2010-05-30 07:05:18 +05:30
|
|
|
|
|
|
|
XZ Embedded
|
|
|
|
===========
|
|
|
|
|
|
|
|
XZ Embedded is a relatively small, limited implementation of the .xz
|
|
|
|
file format. Currently only decoding is implemented.
|
|
|
|
|
|
|
|
XZ Embedded was written for use in the Linux kernel, but the code can
|
|
|
|
be easily used in other environments too, including regular userspace
|
2013-02-27 21:11:36 +05:30
|
|
|
applications. See userspace/xzminidec.c for an example program.
|
2010-05-30 07:05:18 +05:30
|
|
|
|
|
|
|
This README contains information that is useful only when the copy
|
|
|
|
of XZ Embedded isn't part of the Linux kernel tree. You should also
|
|
|
|
read linux/Documentation/xz.txt even if you aren't using XZ Embedded
|
|
|
|
as part of Linux; information in that file is not repeated in this
|
|
|
|
README.
|
|
|
|
|
|
|
|
Compiling the Linux kernel module
|
|
|
|
|
|
|
|
The xz_dec module depends on crc32 module, so make sure that you have
|
|
|
|
it enabled (CONFIG_CRC32).
|
|
|
|
|
|
|
|
Building the xz_dec and xz_dec_test modules without support for BCJ
|
|
|
|
filters:
|
|
|
|
|
|
|
|
cd linux/lib/xz
|
|
|
|
make -C /path/to/kernel/source \
|
|
|
|
KCPPFLAGS=-I"$(pwd)/../../include" M="$(pwd)" \
|
|
|
|
CONFIG_XZ_DEC=m CONFIG_XZ_DEC_TEST=m
|
|
|
|
|
|
|
|
Building the xz_dec and xz_dec_test modules with support for BCJ
|
|
|
|
filters:
|
|
|
|
|
|
|
|
cd linux/lib/xz
|
|
|
|
make -C /path/to/kernel/source \
|
|
|
|
KCPPFLAGS=-I"$(pwd)/../../include" M="$(pwd)" \
|
|
|
|
CONFIG_XZ_DEC=m CONFIG_XZ_DEC_TEST=m CONFIG_XZ_DEC_BCJ=y \
|
|
|
|
CONFIG_XZ_DEC_X86=y CONFIG_XZ_DEC_POWERPC=y \
|
|
|
|
CONFIG_XZ_DEC_IA64=y CONFIG_XZ_DEC_ARM=y \
|
|
|
|
CONFIG_XZ_DEC_ARMTHUMB=y CONFIG_XZ_DEC_SPARC=y
|
|
|
|
|
|
|
|
If you want only one or a few of the BCJ filters, omit the appropriate
|
|
|
|
variables. CONFIG_XZ_DEC_BCJ=y is always required to build the support
|
|
|
|
code shared between all BCJ filters.
|
|
|
|
|
|
|
|
Most people don't need the xz_dec_test module. You can skip building
|
|
|
|
it by omitting CONFIG_XZ_DEC_TEST=m from the make command line.
|
|
|
|
|
|
|
|
Compiler requirements
|
|
|
|
|
|
|
|
XZ Embedded should compile as either GNU-C89 (used in the Linux
|
|
|
|
kernel) or with any C99 compiler. Getting the code to compile with
|
|
|
|
non-GNU C89 compiler or a C++ compiler should be quite easy as
|
|
|
|
long as there is a data type for unsigned 64-bit integer (or the
|
|
|
|
code is modified not to support large files, which needs some more
|
|
|
|
care than just using 32-bit integer instead of 64-bit).
|
|
|
|
|
2013-02-27 20:56:03 +05:30
|
|
|
If you use GCC, try to use a recent version. For example, on x86-32,
|
2010-05-30 07:05:18 +05:30
|
|
|
xz_dec_lzma2.c compiled with GCC 3.3.6 is 15-25 % slower than when
|
|
|
|
compiled with GCC 4.3.3.
|
|
|
|
|
|
|
|
Embedding into userspace applications
|
|
|
|
|
|
|
|
To embed the XZ decoder, copy the following files into a single
|
|
|
|
directory in your source code tree:
|
|
|
|
|
|
|
|
linux/include/linux/xz.h
|
|
|
|
linux/lib/xz/xz_crc32.c
|
|
|
|
linux/lib/xz/xz_dec_lzma2.c
|
|
|
|
linux/lib/xz/xz_dec_stream.c
|
|
|
|
linux/lib/xz/xz_lzma2.h
|
|
|
|
linux/lib/xz/xz_private.h
|
|
|
|
linux/lib/xz/xz_stream.h
|
|
|
|
userspace/xz_config.h
|
|
|
|
|
|
|
|
Alternatively, xz.h may be placed into a different directory but then
|
|
|
|
that directory must be in the compiler include path when compiling
|
|
|
|
the .c files.
|
|
|
|
|
|
|
|
Your code should use only the functions declared in xz.h. The rest of
|
|
|
|
the .h files are meant only for internal use in XZ Embedded.
|
|
|
|
|
|
|
|
You may want to modify xz_config.h to be more suitable for your build
|
|
|
|
environment. Probably you should at least skim through it even if the
|
|
|
|
default file works as is.
|
|
|
|
|
|
|
|
BCJ filter support
|
|
|
|
|
|
|
|
If you want support for one or more BCJ filters, you need to copy also
|
|
|
|
linux/lib/xz/xz_dec_bcj.c into your application, and use appropriate
|
|
|
|
#defines in xz_config.h or in compiler flags. You don't need these
|
|
|
|
#defines in the code that just uses XZ Embedded via xz.h, but having
|
|
|
|
them always #defined doesn't hurt either.
|
|
|
|
|
|
|
|
#define Instruction set BCJ filter endianness
|
2013-02-27 20:56:03 +05:30
|
|
|
XZ_DEC_X86 x86-32 or x86-64 Little endian only
|
2010-05-30 07:05:18 +05:30
|
|
|
XZ_DEC_POWERPC PowerPC Big endian only
|
|
|
|
XZ_DEC_IA64 Itanium (IA-64) Big or little endian
|
|
|
|
XZ_DEC_ARM ARM Little endian only
|
|
|
|
XZ_DEC_ARMTHUMB ARM-Thumb Little endian only
|
|
|
|
XZ_DEC_SPARC SPARC Big or little endian
|
|
|
|
|
|
|
|
While some architectures are (partially) bi-endian, the endianness
|
|
|
|
setting doesn't change the endianness of the instructions on all
|
|
|
|
architectures. That's why Itanium and SPARC filters work for both big
|
|
|
|
and little endian executables (Itanium has little endian instructions
|
|
|
|
and SPARC has big endian instructions).
|
|
|
|
|
|
|
|
There currently is no filter for little endian PowerPC or big endian
|
|
|
|
ARM or ARM-Thumb. Implementing filters for them can be considered if
|
|
|
|
there is a need for such filters in real-world applications.
|
|
|
|
|
|
|
|
Notes about shared libraries
|
|
|
|
|
|
|
|
If you are including XZ Embedded into a shared library, you very
|
|
|
|
probably should rename the xz_* functions to prevent symbol
|
|
|
|
conflicts in case your library is linked against some other library
|
|
|
|
or application that also has XZ Embedded in it (which may even be
|
|
|
|
a different version of XZ Embedded). TODO: Provide an easy way
|
|
|
|
to do this.
|
|
|
|
|
|
|
|
Please don't create a shared library of XZ Embedded itself unless
|
|
|
|
it is fine to rebuild everything depending on that shared library
|
|
|
|
everytime you upgrade to a newer version of XZ Embedded. There are
|
|
|
|
no API or ABI stability guarantees between different versions of
|
|
|
|
XZ Embedded.
|
|
|
|
|
|
|
|
Specifying the calling convention
|
|
|
|
|
|
|
|
XZ_FUNC macro was included to support declaring functions with __init
|
|
|
|
in Linux. Outside Linux, it can be used to specify the calling
|
|
|
|
convention on systems that support multiple calling conventions.
|
|
|
|
For example, on Windows, you may make all functions use the stdcall
|
|
|
|
calling convention by defining XZ_FUNC=__stdcall when building and
|
|
|
|
using the functions from XZ Embedded.
|