, len);
return sha_end(&pre->hashed_key_xor_opad, out);
}
static unsigned hmac_sha_precomputed(hmac_precomputed_t *pre_init, uint8_t *out, ...)
{
hmac_precomputed_t pre;
va_list va;
unsigned len;
va_start(va, out);
pre = *pre_init; /* struct copy */
len = hmac_sha_precomputed_v(&pre, out, va);
va_end(va);
return len;
}
#if !ENABLE_FEATURE_TLS_SHA1
#define hmac(tls,out,key,key_size,...) \
hmac(out,key,key_size, __VA_ARGS__)
#endif
static unsigned hmac(tls_state_t *tls, uint8_t *out, uint8_t *key, unsigned key_size, ...)
{
hmac_precomputed_t pre;
va_list va;
unsigned len;
va_start(va, key_size);
hmac_begin(&pre, key, key_size,
(ENABLE_FEATURE_TLS_SHA1 && tls->MAC_size == SHA1_OUTSIZE)
? sha1_begin
: sha256_begin
);
len = hmac_sha_precomputed_v(&pre, out, va);
va_end(va);
return len;
}
// RFC 5246:
// 5. HMAC and the Pseudorandom Function
//...
// In this section, we define one PRF, based on HMAC. This PRF with the
// SHA-256 hash function is used for all cipher suites defined in this
// document and in TLS documents published prior to this document when
// TLS 1.2 is negotiated.
// ^^^^^^^^^^^^^ IMPORTANT!
// PRF uses sha256 regardless of cipher for all ciphers
// defined by RFC 5246. It's not sha1 for AES_128_CBC_SHA!
// However, for _SHA384 ciphers, it's sha384. See RFC 5288,5289.
//...
// P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
// HMAC_hash(secret, A(2) + seed) +
// HMAC_hash(secret, A(3) + seed) + ...
// where + indicates concatenation.
// A() is defined as:
// A(0) = seed
// A(1) = HMAC_hash(secret, A(0)) = HMAC_hash(secret, seed)
// A(i) = HMAC_hash(secret, A(i-1))
// P_hash can be iterated as many times as necessary to produce the
// required quantity of data. For example, if P_SHA256 is being used to
// create 80 bytes of data, it will have to be iterated three times
// (through A(3)), creating 96 bytes of output data; the last 16 bytes
// of the final iteration will then be discarded, leaving 80 bytes of
// output data.
//
// TLS's PRF is created by applying P_hash to the secret as:
//
// PRF(secret, label, seed) = P_<hash>(secret, label + seed)
//
// The label is an ASCII string.
//
// RFC 5288:
// For cipher suites ending with _SHA256, the PRF is the TLS PRF
// with SHA-256 as the hash function.
// For cipher suites ending with _SHA384, the PRF is the TLS PRF
// with SHA-384 as the hash function.
static void prf_hmac_sha256(/*tls_state_t *tls,*/
uint8_t *outbuf, unsigned outbuf_size,
uint8_t *secret, unsigned secret_size,
const char *label,
uint8_t *seed, unsigned seed_size)
{
hmac_precomputed_t pre;
uint8_t a[TLS_MAX_MAC_SIZE];
uint8_t *out_p = outbuf;
unsigned label_size = strlen(label);
unsigned MAC_size = SHA256_OUTSIZE;
/* In P_hash() calculation, "seed" is "label + seed": */
#define SEED label, label_size, seed, seed_size
#define A a, MAC_size
hmac_begin(&pre, secret, secret_size, sha256_begin);
/* A(1) = HMAC_hash(secret, seed) */
hmac_sha_precomputed(&pre, a, SEED, NULL);
for (;;) {
/* HMAC_hash(secret, A(1) + seed) */
if (outbuf_size <= MAC_size) {
/* Last, possibly incomplete, block */
/* (use a[] as temp buffer) */
hmac_sha_precomputed(&pre, a, A, SEED, NULL);
memcpy(out_p, a, outbuf_size);
return;
}
/* Not last block. Store directly to result buffer */
hmac_sha_precomputed(&pre, out_p, A, SEED, NULL);
out_p += MAC_size;
outbuf_size -= MAC_size;
/* A(2) = HMAC_hash(secret, A(1)) */
hmac_sha_precomputed(&pre, a, A, NULL);
}
#undef A
#undef SECRET
#undef SEED
}
static void bad_record_die(tls_state_t *tls, const char *expected, int len)
{
bb_error_msg("got bad TLS record (len:%d) while expecting %s", len, expected);
if (len > 0) {
uint8_t *p = tls->inbuf;
if (len > 99)
len = 99; /* don't flood, a few lines should be enough */
do {
fprintf(stderr, " %02x", *p++);
len--;
} while (len != 0);
fputc('\n', stderr);
}
xfunc_die();
}
static void tls_error_die(tls_state_t *tls, int line)
{
dump_tls_record(tls->inbuf, tls->ofs_to_buffered + tls->buffered_size);
bb_error_msg_and_die("tls error at line %d cipher:%04x", line, tls->cipher_id);
}
#define tls_error_die(tls) tls_error_die(tls, __LINE__)
#if 0 //UNUSED
static void tls_free_inbuf(tls_state_t *tls)
{
if (tls->buffered_size == 0) {
free(tls->inbuf);
tls->inbuf_size = 0;
tls->inbuf = NULL;
}
}
#endif
static void tls_free_outbuf(tls_state_t *tls)
{
free(tls->outbuf);
tls->outbuf_size = 0;
tls->outbuf = NULL;
}
static void *tls_get_outbuf(tls_state_t *tls, int len)
{
if (len > TLS_MAX_OUTBUF)
xfunc_die();
len += OUTBUF_PFX + OUTBUF_SFX;
if (tls->outbuf_size < len) {
tls->outbuf_size = len;
tls->outbuf = xrealloc(tls->outbuf, len);
}
return tls->outbuf + OUTBUF_PFX;
}
static void *tls_get_zeroed_outbuf(tls_state_t *tls, int len)
{
void *record = tls_get_outbuf(tls, len);
memset(record, 0, len);
return record;
}
static void xwrite_encrypted_and_hmac_signed(tls_state_t *tls, unsigned size, unsigned type)
{
uint8_t *buf = tls->outbuf + OUTBUF_PFX;
struct record_hdr *xhdr;
uint8_t padding_length;
xhdr = (void*)(buf - RECHDR_LEN);
if (!ALLOW_RSA_NULL_SHA256 /* if "no encryption" can't be selected */
|| tls->cipher_id != TLS_RSA_WITH_NULL_SHA256 /* or if it wasn't selected */
) {
xhdr = (void*)(buf - RECHDR_LEN - AES_BLOCK_SIZE); /* place for IV */
}
xhdr->type = type;
xhdr->proto_maj = TLS_MAJ;
xhdr->proto_min = TLS_MIN;
/* fake unencrypted record len for MAC calculation */
xhdr->len16_hi = size >> 8;
xhdr->len16_lo = size & 0xff;
/* Calculate MAC signature */
hmac(tls, buf + size, /* result */
tls->client_write_MAC_key, TLS_MAC_SIZE(tls),
&tls->write_seq64_be, sizeof(tls->write_seq64_be),
xhdr, RECHDR_LEN,
buf, size,
NULL
);
tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(tls->write_seq64_be));
size += TLS_MAC_SIZE(tls);
// RFC 5246:
// 6.2.3.1. Null or Standard Stream Cipher
//
// Stream ciphers (including BulkCipherAlgorithm.null; see Appendix A.6)
// convert TLSCompressed.fragment structures to and from stream
// TLSCiphertext.fragment structures.
//
// stream-ciphered struct {
// opaque content[TLSCompressed.length];
// opaque MAC[SecurityParameters.mac_length];
// } GenericStreamCipher;
//
// The MAC is generated as:
// MAC(MAC_write_key, seq_num +
// TLSCompressed.type +
// TLSCompressed.version +
// TLSCompressed.length +
// TLSCompressed.fragment);
// where "+" denotes concatenation.
// seq_num
// The sequence number for this record.
// MAC
// The MAC algorithm specified by SecurityParameters.mac_algorithm.
//
// Note that the MAC is computed before encryption. The stream cipher
// encrypts the entire block, including the MAC.
//...
// Appendix C. Cipher Suite Definitions
//...
// MAC Algorithm mac_length mac_key_length
// -------- ----------- ---------- --------------
// SHA HMAC-SHA1 20 20
// SHA256 HMAC-SHA256 32 32
if (ALLOW_RSA_NULL_SHA256
&& tls->cipher_id == TLS_RSA_WITH_NULL_SHA256
) {
/* No encryption, only signing */
xhdr->len16_hi = size >> 8;
xhdr->len16_lo = size & 0xff;
dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size);
xwrite(tls->ofd, xhdr, RECHDR_LEN + size);
dbg("wrote %u bytes (NULL crypt, SHA256 hash)\n", size);
return;
}
// 6.2.3.2. CBC Block Cipher
// For block ciphers (such as 3DES or AES), the encryption and MAC
// functions convert TLSCompressed.fragment structures to and from block
// TLSCiphertext.fragment structures.
// struct {
// opaque IV[SecurityParameters.record_iv_length];
// block-ciphered struct {
// opaque content[TLSCompressed.length];
// opaque MAC[SecurityParameters.mac_length];
// uint8 padding[GenericBlockCipher.padding_length];
// uint8 padding_length;
// };
// } GenericBlockCipher;
//...
// IV
// The Initialization Vector (IV) SHOULD be chosen at random, and
// MUST be unpredictable. Note that in versions of TLS prior to 1.1,
// there was no IV field (...). For block ciphers, the IV length is
// of length SecurityParameters.record_iv_length, which is equal to the
// SecurityParameters.block_size.
// padding
// Padding that is added to force the length of the plaintext to be
// an integral multiple of the block cipher's block length.
// padding_length
// The padding length MUST be such that the total size of the
// GenericBlockCipher structure is a multiple of the cipher's block
// length. Legal values range from zero to 255, inclusive.
//...
// Appendix C. Cipher Suite Definitions
//...
// Key IV Block
// Cipher Type Material Size Size
// ------------ ------ -------- ---- -----
// AES_128_CBC Block 16 16 16
// AES_256_CBC Block 32 16 16
tls_get_random(buf - AES_BLOCK_SIZE, AES_BLOCK_SIZE); /* IV */
dbg("before crypt: 5 hdr + %u data + %u hash bytes\n",
size - TLS_MAC_SIZE(tls), TLS_MAC_SIZE(tls));
/* Fill IV and padding in outbuf */
// RFC is talking nonsense:
// "Padding that is added to force the length of the plaintext to be
// an integral multiple of the block cipher's block length."
// WRONG. _padding+padding_length_, not just _padding_,
// pads the data.
// IOW: padding_length is the last byte of padding[] array,
// contrary to what RFC depicts.
//
// What actually happens is that there is always padding.
// If you need one byte to reach BLOCKSIZE, this byte is 0x00.
// If you need two bytes, they are both 0x01.
// If you need three, they are 0x02,0x02,0x02. And so on.
// If you need no bytes to reach BLOCKSIZE, you have to pad a full
// BLOCKSIZE with bytes of value (BLOCKSIZE-1).
// It's ok to have more than minimum padding, but we do minimum.
padding_length = (~size) & (AES_BLOCK_SIZE - 1);
do {
buf[size++] = padding_length; /* padding */
} while ((size & (AES_BLOCK_SIZE - 1)) != 0);
/* Encrypt content+MAC+padding in place */
aes_cbc_encrypt(
&tls->aes_encrypt, /* selects 128/256 */
buf - AES_BLOCK_SIZE, /* IV */
buf, size, /* plaintext */
buf /* ciphertext */
);
/* Write out */
dbg("writing 5 + %u IV + %u encrypted bytes, padding_length:0x%02x\n",
AES_BLOCK_SIZE, size, padding_length);
size += AES_BLOCK_SIZE; /* + IV */
xhdr->len16_hi = size >> 8;
xhdr->len16_lo = size & 0xff;
dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size);
xwrite(tls->ofd, xhdr, RECHDR_LEN + size);
dbg("wrote %u bytes\n", (int)RECHDR_LEN + size);
}
/* Example how GCM encryption combines nonce, aad, input and generates
* "header | exp_nonce | encrypted output | tag":
* nonce:0d 6a 26 31 00 00 00 00 00 00 00 01 (implicit 4 bytes (derived from master secret), then explicit 8 bytes)
* aad: 00 00 00 00 00 00 00 01 17 03 03 00 1c
* in: 47 45 54 20 2f 69 6e 64 65 78 2e 68 74 6d 6c 20 48 54 54 50 2f 31 2e 30 0d 0a 0d 0a "GET /index.html HTTP/1.0\r\n\r\n" (0x1c bytes)
* out: f7 8a b2 8f 78 0e f6 d5 76 17 2e b5 6d 46 59 56 8b 46 9f 0b d9 2c 35 28 13 66 19 be
* tag: c2 86 ce 4a 50 4a d0 aa 50 b3 76 5c 49 2a 3f 33
* sent: 17 03 03 00 34|00 00 00 00 00 00 00 01|f7 8a b2 8f 78 0e f6 d5 76 17 2e b5 6d 46 59 56 8b 46 9f 0b d9 2c 35 28 13 66 19 be|c2 86 ce 4a 50 4a d0 aa 50 b3 76 5c 49 2a 3f 33
* .............................................^^ buf points here
*/
static void xwrite_encrypted_aesgcm(tls_state_t *tls, unsigned size, unsigned type)
{
#define COUNTER(v) (*(uint32_t*)(v + 12))
uint8_t aad[13 + 3] ALIGNED_long; /* +3 creates [16] buffer, simplifying GHASH() */
uint8_t nonce[12 + 4] ALIGNED_long; /* +4 creates space for AES block counter */
uint8_t scratch[AES_BLOCK_SIZE] ALIGNED_long; //[16]
uint8_t authtag[AES_BLOCK_SIZE] ALIGNED_long; //[16]
uint8_t *buf;
struct record_hdr *xhdr;
unsigned remaining;
unsigned cnt;
uint64_t t64;
buf = tls->outbuf + OUTBUF_PFX; /* see above for the byte it points to */
dump_hex("xwrite_encrypted_aesgcm plaintext:%s\n", buf, size);
xhdr = (void*)(buf - 8 - RECHDR_LEN);
xhdr->type = type; /* do it here so that "type" param no longer used */
aad[8] = type;
aad[9] = TLS_MAJ;
aad[10] = TLS_MIN;
aad[11] = size >> 8;
/* set aad[12], and clear aad[13..15] */
COUNTER(aad) = SWAP_LE32(size & 0xff);
memcpy(nonce, tls->client_write_IV, 4);
t64 = tls->write_seq64_be;
move_to_unaligned64(nonce + 4, t64);
move_to_unaligned64(aad, t64);
move_to_unaligned64(buf - 8, t64);
/* seq64 is not used later in this func, can increment here */
tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(t64));
cnt = 1;
remaining = size;
while (remaining != 0) {
unsigned n;
cnt++;
COUNTER(nonce) = htonl(cnt); /* yes, first cnt here is 2 (!) */
aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch);
n = remaining > AES_BLOCK_SIZE ? AES_BLOCK_SIZE : remaining;
xorbuf(buf, scratch, n);
buf += n;
remaining -= n;
}
aesgcm_GHASH(tls->H, aad, /*sizeof(aad),*/ tls->outbuf + OUTBUF_PFX, size, authtag /*, sizeof(authtag)*/);
COUNTER(nonce) = htonl(1);
aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch);
xorbuf_aligned_AES_BLOCK_SIZE(authtag, scratch);
memcpy(buf, authtag, sizeof(authtag));
/* Write out */
xhdr = (void*)(tls->outbuf + OUTBUF_PFX - 8 - RECHDR_LEN);
size += 8 + sizeof(authtag);
/*xhdr->type = type; - already is */
xhdr->proto_maj = TLS_MAJ;
xhdr->proto_min = TLS_MIN;
xhdr->len16_hi = size >> 8;
xhdr->len16_lo = size & 0xff;
size += RECHDR_LEN;
dump_raw_out(">> %s\n", xhdr, size);
xwrite(tls->ofd, xhdr, size);
dbg("wrote %u bytes\n", size);
#undef COUNTER
}
static void xwrite_encrypted(tls_state_t *tls, unsigned size, unsigned type)
{
if (!(tls->flags & ENCRYPTION_AESGCM)) {
xwrite_encrypted_and_hmac_signed(tls, size, type);
return;
}
xwrite_encrypted_aesgcm(tls, size, type);
}
static void xwrite_handshake_record(tls_state_t *tls, unsigned size)
{
uint8_t *buf = tls->outbuf + OUTBUF_PFX;
struct record_hdr *xhdr = (void*)(buf - RECHDR_LEN);
xhdr->type = RECORD_TYPE_HANDSHAKE;
xhdr->proto_maj = TLS_MAJ;
xhdr->proto_min = TLS_MIN;
xhdr->len16_hi = size >> 8;
xhdr->len16_lo = size & 0xff;
dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size);
xwrite(tls->ofd, xhdr, RECHDR_LEN + size);
dbg("wrote %u bytes\n", (int)RECHDR_LEN + size);
}
static void xwrite_and_update_handshake_hash(tls_state_t *tls, unsigned size)
{
if (!(tls->flags & ENCRYPT_ON_WRITE)) {
uint8_t *buf;
xwrite_handshake_record(tls, size);
/* Handshake hash does not include record headers */
buf = tls->outbuf + OUTBUF_PFX;
hash_handshake(tls, ">> hash:%s", buf, size);
return;
}
xwrite_encrypted(tls, size, RECORD_TYPE_HANDSHAKE);
}
static int tls_has_buffered_record(tls_state_t *tls)
{
int buffered = tls->buffered_size;
struct record_hdr *xhdr;
int rec_size;
if (buffered < RECHDR_LEN)
return 0;
xhdr = (void*)(tls->inbuf + tls->ofs_to_buffered);
rec_size = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo);
if (buffered < rec_size)
return 0;
return rec_size;
}
static const char *alert_text(int code)
{
//10 unexpected_message
//20 bad_record_mac
//21 decryption_failed
//22 record_overflow
//30 decompression_failure
//40 handshake_failure
//41 no_certificate
//42 bad_certificate
//43 unsupported_certificate
//44 certificate_revoked
//45 certificate_expired
//46 certificate_unknown
//47 illegal_parameter
//48 unknown_ca
//49 access_denied
//50 decode_error
//51 decrypt_error
//52 too_many_cids_requested
//60 export_restriction
//70 protocol_version
//71 insufficient_security
//80 internal_error
//86 inappropriate_fallback
//90 user_canceled
//100 no_renegotiation
//109 missing_extension
//110 unsupported_extension
//111 certificate_unobtainable
//112 unrecognized_name
//113 bad_certificate_status_response
//114 bad_certificate_hash_value
//115 unknown_psk_identity
//116 certificate_required
//120 no_application_protocol
switch (code) {
case 20: return "bad MAC";
case 50: return "decode error";
case 40: return "handshake failure";
case 51: return "decrypt error";
case 80: return "internal error";
case 112: return "unrecognized name";
}
return itoa(code);
}
static void tls_aesgcm_decrypt(tls_state_t *tls, uint8_t *buf, int size)
{
#define COUNTER(v) (*(uint32_t*)(v + 12))
//uint8_t aad[13 + 3] ALIGNED_long; /* +3 creates [16] buffer, simplifying GHASH() */
uint8_t nonce[12 + 4] ALIGNED_long; /* +4 creates space for AES block counter */
uint8_t scratch[AES_BLOCK_SIZE] ALIGNED_long; //[16]
//uint8_t authtag[AES_BLOCK_SIZE] ALIGNED_long; //[16]
unsigned remaining;
unsigned cnt;
//memcpy(aad, buf, 8);
//aad[8] = type;
//aad[9] = TLS_MAJ;
//aad[10] = TLS_MIN;
//aad[11] = size >> 8;
///* set aad[12], and clear aad[13..15] */
//COUNTER(aad) = SWAP_LE32(size & 0xff);
memcpy(nonce, tls->server_write_IV, 4);
memcpy(nonce + 4, buf, 8);
cnt = 1;
remaining = size;
while (remaining != 0) {
unsigned n;
cnt++;
COUNTER(nonce) = htonl(cnt); /* yes, first cnt here is 2 (!) */
aes_encrypt_one_block(&tls->aes_decrypt, nonce, scratch);
n = remaining > AES_BLOCK_SIZE ? AES_BLOCK_SIZE : remaining;
xorbuf3(buf, scratch, buf + 8, n);
buf += n;
remaining -= n;
}
//aesgcm_GHASH(tls->H, aad, tls->inbuf + RECHDR_LEN, size, authtag);
//COUNTER(nonce) = htonl(1);
//aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch);
//xorbuf_aligned_AES_BLOCK_SIZE(authtag, scratch);
//memcmp(buf, authtag, sizeof(authtag)) || DIE("HASH DOES NOT MATCH!");
#undef COUNTER
}
static int tls_xread_record(tls_state_t *tls, const char *expected)
{
struct record_hdr *xhdr;
int sz;
int total;
int target;
again:
dbg("ofs_to_buffered:%u buffered_size:%u\n", tls->ofs_to_buffered, tls->buffered_size);
total = tls->buffered_size;
if (total != 0) {
memmove(tls->inbuf, tls->inbuf + tls->ofs_to_buffered, total);
//dbg("<< remaining at %d [%d] ", tls->ofs_to_buffered, total);
//dump_raw_in("<< %s\n", tls->inbuf, total);
}
errno = 0;
target = MAX_INBUF;
for (;;) {
int rem;
if (total >= RECHDR_LEN && target == MAX_INBUF) {
xhdr = (void*)tls->inbuf;
target = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo);
if (target > MAX_INBUF /* malformed input (too long) */
|| xhdr->proto_maj != TLS_MAJ
|| xhdr->proto_min != TLS_MIN
) {
sz = total < target ? total : target;
bad_record_die(tls, expected, sz);
}
dbg("xhdr type:%d ver:%d.%d len:%d\n",
xhdr->type, xhdr->proto_maj, xhdr->proto_min,
0x100 * xhdr->len16_hi + xhdr->len16_lo
);
}
/* if total >= target, we have a full packet (and possibly more)... */
if (total - target >= 0)
break;
/* input buffer is grown only as needed */
rem = tls->inbuf_size - total;
if (rem == 0) {
tls->inbuf_size += MAX_INBUF / 8;
if (tls->inbuf_size > MAX_INBUF)
tls->inbuf_size = MAX_INBUF;
dbg("inbuf_size:%d\n", tls->inbuf_size);
rem = tls->inbuf_size - total;
tls->inbuf = xrealloc(tls->inbuf, tls->inbuf_size);
}
sz = safe_read(tls->ifd, tls->inbuf + total, rem);
if (sz <= 0) {
if (sz == 0 && total == 0) {
/* "Abrupt" EOF, no TLS shutdown (seen from kernel.org) */
dbg("EOF (without TLS shutdown) from peer\n");
tls->buffered_size = 0;
goto end;
}
bb_perror_msg_and_die("short read, have only %d", total);
}
dump_raw_in("<< %s\n", tls->inbuf + total, sz);
total += sz;
}
tls->buffered_size = total - target;
tls->ofs_to_buffered = target;
//dbg("<< stashing at %d [%d] ", tls->ofs_to_buffered, tls->buffered_size);
//dump_hex("<< %s\n", tls->inbuf + tls->ofs_to_buffered, tls->buffered_size);
sz = target - RECHDR_LEN;
/* Needs to be decrypted? */
if (tls->min_encrypted_len_on_read != 0) {
if (sz < (int)tls->min_encrypted_len_on_read)
bb_error_msg_and_die("bad encrypted len:%u", sz);
if (tls->flags & ENCRYPTION_AESGCM) {
/* AESGCM */
uint8_t *p = tls->inbuf + RECHDR_LEN;
sz -= 8 + AES_BLOCK_SIZE; /* we will overwrite nonce, drop hash */
tls_aesgcm_decrypt(tls, p, sz);
dbg("encrypted size:%u\n", sz);
} else
if (tls->min_encrypted_len_on_read > TLS_MAC_SIZE(tls)) {
/* AES+SHA */
uint8_t *p = tls->inbuf + RECHDR_LEN;
int padding_len;
if (sz & (AES_BLOCK_SIZE-1))
bb_error_msg_and_die("bad encrypted len:%u", sz);
/* Decrypt content+MAC+padding, moving it over IV in the process */
sz -= AES_BLOCK_SIZE; /* we will overwrite IV now */
aes_cbc_decrypt(
&tls->aes_decrypt, /* selects 128/256 */
p, /* IV */
p + AES_BLOCK_SIZE, sz, /* ciphertext */
p /* plaintext */
);
padding_len = p[sz - 1];
dbg("encrypted size:%u type:0x%02x padding_length:0x%02x\n", sz, p[0], padding_len);
padding_len++;
sz -= TLS_MAC_SIZE(tls) + padding_len; /* drop MAC and padding */
} else {
/* if nonzero, then it's TLS_RSA_WITH_NULL_SHA256: drop MAC */
/* else: no encryption yet on input, subtract zero = NOP */
sz -= tls->min_encrypted_len_on_read;
}
}
if (sz < 0)
libbb: reduce the overhead of single parameter bb_error_msg() calls Back in 2007, commit 0c97c9d43707 ("'simple' error message functions by Loic Grenie") introduced bb_simple_perror_msg() to allow for a lower overhead call to bb_perror_msg() when only a string was being printed with no parameters. This saves space for some CPU architectures because it avoids the overhead of a call to a variadic function. However there has never been a simple version of bb_error_msg(), and since 2007 many new calls to bb_perror_msg() have been added that only take a single parameter and so could have been using bb_simple_perror_message(). This changeset introduces 'simple' versions of bb_info_msg(), bb_error_msg(), bb_error_msg_and_die(), bb_herror_msg() and bb_herror_msg_and_die(), and replaces all calls that only take a single parameter, or use something like ("%s", arg), with calls to the corresponding 'simple' version. Since it is likely that single parameter calls to the variadic functions may be accidentally reintroduced in the future a new debugging config option WARN_SIMPLE_MSG has been introduced. This uses some macro magic which will cause any such calls to generate a warning, but this is turned off by default to avoid use of the unpleasant macros in normal circumstances. This is a large changeset due to the number of calls that have been replaced. The only files that contain changes other than simple substitution of function calls are libbb.h, libbb/herror_msg.c, libbb/verror_msg.c and libbb/xfuncs_printf.c. In miscutils/devfsd.c, networking/udhcp/common.h and util-linux/mdev.c additonal macros have been added for logging so that single parameter and multiple parameter logging variants exist. The amount of space saved varies considerably by architecture, and was found to be as follows (for 'defconfig' using GCC 7.4): Arm: -92 bytes MIPS: -52 bytes PPC: -1836 bytes x86_64: -938 bytes Note that for the MIPS architecture only an exception had to be made disabling the 'simple' calls for 'udhcp' (in networking/udhcp/common.h) because it made these files larger on MIPS. Signed-off-by: James Byrne <james.byrne@origamienergy.com> Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
2019-07-02 11:35:03 +02:00
bb_simple_error_msg_and_die("encrypted data too short");
//dump_hex("<< %s\n", tls->inbuf, RECHDR_LEN + sz);
xhdr = (void*)tls->inbuf;
if (xhdr->type == RECORD_TYPE_ALERT && sz >= 2) {
uint8_t *p = tls->inbuf + RECHDR_LEN;
dbg("ALERT size:%d level:%d description:%d\n", sz, p[0], p[1]);
if (p[0] == 2) { /* fatal */
bb_error_msg_and_die("TLS %s from peer (alert code %d): %s",
"error",
p[1], alert_text(p[1])
);
}
if (p[0] == 1) { /* warning */
if (p[1] == 0) { /* "close_notify" warning: it's EOF */
dbg("EOF (TLS encoded) from peer\n");
sz = 0;
goto end;
}
//This possibly needs to be cached and shown only if
//a fatal alert follows
// bb_error_msg("TLS %s from peer (alert code %d): %s",
// "warning",
// p[1], alert_text(p[1])
// );
/* discard it, get next record */
goto again;
}
/* p[0] not 1 or 2: not defined in protocol */
sz = 0;
goto end;
}
/* RFC 5246 is not saying it explicitly, but sha256 hash
* in our FINISHED record must include data of incoming packets too!
*/
if (tls->inbuf[0] == RECORD_TYPE_HANDSHAKE
/* HANDSHAKE HASH: */
// && do_we_know_which_hash_to_use /* server_hello() might not know it in the future! */
) {
hash_handshake(tls, "<< hash:%s", tls->inbuf + RECHDR_LEN, sz);
}
end:
dbg("got block len:%u\n", sz);
return sz;
}
static void binary_to_pstm(pstm_int *pstm_n, uint8_t *bin_ptr, unsigned len)
{
pstm_init_for_read_unsigned_bin(/*pool:*/ NULL, pstm_n, len);
pstm_read_unsigned_bin(pstm_n, bin_ptr, len);
//return bin_ptr + len;
}
/*
* DER parsing routines
*/
static unsigned get_der_len(uint8_t **bodyp, uint8_t *der, uint8_t *end)
{
unsigned len, len1;
if (end - der < 2)
xfunc_die();
// if ((der[0] & 0x1f) == 0x1f) /* not single-byte item code? */
// xfunc_die();
len = der[1]; /* maybe it's short len */
if (len >= 0x80) {
/* no, it's long */
if (len == 0x80 || end - der < (int)(len - 0x7e)) {
/* 0x80 is "0 bytes of len", invalid DER: must use short len if can */
/* need 3 or 4 bytes for 81, 82 */
xfunc_die();
}
len1 = der[2]; /* if (len == 0x81) it's "ii 81 xx", fetch xx */
if (len > 0x82) {
/* >0x82 is "3+ bytes of len", should not happen realistically */
xfunc_die();
}
if (len == 0x82) { /* it's "ii 82 xx yy" */
len1 = 0x100*len1 + der[3];
der += 1; /* skip [yy] */
}
der += 1; /* skip [xx] */
len = len1;
// if (len < 0x80)
// xfunc_die(); /* invalid DER: must use short len if can */
}
der += 2; /* skip [code]+[1byte] */
if (end - der < (int)len)
xfunc_die();
*bodyp = der;
return len;
}
static uint8_t *enter_der_item(uint8_t *der, uint8_t **endp)
{
uint8_t *new_der;
unsigned len = get_der_len(&new_der, der, *endp);
dbg_der("entered der @%p:0x%02x len:%u inner_byte @%p:0x%02x\n", der, der[0], len, new_der, new_der[0]);
/* Move "end" position to cover only this item */
*endp = new_der + len;
return new_der;
}
static uint8_t *skip_der_item(uint8_t *der, uint8_t *end)
{
uint8_t *new_der;
unsigned len = get_der_len(&new_der, der, end);
/* Skip body */
new_der += len;
dbg_der("skipped der 0x%02x, next byte 0x%02x\n", der[0], new_der[0]);
return new_der;
}
static void der_binary_to_pstm(pstm_int *pstm_n, uint8_t *der, uint8_t *end)
{
uint8_t *bin_ptr;
unsigned len = get_der_len(&bin_ptr, der, end);
dbg_der("binary bytes:%u, first:0x%02x\n", len, bin_ptr[0]);
binary_to_pstm(pstm_n, bin_ptr, len);
}
static void find_key_in_der_cert(tls_state_t *tls, uint8_t *der, int len)
{
/* Certificate is a DER-encoded data structure. Each DER element has a length,
* which makes it easy to skip over large compound elements of any complexity
* without parsing them. Example: partial decode of kernel.org certificate:
* SEQ 0x05ac/1452 bytes (Certificate): 308205ac
* SEQ 0x0494/1172 bytes (tbsCertificate): 30820494
* [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0] 3 bytes: a003
* INTEGER (version): 0201 02
* INTEGER 0x11 bytes (serialNumber): 0211 00 9f85bf664b0cddafca508679501b2be4
* //^^^^^^note: matrixSSL also allows [ASN_CONTEXT_SPECIFIC | ASN_PRIMITIVE | 2] = 0x82 type
* SEQ 0x0d bytes (signatureAlgo): 300d
* OID 9 bytes: 0609 2a864886f70d01010b (OID_SHA256_RSA_SIG 42.134.72.134.247.13.1.1.11)
* NULL: 0500
* SEQ 0x5f bytes (issuer): 305f
* SET 11 bytes: 310b
* SEQ 9 bytes: 3009
* OID 3 bytes: 0603 550406
* Printable string "FR": 1302 4652
* SET 14 bytes: 310e
* SEQ 12 bytes: 300c
* OID 3 bytes: 0603 550408
* Printable string "Paris": 1305 5061726973
* SET 14 bytes: 310e
* SEQ 12 bytes: 300c
* OID 3 bytes: 0603 550407
* Printable string "Paris": 1305 5061726973
* SET 14 bytes: 310e
* SEQ 12 bytes: 300c
* OID 3 bytes: 0603 55040a
* Printable string "Gandi": 1305 47616e6469
* SET 32 bytes: 3120
* SEQ 30 bytes: 301e
* OID 3 bytes: 0603 550403
* Printable string "Gandi Standard SSL CA 2": 1317 47616e6469205374616e646172642053534c2043412032
* SEQ 30 bytes (validity): 301e
* TIME "161011000000Z": 170d 3136313031313030303030305a
* TIME "191011235959Z": 170d 3139313031313233353935395a
* SEQ 0x5b/91 bytes (subject): 305b //I did not decode this
* 3121301f060355040b1318446f6d61696e20436f
* 6e74726f6c2056616c6964617465643121301f06
* 0355040b1318506f73697469766553534c204d75
* 6c74692d446f6d61696e31133011060355040313
* 0a6b65726e656c2e6f7267
* SEQ 0x01a2/418 bytes (subjectPublicKeyInfo): 308201a2
* SEQ 13 bytes (algorithm): 300d
* OID 9 bytes: 0609 2a864886f70d010101 (OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1)
* NULL: 0500
* BITSTRING 0x018f/399 bytes (publicKey): 0382018f
* ????: 00
* //after the zero byte, it appears key itself uses DER encoding:
* SEQ 0x018a/394 bytes: 3082018a
* INTEGER 0x0181/385 bytes (modulus): 02820181
* 00b1ab2fc727a3bef76780c9349bf3
* ...24 more blocks of 15 bytes each...
* 90e895291c6bc8693b65
* INTEGER 3 bytes (exponent): 0203 010001
* [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0x3] 0x01e5 bytes (X509v3 extensions): a38201e5
* SEQ 0x01e1 bytes: 308201e1
* ...
* Certificate is a sequence of three elements:
* tbsCertificate (SEQ)
* signatureAlgorithm (AlgorithmIdentifier)
* signatureValue (BIT STRING)
*
* In turn, tbsCertificate is a sequence of:
* version
* serialNumber
* signatureAlgo (AlgorithmIdentifier)
* issuer (Name, has complex structure)
* validity (Validity, SEQ of two Times)
* subject (Name)
* subjectPublicKeyInfo (SEQ)
* ...
*
* subjectPublicKeyInfo is a sequence of:
* algorithm (AlgorithmIdentifier)
* publicKey (BIT STRING)
*
* We need Certificate.tbsCertificate.subjectPublicKeyInfo.publicKey
*
* Example of an ECDSA key:
* SEQ 0x59 bytes (subjectPublicKeyInfo): 3059
* SEQ 0x13 bytes (algorithm): 3013
* OID 7 bytes: 0607 2a8648ce3d0201 (OID_ECDSA_KEY_ALG 42.134.72.206.61.2.1)
* OID 8 bytes: 0608 2a8648ce3d030107 (OID_EC_prime256v1 42.134.72.206.61.3.1.7)
* BITSTRING 0x42 bytes (publicKey): 0342
* 0004 53af f65e 50cc 7959 7e29 0171 c75c
* 7335 e07d f45b 9750 b797 3a38 aebb 2ac6
* 8329 2748 e77e 41cb d482 2ce6 05ec a058
* f3ab d561 2f4c d845 9ad3 7252 e3de bd3b
* 9012
*/
uint8_t *end = der + len;
/* enter "Certificate" item: [der, end) will be only Cert */
der = enter_der_item(der, &end);
/* enter "tbsCertificate" item: [der, end) will be only tbsCert */
der = enter_der_item(der, &end);
tls: fix to handle X.509 v1 certificates correctly The syntax of public key certificates can be found in RFC 5280 section 4.1. The relevant part of the syntax is the following: TBSCertificate ::= SEQUENCE { version [0] EXPLICIT Version DEFAULT v1, serialNumber CertificateSerialNumber, ... remaining fields omitted ... } The version field has a default value of v1. RFC 5280 section 4.1.2.1 says the following: If only basic fields are present, the version SHOULD be 1 (the value is omitted from the certificate as the default value); however, the version MAY be 2 or 3. To help detect if the version field is present or not, the type of the version field has an explicit tag of [0]. Due to this tag, if the version field is present, its encoding will have an identifier octet that is distinct from that of the serialNumber field. ITU-T X.690 specifies how a value of such a type should be encoded with DER. There is a PDF of X.690 freely available from ITU-T. X.690 section 8.1.2 specifies the format of identifier octets which is the first component of every encoded value. Identifier octets encode the tag of a type. Bits 8 and 7 encode the tag class. Bit 6 will be 0 if the encoding is primitive and 1 if the encoding is constructed. Bits 5 to 1 encode the tag number. X.690 section 8.14 specifies what the identifier octet should be for explicitly tagged types. Section 8.14.3 says if implicit tagging is not used, then the encoding shall be constructed. The version field uses explicit tagging and not implicit tagging, so its encoding will be constructed. This means bit 6 of the identifier octet should be 1. X.690 section 8.14 and Annex A provide examples. Note from their examples that the notation for tags could look like [APPLICATION 2] where both the tag class and tag number are given. For this example, the tag class is 1 (application) and the tag number is 2. For notation like [0] where the tag class is omitted and only the tag number is given, the tag class will be context-specific. Putting this all together, the identifier octet for the DER encoding of the version field should have a tag class of 2 (context-specific), bit 6 as 1 (constructed), and a tag number of 0. Signed-off-by: Ivan Abrea <ivan@algosolutions.com> Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
2018-06-24 20:04:57 +02:00
/*
* Skip version field only if it is present. For a v1 certificate, the
* version field won't be present since v1 is the default value for the
* version field and fields with default values should be omitted (see
* RFC 5280 sections 4.1 and 4.1.2.1). If the version field is present
* it will have a tag class of 2 (context-specific), bit 6 as 1
* (constructed), and a tag number of 0 (see ITU-T X.690 sections 8.1.2
* and 8.14).
*/
/* bits 7-6: 10 */
/* bit 5: 1 */
/* bits 4-0: 00000 */
if (der[0] == 0xa0)
tls: fix to handle X.509 v1 certificates correctly The syntax of public key certificates can be found in RFC 5280 section 4.1. The relevant part of the syntax is the following: TBSCertificate ::= SEQUENCE { version [0] EXPLICIT Version DEFAULT v1, serialNumber CertificateSerialNumber, ... remaining fields omitted ... } The version field has a default value of v1. RFC 5280 section 4.1.2.1 says the following: If only basic fields are present, the version SHOULD be 1 (the value is omitted from the certificate as the default value); however, the version MAY be 2 or 3. To help detect if the version field is present or not, the type of the version field has an explicit tag of [0]. Due to this tag, if the version field is present, its encoding will have an identifier octet that is distinct from that of the serialNumber field. ITU-T X.690 specifies how a value of such a type should be encoded with DER. There is a PDF of X.690 freely available from ITU-T. X.690 section 8.1.2 specifies the format of identifier octets which is the first component of every encoded value. Identifier octets encode the tag of a type. Bits 8 and 7 encode the tag class. Bit 6 will be 0 if the encoding is primitive and 1 if the encoding is constructed. Bits 5 to 1 encode the tag number. X.690 section 8.14 specifies what the identifier octet should be for explicitly tagged types. Section 8.14.3 says if implicit tagging is not used, then the encoding shall be constructed. The version field uses explicit tagging and not implicit tagging, so its encoding will be constructed. This means bit 6 of the identifier octet should be 1. X.690 section 8.14 and Annex A provide examples. Note from their examples that the notation for tags could look like [APPLICATION 2] where both the tag class and tag number are given. For this example, the tag class is 1 (application) and the tag number is 2. For notation like [0] where the tag class is omitted and only the tag number is given, the tag class will be context-specific. Putting this all together, the identifier octet for the DER encoding of the version field should have a tag class of 2 (context-specific), bit 6 as 1 (constructed), and a tag number of 0. Signed-off-by: Ivan Abrea <ivan@algosolutions.com> Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
2018-06-24 20:04:57 +02:00
der = skip_der_item(der, end); /* version */
/* skip up to subjectPublicKeyInfo */
der = skip_der_item(der, end); /* serialNumber */
der = skip_der_item(der, end); /* signatureAlgo */
der = skip_der_item(der, end); /* issuer */
der = skip_der_item(der, end); /* validity */
der = skip_der_item(der, end); /* subject */
/* enter subjectPublicKeyInfo */
der = enter_der_item(der, &end);
{ /* check subjectPublicKeyInfo.algorithm */
static const uint8_t OID_RSA_KEY_ALG[] ALIGN1 = {
0x30,0x0d, // SEQ 13 bytes
0x06,0x09, 0x2a,0x86,0x48,0x86,0xf7,0x0d,0x01,0x01,0x01, //OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1
//0x05,0x00, // NULL
};
static const uint8_t OID_ECDSA_KEY_ALG[] ALIGN1 = {
0x30,0x13, // SEQ 0x13 bytes
0x06,0x07, 0x2a,0x86,0x48,0xce,0x3d,0x02,0x01, //OID_ECDSA_KEY_ALG 42.134.72.206.61.2.1
//allow any curve code for now...
// 0x06,0x08, 0x2a,0x86,0x48,0xce,0x3d,0x03,0x01,0x07, //OID_EC_prime256v1 42.134.72.206.61.3.1.7
//RFC 3279:
//42.134.72.206.61.3 is ellipticCurve
//42.134.72.206.61.3.0 is c-TwoCurve
//42.134.72.206.61.3.1 is primeCurve
//42.134.72.206.61.3.1.7 is curve_secp256r1
};
if (memcmp(der, OID_RSA_KEY_ALG, sizeof(OID_RSA_KEY_ALG)) == 0) {
dbg("RSA key\n");
tls->flags |= GOT_CERT_RSA_KEY_ALG;
} else
if (memcmp(der, OID_ECDSA_KEY_ALG, sizeof(OID_ECDSA_KEY_ALG)) == 0) {
dbg("ECDSA key\n");
//UNUSED: tls->flags |= GOT_CERT_ECDSA_KEY_ALG;
} else
libbb: reduce the overhead of single parameter bb_error_msg() calls Back in 2007, commit 0c97c9d43707 ("'simple' error message functions by Loic Grenie") introduced bb_simple_perror_msg() to allow for a lower overhead call to bb_perror_msg() when only a string was being printed with no parameters. This saves space for some CPU architectures because it avoids the overhead of a call to a variadic function. However there has never been a simple version of bb_error_msg(), and since 2007 many new calls to bb_perror_msg() have been added that only take a single parameter and so could have been using bb_simple_perror_message(). This changeset introduces 'simple' versions of bb_info_msg(), bb_error_msg(), bb_error_msg_and_die(), bb_herror_msg() and bb_herror_msg_and_die(), and replaces all calls that only take a single parameter, or use something like ("%s", arg), with calls to the corresponding 'simple' version. Since it is likely that single parameter calls to the variadic functions may be accidentally reintroduced in the future a new debugging config option WARN_SIMPLE_MSG has been introduced. This uses some macro magic which will cause any such calls to generate a warning, but this is turned off by default to avoid use of the unpleasant macros in normal circumstances. This is a large changeset due to the number of calls that have been replaced. The only files that contain changes other than simple substitution of function calls are libbb.h, libbb/herror_msg.c, libbb/verror_msg.c and libbb/xfuncs_printf.c. In miscutils/devfsd.c, networking/udhcp/common.h and util-linux/mdev.c additonal macros have been added for logging so that single parameter and multiple parameter logging variants exist. The amount of space saved varies considerably by architecture, and was found to be as follows (for 'defconfig' using GCC 7.4): Arm: -92 bytes MIPS: -52 bytes PPC: -1836 bytes x86_64: -938 bytes Note that for the MIPS architecture only an exception had to be made disabling the 'simple' calls for 'udhcp' (in networking/udhcp/common.h) because it made these files larger on MIPS. Signed-off-by: James Byrne <james.byrne@origamienergy.com> Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
2019-07-02 11:35:03 +02:00
bb_simple_error_msg_and_die("not RSA or ECDSA cert");
}
if (tls->flags & GOT_CERT_RSA_KEY_ALG) {
/* parse RSA key: */
//based on getAsnRsaPubKey(), pkcs1ParsePrivBin() is also of note
/* skip subjectPublicKeyInfo.algorithm */
der = skip_der_item(der, end);
/* enter subjectPublicKeyInfo.publicKey */
//die_if_not_this_der_type(der, end, 0x03); /* must be BITSTRING */
der = enter_der_item(der, &end);
dbg("key bytes:%u, first:0x%02x\n", (int)(end - der), der[0]);
if (end - der < 14)
xfunc_die();
/* example format:
* ignore bits: 00
* SEQ 0x018a/394 bytes: 3082018a
* INTEGER 0x0181/385 bytes (modulus): 02820181 XX...XXX
* INTEGER 3 bytes (exponent): 0203 010001
*/
if (*der != 0) /* "ignore bits", should be 0 */
xfunc_die();
der++;
der = enter_der_item(der, &end); /* enter SEQ */
/* memset(tls->hsd->server_rsa_pub_key, 0, sizeof(tls->hsd->server_rsa_pub_key)); - already is */
der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.N, der, end); /* modulus */
der = skip_der_item(der, end);
der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.e, der, end); /* exponent */
tls->hsd->server_rsa_pub_key.size = pstm_unsigned_bin_size(&tls->hsd->server_rsa_pub_key.N);
dbg("server_rsa_pub_key.size:%d\n", tls->hsd->server_rsa_pub_key.size);
}
/* else: ECDSA key. It is not used for generating encryption keys,
* it is used only to sign the EC public key (which comes in ServerKey message).
* Since we do not verify cert validity, verifying signature on EC public key
* wouldn't add any security. Thus, we do nothing here.
*/
}
/*
* TLS Handshake routines
*/
static int tls_xread_handshake_block(tls_state_t *tls, int min_len)
{
struct record_hdr *xhdr;
int len = tls_xread_record(tls, "handshake record");
xhdr = (void*)tls->inbuf;
if (len < min_len
|| xhdr->type != RECORD_TYPE_HANDSHAKE
) {
bad_record_die(tls, "handshake record", len);
}
dbg("got HANDSHAKE\n");
return len;
}
static ALWAYS_INLINE void fill_handshake_record_hdr(void *buf, unsigned type, unsigned len)
{
struct handshake_hdr {
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
} *h = buf;
len -= 4;
h->type = type;
h->len24_hi = len >> 16;
h->len24_mid = len >> 8;
h->len24_lo = len & 0xff;
}
static void send_client_hello_and_alloc_hsd(tls_state_t *tls, const char *sni)
{
#define NUM_CIPHERS (0 \
+ 4 * ENABLE_FEATURE_TLS_SHA1 \
+ ALLOW_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 \
+ ALLOW_ECDHE_RSA_WITH_AES_128_CBC_SHA256 \
+ ALLOW_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 \
+ ALLOW_ECDHE_RSA_WITH_AES_128_GCM_SHA256 \
+ 2 * ENABLE_FEATURE_TLS_SHA1 \
+ ALLOW_RSA_WITH_AES_128_CBC_SHA256 \
+ ALLOW_RSA_WITH_AES_256_CBC_SHA256 \
+ ALLOW_RSA_WITH_AES_128_GCM_SHA256 \
+ ALLOW_RSA_NULL_SHA256 \
)
static const uint8_t ciphers[] = {
0x00,2 * (1 + NUM_CIPHERS), //len16_be
0x00,0xFF, //not a cipher - TLS_EMPTY_RENEGOTIATION_INFO_SCSV
/* ^^^^^^ RFC 5746 Renegotiation Indication Extension - some servers will refuse to work with us otherwise */
#if ENABLE_FEATURE_TLS_SHA1
0xC0,0x09, // 1 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA - ok: wget https://is.gd/
0xC0,0x0A, // 2 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA - ok: wget https://is.gd/
0xC0,0x13, // 3 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-SHA
0xC0,0x14, // 4 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA - ok: openssl s_server ... -cipher ECDHE-RSA-AES256-SHA (might fail with older openssl)
// 0xC0,0x18, // TLS_ECDH_anon_WITH_AES_128_CBC_SHA
// 0xC0,0x19, // TLS_ECDH_anon_WITH_AES_256_CBC_SHA
#endif
#if ALLOW_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
0xC0,0x23, // 5 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 - ok: wget https://is.gd/
#endif
// 0xC0,0x24, // TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
#if ALLOW_ECDHE_RSA_WITH_AES_128_CBC_SHA256
0xC0,0x27, // 6 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-SHA256
#endif
// 0xC0,0x28, // TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
#if ALLOW_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
0xC0,0x2B, // 7 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 - ok: wget https://is.gd/
#endif
// 0xC0,0x2C, // TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 - wget https://is.gd/: "TLS error from peer (alert code 20): bad MAC"
//TODO: GCM_SHA384 ciphers can be supported, only need sha384-based PRF?
#if ALLOW_ECDHE_RSA_WITH_AES_128_GCM_SHA256
0xC0,0x2F, // 8 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-GCM-SHA256
#endif
// 0xC0,0x30, // TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 - openssl s_server ... -cipher ECDHE-RSA-AES256-GCM-SHA384: "decryption failed or bad record mac"
//possibly these too:
#if ENABLE_FEATURE_TLS_SHA1
// 0xC0,0x35, // TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA
// 0xC0,0x36, // TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA
#endif
// 0xC0,0x37, // TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256
// 0xC0,0x38, // TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
#if ENABLE_FEATURE_TLS_SHA1
0x00,0x2F, // 9 TLS_RSA_WITH_AES_128_CBC_SHA - ok: openssl s_server ... -cipher AES128-SHA
0x00,0x35, //10 TLS_RSA_WITH_AES_256_CBC_SHA - ok: openssl s_server ... -cipher AES256-SHA
#endif
#if ALLOW_RSA_WITH_AES_128_CBC_SHA256
0x00,0x3C, //11 TLS_RSA_WITH_AES_128_CBC_SHA256 - ok: openssl s_server ... -cipher AES128-SHA256
#endif
#if ALLOW_RSA_WITH_AES_256_CBC_SHA256
0x00,0x3D, //12 TLS_RSA_WITH_AES_256_CBC_SHA256 - ok: openssl s_server ... -cipher AES256-SHA256
#endif
#if ALLOW_RSA_WITH_AES_128_GCM_SHA256
0x00,0x9C, //13 TLS_RSA_WITH_AES_128_GCM_SHA256 - ok: openssl s_server ... -cipher AES128-GCM-SHA256
#endif
// 0x00,0x9D, // TLS_RSA_WITH_AES_256_GCM_SHA384 - openssl s_server ... -cipher AES256-GCM-SHA384: "decryption failed or bad record mac"
#if ALLOW_RSA_NULL_SHA256
0x00,0x3B, // TLS_RSA_WITH_NULL_SHA256
#endif
0x01,0x00, //not a cipher - comprtypes_len, comprtype
};
struct client_hello {
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
uint8_t proto_maj, proto_min;
uint8_t rand32[32];
uint8_t session_id_len;
/* uint8_t session_id[]; */
uint8_t cipherid_len16_hi, cipherid_len16_lo;
uint8_t cipherid[2 * (1 + NUM_CIPHERS)]; /* actually variable */
uint8_t comprtypes_len;
uint8_t comprtypes[1]; /* actually variable */
};
// https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml
static const uint8_t extensions[] = {
// is.gd responds with "handshake failure" to our hello if there's no supported_groups
0x00,0x0a, //extension_type: "supported_groups"
0x00,2 * (1 + ALLOW_CURVE_P256 + ALLOW_CURVE_X25519), //ext len
0x00,2 * (0 + ALLOW_CURVE_P256 + ALLOW_CURVE_X25519), //list len
#if ALLOW_CURVE_P256
0x00,0x17, //curve_secp256r1 (aka P256, aka prime256v1)
#endif
//0x00,0x18, //curve_secp384r1
//0x00,0x19, //curve_secp521r1
#if ALLOW_CURVE_X25519
0x00,0x1d, //curve_x25519 (RFC 7748)
#endif
//0x00,0x1e, //curve_x448 (RFC 7748)
//0x00,0x0b,0x00,0x04,0x03,0x00,0x01,0x02, //extension_type: "ec_point_formats"
//0x00,0x16,0x00,0x00, //extension_type: "encrpypt-then-mac"
//0x00,0x17,0x00,0x00, //extension_type: "extended_master"
//0x00,0x23,0x00,0x00, //extension_type: "session_ticket"
// kojipkgs.fedoraproject.org responds with alert code 80 ("internal error")
// to our hello without signature_algorithms.
// It is satisfied with just 0x04,0x01.
0x00,0x0d, //extension_type: "signature_algorithms" (RFC5246 section 7.4.1.4.1):
#define SIGALGS (3 + 3 * ENABLE_FEATURE_TLS_SHA1)
0x00,2 * (1 + SIGALGS), //ext len
0x00,2 * (0 + SIGALGS), //list len
//Format: two bytes
// byte 1: 0:none,1:md5,2:sha1,3:sha224,4:sha256,5:sha384,6:sha512
// byte 2: 1:rsa,2:dsa,3:ecdsa
// (note that TLS 1.3 changes this, see RFC8446 section 4.2.3)
#if ENABLE_FEATURE_TLS_SHA1
0x02,0x01, //sha1 + rsa
0x02,0x02, //sha1 + dsa
0x02,0x03, //sha1 + ecdsa
#endif
0x04,0x01, //sha256 + rsa - kojipkgs.fedoraproject.org wants this
0x04,0x02, //sha256 + dsa
0x04,0x03, //sha256 + ecdsa
// GNU Wget 1.18 to cdn.kernel.org sends these extensions:
// 0055
// 0005 0005 0100000000 - status_request
// 0000 0013 0011 00 000e 63646e 2e 6b65726e656c 2e 6f7267 - server_name
// ff01 0001 00 - renegotiation_info
// 0023 0000 - session_ticket
// 000a 0008 0006001700180019 - supported_groups
// 000b 0002 0100 - ec_point_formats
// 000d 0016 0014 0401 0403 0501 0503 0601 0603 0301 0303 0201 0203 - signature_algorithms
// wolfssl library sends this option, RFC 7627 (closes a security weakness, some servers may require it. TODO?):
// 0017 0000 - extended master secret
};
struct client_hello *record;
uint8_t *ptr;
int len;
int ext_len;
int sni_len = sni ? strnlen(sni, 127 - 5) : 0;
ext_len = 0;
ext_len += sizeof(extensions);
if (sni_len)
ext_len += 9 + sni_len;
/* +2 is for "len of all extensions" 2-byte field */
len = sizeof(*record) + 2 + ext_len;
record = tls_get_zeroed_outbuf(tls, len);
fill_handshake_record_hdr(record, HANDSHAKE_CLIENT_HELLO, len);
record->proto_maj = TLS_MAJ; /* the "requested" version of the protocol, */
record->proto_min = TLS_MIN; /* can be higher than one in record headers */
tls_get_random(record->rand32, sizeof(record->rand32));
if (TLS_DEBUG_FIXED_SECRETS)
memset(record->rand32, 0x11, sizeof(record->rand32));
/* record->session_id_len = 0; - already is */
BUILD_BUG_ON(sizeof(ciphers) != 2 * (1 + 1 + NUM_CIPHERS + 1));
memcpy(&record->cipherid_len16_hi, ciphers, sizeof(ciphers));
ptr = (void*)(record + 1);
*ptr++ = ext_len >> 8;
*ptr++ = ext_len;
if (sni_len) {
//ptr[0] = 0; //
//ptr[1] = 0; //extension_type
//ptr[2] = 0; //
ptr[3] = sni_len + 5; //list len
//ptr[4] = 0; //
ptr[5] = sni_len + 3; //len of 1st SNI
//ptr[6] = 0; //name type
//ptr[7] = 0; //
ptr[8] = sni_len; //name len
ptr = mempcpy(&ptr[9], sni, sni_len);
}
memcpy(ptr, extensions, sizeof(extensions));
tls->hsd = xzalloc(sizeof(*tls->hsd));
/* HANDSHAKE HASH: ^^^ + len if need to save saved_client_hello */
memcpy(tls->hsd->client_and_server_rand32, record->rand32, sizeof(record->rand32));
/* HANDSHAKE HASH:
tls->hsd->saved_client_hello_size = len;
memcpy(tls->hsd->saved_client_hello, record, len);
*/
dbg(">> CLIENT_HELLO\n");
/* Can hash immediately only if we know which MAC hash to use.
* So far we do know: it's sha256:
*/
sha256_begin(&tls->hsd->handshake_hash_ctx);
xwrite_and_update_handshake_hash(tls, len);
/* if this would become infeasible: save tls->hsd->saved_client_hello,
* use "xwrite_handshake_record(tls, len)" here,
* and hash saved_client_hello later.
*/
}
static void get_server_hello(tls_state_t *tls)
{
struct server_hello {
struct record_hdr xhdr;
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
uint8_t proto_maj, proto_min;
uint8_t rand32[32]; /* first 4 bytes are unix time in BE format */
uint8_t session_id_len;
uint8_t session_id[32];
uint8_t cipherid_hi, cipherid_lo;
uint8_t comprtype;
/* extensions may follow, but only those which client offered in its Hello */
};
struct server_hello *hp;
uint8_t *cipherid;
uint8_t cipherid1;
int len, len24;
len = tls_xread_handshake_block(tls, 74 - 32);
hp = (void*)tls->inbuf;
// 74 bytes:
// 02 000046 03|03 58|78|cf|c1 50|a5|49|ee|7e|29|48|71|fe|97|fa|e8|2d|19|87|72|90|84|9d|37|a3|f0|cb|6f|5f|e3|3c|2f |20 |d8|1a|78|96|52|d6|91|01|24|b3|d6|5b|b7|d0|6c|b3|e1|78|4e|3c|95|de|74|a0|ba|eb|a7|3a|ff|bd|a2|bf |00|9c |00|
//SvHl len=70 maj.min unixtime^^^ 28randbytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^ slen sid32bytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ cipSel comprSel
if (hp->type != HANDSHAKE_SERVER_HELLO
|| hp->len24_hi != 0
|| hp->len24_mid != 0
/* hp->len24_lo checked later */
|| hp->proto_maj != TLS_MAJ
|| hp->proto_min != TLS_MIN
) {
bad_record_die(tls, "'server hello'", len);
}
cipherid = &hp->cipherid_hi;
len24 = hp->len24_lo;
if (hp->session_id_len != 32) {
if (hp->session_id_len != 0)
bad_record_die(tls, "'server hello'", len);
// session_id_len == 0: no session id
// "The server
// may return an empty session_id to indicate that the session will
// not be cached and therefore cannot be resumed."
cipherid -= 32;
len24 += 32; /* what len would be if session id would be present */
}
if (len24 < 70)
bad_record_die(tls, "'server hello'", len);
dbg("<< SERVER_HELLO\n");
memcpy(tls->hsd->client_and_server_rand32 + 32, hp->rand32, sizeof(hp->rand32));
/* Set up encryption params based on selected cipher */
#if 0
0xC0,0x09, // 1 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA - ok: wget https://is.gd/
0xC0,0x0A, // 2 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA - ok: wget https://is.gd/
0xC0,0x13, // 3 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-SHA
0xC0,0x14, // 4 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA - ok: openssl s_server ... -cipher ECDHE-RSA-AES256-SHA (might fail with older openssl)
// 0xC0,0x18, // TLS_ECDH_anon_WITH_AES_128_CBC_SHA
// 0xC0,0x19, // TLS_ECDH_anon_WITH_AES_256_CBC_SHA
0xC0,0x23, // 5 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 - ok: wget https://is.gd/
// 0xC0,0x24, // TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
0xC0,0x27, // 6 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-SHA256
// 0xC0,0x28, // TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
0xC0,0x2B, // 7 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 - ok: wget https://is.gd/
// 0xC0,0x2C, // TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 - wget https://is.gd/: "TLS error from peer (alert code 20): bad MAC"
0xC0,0x2F, // 8 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-GCM-SHA256
// 0xC0,0x30, // TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 - openssl s_server ... -cipher ECDHE-RSA-AES256-GCM-SHA384: "decryption failed or bad record mac"
//possibly these too:
// 0xC0,0x35, // TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA
// 0xC0,0x36, // TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA
// 0xC0,0x37, // TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256
// 0xC0,0x38, // TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
0x00,0x2F, // 9 TLS_RSA_WITH_AES_128_CBC_SHA - ok: openssl s_server ... -cipher AES128-SHA
0x00,0x35, //10 TLS_RSA_WITH_AES_256_CBC_SHA - ok: openssl s_server ... -cipher AES256-SHA
0x00,0x3C, //11 TLS_RSA_WITH_AES_128_CBC_SHA256 - ok: openssl s_server ... -cipher AES128-SHA256
0x00,0x3D, //12 TLS_RSA_WITH_AES_256_CBC_SHA256 - ok: openssl s_server ... -cipher AES256-SHA256
0x00,0x9C, //13 TLS_RSA_WITH_AES_128_GCM_SHA256 - ok: openssl s_server ... -cipher AES128-GCM-SHA256
// 0x00,0x9D, // TLS_RSA_WITH_AES_256_GCM_SHA384 - openssl s_server ... -cipher AES256-GCM-SHA384: "decryption failed or bad record mac"
0x00,0x3B, // TLS_RSA_WITH_NULL_SHA256
#endif
cipherid1 = cipherid[1];
tls->cipher_id = 0x100 * cipherid[0] + cipherid1;
tls->key_size = AES256_KEYSIZE;
tls->MAC_size = SHA256_OUTSIZE;
/*tls->IV_size = 0; - already is */
if (cipherid[0] == 0xC0) {
/* All C0xx are ECDHE */
tls->flags |= NEED_EC_KEY;
if (cipherid1 & 1) {
/* Odd numbered C0xx use AES128 (even ones use AES256) */
tls->key_size = AES128_KEYSIZE;
}
if (ENABLE_FEATURE_TLS_SHA1 && cipherid1 <= 0x19) {
tls->MAC_size = SHA1_OUTSIZE;
} else
if (cipherid1 >= 0x2B && cipherid1 <= 0x30) {
/* C02B,2C,2F,30 are AES-GCM */
tls->flags |= ENCRYPTION_AESGCM;
tls->MAC_size = 0;
tls->IV_size = 4;
}
} else {
/* All 00xx are RSA */
if ((ENABLE_FEATURE_TLS_SHA1 && cipherid1 == 0x2F)
|| cipherid1 == 0x3C
|| cipherid1 == 0x9C
) {
tls->key_size = AES128_KEYSIZE;
}
if (ENABLE_FEATURE_TLS_SHA1 && cipherid1 <= 0x35) {
tls->MAC_size = SHA1_OUTSIZE;
} else
if (cipherid1 == 0x9C /*|| cipherid1 == 0x9D*/) {
/* 009C,9D are AES-GCM */
tls->flags |= ENCRYPTION_AESGCM;
tls->MAC_size = 0;
tls->IV_size = 4;
}
}
dbg("server chose cipher %04x\n", tls->cipher_id);
dbg("key_size:%u MAC_size:%u IV_size:%u\n", tls->key_size, tls->MAC_size, tls->IV_size);
/* Handshake hash eventually destined to FINISHED record
* is sha256 regardless of cipher
* (at least for all ciphers defined by RFC5246).
* It's not sha1 for AES_128_CBC_SHA - only MAC is sha1, not this hash.
*/
/* HANDSHAKE HASH:
sha256_begin(&tls->hsd->handshake_hash_ctx);
hash_handshake(tls, ">> client hello hash:%s",
tls->hsd->saved_client_hello, tls->hsd->saved_client_hello_size
);
hash_handshake(tls, "<< server hello hash:%s",
tls->inbuf + RECHDR_LEN, len
);
*/
}
static void get_server_cert(tls_state_t *tls)
{
struct record_hdr *xhdr;
uint8_t *certbuf;
int len, len1;
len = tls_xread_handshake_block(tls, 10);
xhdr = (void*)tls->inbuf;
certbuf = (void*)(xhdr + 1);
if (certbuf[0] != HANDSHAKE_CERTIFICATE)
bad_record_die(tls, "certificate", len);
dbg("<< CERTIFICATE\n");
// 4392 bytes:
// 0b 00|11|24 00|11|21 00|05|b0 30|82|05|ac|30|82|04|94|a0|03|02|01|02|02|11|00|9f|85|bf|66|4b|0c|dd|af|ca|50|86|79|50|1b|2b|e4|30|0d...
//Cert len=4388 ChainLen CertLen^ DER encoded X509 starts here. openssl x509 -in FILE -inform DER -noout -text
len1 = get24be(certbuf + 1);
if (len1 > len - 4) tls_error_die(tls);
len = len1;
len1 = get24be(certbuf + 4);
if (len1 > len - 3) tls_error_die(tls);
len = len1;
len1 = get24be(certbuf + 7);
if (len1 > len - 3) tls_error_die(tls);
len = len1;
if (len)
find_key_in_der_cert(tls, certbuf + 10, len);
}
/* On input, len is known to be >= 4.
* The record is known to be SERVER_KEY_EXCHANGE.
*/
static void process_server_key(tls_state_t *tls, int len)
{
struct record_hdr *xhdr;
uint8_t *keybuf;
int len1;
uint32_t t32;
xhdr = (void*)tls->inbuf;
keybuf = (void*)(xhdr + 1);
//seen from is.gd: it selects curve_x25519:
// 0c 00006e //SERVER_KEY_EXCHANGE, len
// 03 //curve_type: named curve
// 001d //curve_x25519
//server-chosen EC point, and then signed_params
// (RFC 8422: "A hash of the params, with the signature
// appropriate to that hash applied. The private key corresponding
// to the certified public key in the server's Certificate message is
// used for signing.")
//follow. Format unclear/guessed:
// 20 //eccPubKeyLen
// 25511923d73b70dd2f60e66ba2f3fda31a9c25170963c7a3a972e481dbb2835d //eccPubKey (32bytes)
// 0203 //hashSigAlg: 2:SHA1 (4:SHA256 5:SHA384 6:SHA512), 3:ECDSA (1:RSA)
// 0046 //len (16bit)
// 30 44 //SEQ, len
// 02 20 //INTEGER, len
// 2e18e7c2a9badd0a70cd3059a6ab114539b9f5163568911147386cd77ed7c412 //32bytes
//this item ^^^^^ is sometimes 33 bytes (with all container sizes also +1)
// 02 20 //INTEGER, len
// 64523d6216cb94c43c9b20e377d8c52c55be6703fd6730a155930c705eaf3af6 //32bytes
//same about this item ^^^^^
//seen from ftp.openbsd.org
//(which only accepts ECDHE-RSA-AESnnn-GCM-SHAnnn and ECDHE-RSA-CHACHA20-POLY1305 ciphers):
// 0c 000228 //SERVER_KEY_EXCHANGE, len
// 03 //curve_type: named curve
// 001d //curve_x25519
// 20 //eccPubKeyLen
// eef7a15c43b71a4c7eaa48a39369399cc4332e569ec90a83274cc92596705c1a //eccPubKey
// 0401 //hashSigAlg: 4:SHA256, 1:RSA
// 0200 //len
// //0x200 bytes follow
/* Get and verify length */
len1 = get24be(keybuf + 1);
if (len1 > len - 4) tls_error_die(tls);
len = len1;
if (len < (1+2+1+32)) tls_error_die(tls);
keybuf += 4;
#if BB_BIG_ENDIAN
# define _0x03001741 0x03001741
# define _0x03001d20 0x03001d20
#else
# define _0x03001741 0x41170003
# define _0x03001d20 0x201d0003
#endif
move_from_unaligned32(t32, keybuf);
keybuf += 4;
switch (t32) {
case _0x03001d20: //curve_x25519
dbg("got x25519 eccPubKey\n");
tls->flags |= GOT_EC_CURVE_X25519;
memcpy(tls->hsd->ecc_pub_key32, keybuf, 32);
break;
case _0x03001741: //curve_secp256r1 (aka P256)
dbg("got P256 eccPubKey\n");
/* P256 point can be transmitted odd- or even-compressed
* (first byte is 3 or 2) or uncompressed (4).
*/
if (*keybuf++ != 4)
bb_simple_error_msg_and_die("compressed EC points not supported");
memcpy(tls->hsd->ecc_pub_key32, keybuf, 2 * 32);
break;
default:
bb_error_msg_and_die("elliptic curve is not x25519 or P256: 0x%08x", t32);
}
tls->flags |= GOT_EC_KEY;
}
static void send_empty_client_cert(tls_state_t *tls)
{
struct client_empty_cert {
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
uint8_t cert_chain_len24_hi, cert_chain_len24_mid, cert_chain_len24_lo;
};
struct client_empty_cert *record;
record = tls_get_zeroed_outbuf(tls, sizeof(*record));
//fill_handshake_record_hdr(record, HANDSHAKE_CERTIFICATE, sizeof(*record));
//record->cert_chain_len24_hi = 0;
//record->cert_chain_len24_mid = 0;
//record->cert_chain_len24_lo = 0;
// same as above:
record->type = HANDSHAKE_CERTIFICATE;
record->len24_lo = 3;
dbg(">> CERTIFICATE\n");
xwrite_and_update_handshake_hash(tls, sizeof(*record));
}
static void send_client_key_exchange(tls_state_t *tls)
{
struct client_key_exchange {
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
uint8_t key[2 + 4 * 1024]; // size??
};
//FIXME: better size estimate
struct client_key_exchange *record = tls_get_zeroed_outbuf(tls, sizeof(*record));
uint8_t premaster[RSA_PREMASTER_SIZE > EC_CURVE_KEYSIZE ? RSA_PREMASTER_SIZE : EC_CURVE_KEYSIZE];
int premaster_size;
int len;
if (!(tls->flags & NEED_EC_KEY)) {
/* RSA */
if (!(tls->flags & GOT_CERT_RSA_KEY_ALG))
bb_simple_error_msg_and_die("server cert is not RSA");
tls_get_random(premaster, RSA_PREMASTER_SIZE);
if (TLS_DEBUG_FIXED_SECRETS)
memset(premaster, 0x44, RSA_PREMASTER_SIZE);
// RFC 5246
// "Note: The version number in the PreMasterSecret is the version
// offered by the client in the ClientHello.client_version, not the
// version negotiated for the connection."
premaster[0] = TLS_MAJ;
premaster[1] = TLS_MIN;
dump_hex("premaster:%s\n", premaster, sizeof(premaster));
len = psRsaEncryptPub(/*pool:*/ NULL,
/* psRsaKey_t* */ &tls->hsd->server_rsa_pub_key,
premaster, /*inlen:*/ RSA_PREMASTER_SIZE,
record->key + 2, sizeof(record->key) - 2,
data_param_ignored
);
/* keylen16 exists for RSA (in TLS, not in SSL), but not for some other key types */
record->key[0] = len >> 8;
record->key[1] = len & 0xff;
len += 2;
premaster_size = RSA_PREMASTER_SIZE;
} else {
/* ECDHE */
if (!(tls->flags & GOT_EC_KEY))
bb_simple_error_msg_and_die("server did not provide EC key");
if (tls->flags & GOT_EC_CURVE_X25519) {
/* ECDHE, curve x25519 */
dbg("computing x25519_premaster\n");
curve_x25519_compute_pubkey_and_premaster(
record->key + 1, premaster,
/*point:*/ tls->hsd->ecc_pub_key32
);
len = CURVE25519_KEYSIZE;
//record->key[0] = len;
//len++;
//premaster_size = CURVE25519_KEYSIZE;
} else {
/* ECDHE, curve P256 */
dbg("computing P256_premaster\n");
curve_P256_compute_pubkey_and_premaster(
record->key + 2, premaster,
/*point:*/ tls->hsd->ecc_pub_key32
);
record->key[1] = 4; /* "uncompressed point" */
len = 1 + P256_KEYSIZE * 2;
}
record->key[0] = len;
len++;
premaster_size = P256_KEYSIZE; // = CURVE25519_KEYSIZE = 32
}
record->type = HANDSHAKE_CLIENT_KEY_EXCHANGE;
/* record->len24_hi = 0; - already is */
record->len24_mid = len >> 8;
record->len24_lo = len & 0xff;
len += 4;
dbg(">> CLIENT_KEY_EXCHANGE\n");
xwrite_and_update_handshake_hash(tls, len);
// RFC 5246
// For all key exchange methods, the same algorithm is used to convert
// the pre_master_secret into the master_secret. The pre_master_secret
// should be deleted from memory once the master_secret has been
// computed.
// master_secret = PRF(pre_master_secret, "master secret",
// ClientHello.random + ServerHello.random)
// [0..47];
// The master secret is always exactly 48 bytes in length. The length
// of the premaster secret will vary depending on key exchange method.
prf_hmac_sha256(/*tls,*/
tls->hsd->master_secret, sizeof(tls->hsd->master_secret),
premaster, premaster_size,
"master secret",
tls->hsd->client_and_server_rand32, sizeof(tls->hsd->client_and_server_rand32)
);
dump_hex("master secret:%s\n", tls->hsd->master_secret, sizeof(tls->hsd->master_secret));
// RFC 5246
// 6.3. Key Calculation
//
// The Record Protocol requires an algorithm to generate keys required
// by the current connection state (see Appendix A.6) from the security
// parameters provided by the handshake protocol.
//
// The master secret is expanded into a sequence of secure bytes, which
// is then split to a client write MAC key, a server write MAC key, a
// client write encryption key, and a server write encryption key. Each
// of these is generated from the byte sequence in that order. Unused
// values are empty. Some AEAD ciphers may additionally require a
// client write IV and a server write IV (see Section 6.2.3.3).
//
// When keys and MAC keys are generated, the master secret is used as an
// entropy source.
//
// To generate the key material, compute
//
// key_block = PRF(SecurityParameters.master_secret,
// "key expansion",
// SecurityParameters.server_random +
// SecurityParameters.client_random);
//
// until enough output has been generated. Then, the key_block is
// partitioned as follows:
//
// client_write_MAC_key[SecurityParameters.mac_key_length]
// server_write_MAC_key[SecurityParameters.mac_key_length]
// client_write_key[SecurityParameters.enc_key_length]
// server_write_key[SecurityParameters.enc_key_length]
// client_write_IV[SecurityParameters.fixed_iv_length]
// server_write_IV[SecurityParameters.fixed_iv_length]
{
uint8_t tmp64[64];
/* make "server_rand32 + client_rand32" */
memcpy(&tmp64[0] , &tls->hsd->client_and_server_rand32[32], 32);
memcpy(&tmp64[32], &tls->hsd->client_and_server_rand32[0] , 32);
prf_hmac_sha256(/*tls,*/
tls->client_write_MAC_key, 2 * (tls->MAC_size + tls->key_size + tls->IV_size),
// also fills:
// server_write_MAC_key[]
// client_write_key[]
// server_write_key[]
// client_write_IV[]
// server_write_IV[]
tls->hsd->master_secret, sizeof(tls->hsd->master_secret),
"key expansion",
tmp64, 64
);
tls->client_write_key = tls->client_write_MAC_key + (2 * tls->MAC_size);
tls->server_write_key = tls->client_write_key + tls->key_size;
tls->client_write_IV = tls->server_write_key + tls->key_size;
tls->server_write_IV = tls->client_write_IV + tls->IV_size;
dump_hex("client_write_MAC_key:%s\n",
tls->client_write_MAC_key, tls->MAC_size
);
dump_hex("client_write_key:%s\n",
tls->client_write_key, tls->key_size
);
dump_hex("client_write_IV:%s\n",
tls->client_write_IV, tls->IV_size
);
aes_setkey(&tls->aes_decrypt, tls->server_write_key, tls->key_size);
aes_setkey(&tls->aes_encrypt, tls->client_write_key, tls->key_size);
{
uint8_t iv[AES_BLOCK_SIZE];
memset(iv, 0, AES_BLOCK_SIZE);
aes_encrypt_one_block(&tls->aes_encrypt, iv, tls->H);
}
}
}
static const uint8_t rec_CHANGE_CIPHER_SPEC[] ALIGN1 = {
RECORD_TYPE_CHANGE_CIPHER_SPEC, TLS_MAJ, TLS_MIN, 00, 01,
01
};
static void send_change_cipher_spec(tls_state_t *tls)
{
dbg(">> CHANGE_CIPHER_SPEC\n");
xwrite(tls->ofd, rec_CHANGE_CIPHER_SPEC, sizeof(rec_CHANGE_CIPHER_SPEC));
}
// 7.4.9. Finished
// A Finished message is always sent immediately after a change
// cipher spec message to verify that the key exchange and
// authentication processes were successful. It is essential that a
// change cipher spec message be received between the other handshake
// messages and the Finished message.
//...
// The Finished message is the first one protected with the just
// negotiated algorithms, keys, and secrets. Recipients of Finished
// messages MUST verify that the contents are correct. Once a side
// has sent its Finished message and received and validated the
// Finished message from its peer, it may begin to send and receive
// application data over the connection.
//...
// struct {
// opaque verify_data[verify_data_length];
// } Finished;
//
// verify_data
// PRF(master_secret, finished_label, Hash(handshake_messages))
// [0..verify_data_length-1];
//
// finished_label
// For Finished messages sent by the client, the string
// "client finished". For Finished messages sent by the server,
// the string "server finished".
//
// Hash denotes a Hash of the handshake messages. For the PRF
// defined in Section 5, the Hash MUST be the Hash used as the basis
// for the PRF. Any cipher suite which defines a different PRF MUST
// also define the Hash to use in the Finished computation.
//
// In previous versions of TLS, the verify_data was always 12 octets
// long. In the current version of TLS, it depends on the cipher
// suite. Any cipher suite which does not explicitly specify
// verify_data_length has a verify_data_length equal to 12. This
// includes all existing cipher suites.
static void send_client_finished(tls_state_t *tls)
{
struct finished {
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
uint8_t prf_result[12];
};
struct finished *record = tls_get_outbuf(tls, sizeof(*record));
uint8_t handshake_hash[TLS_MAX_MAC_SIZE];
unsigned len;
fill_handshake_record_hdr(record, HANDSHAKE_FINISHED, sizeof(*record));
len = sha_end(&tls->hsd->handshake_hash_ctx, handshake_hash);
prf_hmac_sha256(/*tls,*/
record->prf_result, sizeof(record->prf_result),
tls->hsd->master_secret, sizeof(tls->hsd->master_secret),
"client finished",
handshake_hash, len
);
dump_hex("from secret: %s\n", tls->hsd->master_secret, sizeof(tls->hsd->master_secret));
dump_hex("from labelSeed: %s", "client finished", sizeof("client finished")-1);
dump_hex("%s\n", handshake_hash, sizeof(handshake_hash));
dump_hex("=> digest: %s\n", record->prf_result, sizeof(record->prf_result));
dbg(">> FINISHED\n");
xwrite_encrypted(tls, sizeof(*record), RECORD_TYPE_HANDSHAKE);
}
void FAST_FUNC tls_handshake(tls_state_t *tls, const char *sni)
{
// Client RFC 5246 Server
// (*) - optional messages, not always sent
//
// ClientHello ------->
// ServerHello
// Certificate*
// ServerKeyExchange*
// CertificateRequest*
// <------- ServerHelloDone
// Certificate*
// ClientKeyExchange
// CertificateVerify*
// [ChangeCipherSpec]
// Finished ------->
// [ChangeCipherSpec]
// <------- Finished
// Application Data <------> Application Data
int len;
int got_cert_req;
send_client_hello_and_alloc_hsd(tls, sni);
get_server_hello(tls);
// RFC 5246
// The server MUST send a Certificate message whenever the agreed-
// upon key exchange method uses certificates for authentication
// (this includes all key exchange methods defined in this document
// except DH_anon). This message will always immediately follow the
// ServerHello message.
//
// IOW: in practice, Certificate *always* follows.
// (for example, kernel.org does not even accept DH_anon cipher id)
get_server_cert(tls);
len = tls_xread_handshake_block(tls, 4);
if (tls->inbuf[RECHDR_LEN] == HANDSHAKE_SERVER_KEY_EXCHANGE) {
// 459 bytes:
// 0c 00|01|c7 03|00|17|41|04|87|94|2e|2f|68|d0|c9|f4|97|a8|2d|ef|ed|67|ea|c6|f3|b3|56|47|5d|27|b6|bd|ee|70|25|30|5e|b0|8e|f6|21|5a...
//SvKey len=455^
// with TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: 461 bytes:
// 0c 00|01|c9 03|00|17|41|04|cd|9b|b4|29|1f|f6|b0|c2|84|82|7f|29|6a|47|4e|ec|87|0b|c1|9c|69|e1|f8|c6|d0|53|e9|27|90|a5|c8|02|15|75...
//
// RFC 8422 5.4. Server Key Exchange
// This message is sent when using the ECDHE_ECDSA, ECDHE_RSA, and
// ECDH_anon key exchange algorithms.
// This message is used to convey the server's ephemeral ECDH public key
// (and the corresponding elliptic curve domain parameters) to the
// client.
dbg("<< SERVER_KEY_EXCHANGE len:%u\n", len);
dump_raw_in("<< %s\n", tls->inbuf, RECHDR_LEN + len);
if (tls->flags & NEED_EC_KEY)
process_server_key(tls, len);
// read next handshake block
len = tls_xread_handshake_block(tls, 4);
}
got_cert_req = (tls->inbuf[RECHDR_LEN] == HANDSHAKE_CERTIFICATE_REQUEST);
if (got_cert_req) {
dbg("<< CERTIFICATE_REQUEST\n");
// RFC 5246: "If no suitable certificate is available,
// the client MUST send a certificate message containing no
// certificates. That is, the certificate_list structure has a
// length of zero. ...
// Client certificates are sent using the Certificate structure
// defined in Section 7.4.2."
// (i.e. the same format as server certs)
/*send_empty_client_cert(tls); - WRONG (breaks handshake hash calc) */
/* need to hash _all_ server replies first, up to ServerHelloDone */
len = tls_xread_handshake_block(tls, 4);
}
if (tls->inbuf[RECHDR_LEN] != HANDSHAKE_SERVER_HELLO_DONE) {
bad_record_die(tls, "'server hello done'", len);
}
// 0e 000000 (len:0)
dbg("<< SERVER_HELLO_DONE\n");
if (got_cert_req)
send_empty_client_cert(tls);
send_client_key_exchange(tls);
send_change_cipher_spec(tls);
/* from now on we should send encrypted */
/* tls->write_seq64_be = 0; - already is */
tls->flags |= ENCRYPT_ON_WRITE;
send_client_finished(tls);
/* Get CHANGE_CIPHER_SPEC */
len = tls_xread_record(tls, "switch to encrypted traffic");
if (len != 1 || memcmp(tls->inbuf, rec_CHANGE_CIPHER_SPEC, 6) != 0)
bad_record_die(tls, "switch to encrypted traffic", len);
dbg("<< CHANGE_CIPHER_SPEC\n");
if (ALLOW_RSA_NULL_SHA256
&& tls->cipher_id == TLS_RSA_WITH_NULL_SHA256
) {
tls->min_encrypted_len_on_read = tls->MAC_size;
} else
if (!(tls->flags & ENCRYPTION_AESGCM)) {
unsigned mac_blocks = (unsigned)(TLS_MAC_SIZE(tls) + AES_BLOCK_SIZE-1) / AES_BLOCK_SIZE;
/* all incoming packets now should be encrypted and have
* at least IV + (MAC padded to blocksize):
*/
tls->min_encrypted_len_on_read = AES_BLOCK_SIZE + (mac_blocks * AES_BLOCK_SIZE);
} else {
tls->min_encrypted_len_on_read = 8 + AES_BLOCK_SIZE;
}
dbg("min_encrypted_len_on_read: %u\n", tls->min_encrypted_len_on_read);
/* Get (encrypted) FINISHED from the server */
len = tls_xread_record(tls, "'server finished'");
if (len < 4 || tls->inbuf[RECHDR_LEN] != HANDSHAKE_FINISHED)
bad_record_die(tls, "'server finished'", len);
dbg("<< FINISHED\n");
/* application data can be sent/received */
/* free handshake data */
psRsaKey_clear(&tls->hsd->server_rsa_pub_key);
// if (PARANOIA)
// memset(tls->hsd, 0, tls->hsd->hsd_size);
free(tls->hsd);
tls->hsd = NULL;
}
static void tls_xwrite(tls_state_t *tls, int len)
{
dbg(">> DATA\n");
xwrite_encrypted(tls, len, RECORD_TYPE_APPLICATION_DATA);
}
// To run a test server using openssl:
// openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
// openssl s_server -key key.pem -cert server.pem -debug -tls1_2
//
// Unencryped SHA256 example:
// openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
// openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -cipher NULL
// openssl s_client -connect 127.0.0.1:4433 -debug -tls1_2 -cipher NULL-SHA256
void FAST_FUNC tls_run_copy_loop(tls_state_t *tls, unsigned flags)
{
int inbuf_size;
const int INBUF_STEP = 4 * 1024;
struct pollfd pfds[2];
#if 0
// Debug aid for comparing P256 implementations.
// Enable this, set SP_DEBUG and FIXED_SECRET to 1,
// and add
// tls_run_copy_loop(NULL, 0);
// e.g. at the very beginning of wget_main()
//
{
uint8_t ecc_pub_key32[2 * 32];
uint8_t pubkey2x32[2 * 32];
uint8_t premaster32[32];
//Fixed input key:
// memset(ecc_pub_key32, 0xee, sizeof(ecc_pub_key32));
//Fixed 000000000000000000000000000000000000ab000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
// memset(ecc_pub_key32, 0x00, sizeof(ecc_pub_key32));
// ecc_pub_key32[18] = 0xab;
//Random key:
// tls_get_random(ecc_pub_key32, sizeof(ecc_pub_key32));
//Biased random (almost all zeros or almost all ones):
srand(time(NULL) ^ getpid());
if (rand() & 1)
memset(ecc_pub_key32, 0x00, sizeof(ecc_pub_key32));
else
memset(ecc_pub_key32, 0xff, sizeof(ecc_pub_key32));
ecc_pub_key32[rand() & 0x3f] = rand();
xmove_fd(xopen("p256.OLD", O_WRONLY | O_CREAT | O_TRUNC), 2);
curve_P256_compute_pubkey_and_premaster(
pubkey2x32, premaster32,
/*point:*/ ecc_pub_key32
);
xmove_fd(xopen("p256.NEW", O_WRONLY | O_CREAT | O_TRUNC), 2);
curve_P256_compute_pubkey_and_premaster_NEW(
pubkey2x32, premaster32,
/*point:*/ ecc_pub_key32
);
exit(1);
}
#endif
pfds[0].fd = STDIN_FILENO;
pfds[0].events = POLLIN;
pfds[1].fd = tls->ifd;
pfds[1].events = POLLIN;
inbuf_size = INBUF_STEP;
for (;;) {
int nread;
if (safe_poll(pfds, 2, -1) < 0)
libbb: reduce the overhead of single parameter bb_error_msg() calls Back in 2007, commit 0c97c9d43707 ("'simple' error message functions by Loic Grenie") introduced bb_simple_perror_msg() to allow for a lower overhead call to bb_perror_msg() when only a string was being printed with no parameters. This saves space for some CPU architectures because it avoids the overhead of a call to a variadic function. However there has never been a simple version of bb_error_msg(), and since 2007 many new calls to bb_perror_msg() have been added that only take a single parameter and so could have been using bb_simple_perror_message(). This changeset introduces 'simple' versions of bb_info_msg(), bb_error_msg(), bb_error_msg_and_die(), bb_herror_msg() and bb_herror_msg_and_die(), and replaces all calls that only take a single parameter, or use something like ("%s", arg), with calls to the corresponding 'simple' version. Since it is likely that single parameter calls to the variadic functions may be accidentally reintroduced in the future a new debugging config option WARN_SIMPLE_MSG has been introduced. This uses some macro magic which will cause any such calls to generate a warning, but this is turned off by default to avoid use of the unpleasant macros in normal circumstances. This is a large changeset due to the number of calls that have been replaced. The only files that contain changes other than simple substitution of function calls are libbb.h, libbb/herror_msg.c, libbb/verror_msg.c and libbb/xfuncs_printf.c. In miscutils/devfsd.c, networking/udhcp/common.h and util-linux/mdev.c additonal macros have been added for logging so that single parameter and multiple parameter logging variants exist. The amount of space saved varies considerably by architecture, and was found to be as follows (for 'defconfig' using GCC 7.4): Arm: -92 bytes MIPS: -52 bytes PPC: -1836 bytes x86_64: -938 bytes Note that for the MIPS architecture only an exception had to be made disabling the 'simple' calls for 'udhcp' (in networking/udhcp/common.h) because it made these files larger on MIPS. Signed-off-by: James Byrne <james.byrne@origamienergy.com> Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
2019-07-02 11:35:03 +02:00
bb_simple_perror_msg_and_die("poll");
if (pfds[0].revents) {
void *buf;
dbg("STDIN HAS DATA\n");
buf = tls_get_outbuf(tls, inbuf_size);
nread = safe_read(STDIN_FILENO, buf, inbuf_size);
if (nread < 1) {
/* We'd want to do this: */
/* Close outgoing half-connection so they get EOF,
* but leave incoming alone so we can see response
*/
//shutdown(tls->ofd, SHUT_WR);
/* But TLS has no way to encode this,
* doubt it's ok to do it "raw"
*/
pfds[0].fd = -1;
tls_free_outbuf(tls); /* mem usage optimization */
if (flags & TLSLOOP_EXIT_ON_LOCAL_EOF)
break;
} else {
if (nread == inbuf_size) {
/* TLS has per record overhead, if input comes fast,
* read, encrypt and send bigger chunks
*/
inbuf_size += INBUF_STEP;
if (inbuf_size > TLS_MAX_OUTBUF)
inbuf_size = TLS_MAX_OUTBUF;
}
tls_xwrite(tls, nread);
}
}
if (pfds[1].revents) {
dbg("NETWORK HAS DATA\n");
read_record:
nread = tls_xread_record(tls, "encrypted data");
if (nread < 1) {
/* TLS protocol has no real concept of one-sided shutdowns:
* if we get "TLS EOF" from the peer, writes will fail too
*/
//pfds[1].fd = -1;
//close(STDOUT_FILENO);
//tls_free_inbuf(tls); /* mem usage optimization */
//continue;
break;
}
if (tls->inbuf[0] != RECORD_TYPE_APPLICATION_DATA)
bad_record_die(tls, "encrypted data", nread);
xwrite(STDOUT_FILENO, tls->inbuf + RECHDR_LEN, nread);
/* We may already have a complete next record buffered,
* can process it without network reads (and possible blocking)
*/
if (tls_has_buffered_record(tls))
goto read_record;
}
}
}