busybox/docs/keep_data_small.txt

183 lines
5.8 KiB
Plaintext
Raw Normal View History

Keeping data small
When many applets are compiled into busybox, all rw data and
bss for each applet are concatenated. Including those from libc,
2007-03-20 16:38:39 +05:30
if static busybox is built. When busybox is started, _all_ this data
is allocated, not just that one part for selected applet.
What "allocated" exactly means, depends on arch.
2007-03-20 16:38:39 +05:30
On NOMMU it's probably bites the most, actually using real
RAM for rwdata and bss. On i386, bss is lazily allocated
by COWed zero pages. Not sure about rwdata - also COW?
2007-03-20 16:38:39 +05:30
In order to keep busybox NOMMU and small-mem systems friendly
we should avoid large global data in our applets, and should
minimize usage of libc functions which implicitly use
2007-03-20 16:38:39 +05:30
such structures.
Small experiment to measure "parasitic" bbox memory consumption:
here we start 1000 "busybox sleep 10" in parallel.
busybox binary is practically allyesconfig static one,
built against uclibc. Run on x86-64 machine with 64-bit kernel:
bash-3.2# nmeter '%t %c %m %p %[pn]'
23:17:28 .......... 168M 0 147
23:17:29 .......... 168M 0 147
23:17:30 U......... 168M 1 147
23:17:31 SU........ 181M 244 391
23:17:32 SSSSUUU... 223M 757 1147
23:17:33 UUU....... 223M 0 1147
23:17:34 U......... 223M 1 1147
23:17:35 .......... 223M 0 1147
23:17:36 .......... 223M 0 1147
23:17:37 S......... 223M 0 1147
23:17:38 .......... 223M 1 1147
23:17:39 .......... 223M 0 1147
23:17:40 .......... 223M 0 1147
23:17:41 .......... 210M 0 906
23:17:42 .......... 168M 1 147
23:17:43 .......... 168M 0 147
This requires 55M of memory. Thus 1 trivial busybox applet
2007-03-20 16:38:39 +05:30
takes 55k of memory on 64-bit x86 kernel.
On 32-bit kernel we need ~26k per applet.
(Data from NOMMU arches are sought. Provide 'size busybox' output too)
Example 1
One example how to reduce global data usage is in
archival/libunarchive/decompress_unzip.c:
/* This is somewhat complex-looking arrangement, but it allows
* to place decompressor state either in bss or in
* malloc'ed space simply by changing #defines below.
* Sizes on i386:
* text data bss dec hex
* 5256 0 108 5364 14f4 - bss
* 4915 0 0 4915 1333 - malloc
*/
#define STATE_IN_BSS 0
#define STATE_IN_MALLOC 1
(see the rest of the file to get the idea)
This example completely eliminates globals in that module.
Required memory is allocated in inflate_gunzip() [its main module]
and then passed down to all subroutines which need to access 'globals'
as a parameter.
Example 2
In case you don't want to pass this additional parameter everywhere,
take a look at archival/gzip.c. Here all global data is replaced by
single global pointer (ptr_to_globals) to allocated storage.
In order to not duplicate ptr_to_globals in every applet, you can
reuse single common one. It is defined in libbb/messages.c
as struct globals *const ptr_to_globals, but the struct globals is
NOT defined in libbb.h. You first define your own struct:
struct globals { int a; char buf[1000]; };
and then declare that ptr_to_globals is a pointer to it:
#define G (*ptr_to_globals)
ptr_to_globals is declared as constant pointer.
This helps gcc understand that it won't change, resulting in noticeably
smaller code. In order to assign it, use PTR_TO_GLOBALS macro:
PTR_TO_GLOBALS = xzalloc(sizeof(G));
Typically it is done in <applet>_main().
Now you can reference "globals" by G.a, G.buf and so on, in any function.
bb_common_bufsiz1
There is one big common buffer in bss - bb_common_bufsiz1. It is a much
earlier mechanism to reduce bss usage. Each applet can use it for
its needs. Library functions are prohibited from using it.
'G.' trick can be done using bb_common_bufsiz1 instead of malloced buffer:
#define G (*(struct globals*)&bb_common_bufsiz1)
2007-03-20 16:38:39 +05:30
Be careful, though, and use it only if globals fit into bb_common_bufsiz1.
Since bb_common_bufsiz1 is BUFSIZ + 1 bytes long and BUFSIZ can change
from one libc to another, you have to add compile-time check for it:
if(sizeof(struct globals) > sizeof(bb_common_bufsiz1))
BUG_<applet>_globals_too_big();
Drawbacks
You have to initialize it by hand. xzalloc() can be helpful in clearing
allocated storage to 0, but anything more must be done by hand.
All global variables are prefixed by 'G.' now. If this makes code
less readable, use #defines:
#define dev_fd (G.dev_fd)
#define sector (G.sector)
Word of caution
2007-03-16 16:44:38 +05:30
If applet doesn't use much of global data, converting it to use
one of above methods is not worth the resulting code obfuscation.
If you have less than ~300 bytes of global data - don't bother.
2007-03-19 21:34:11 +05:30
gcc's data alignment problem
The following attribute added in vi.c:
static int tabstop;
static struct termios term_orig __attribute__ ((aligned (4)));
static struct termios term_vi __attribute__ ((aligned (4)));
2007-03-20 16:38:39 +05:30
reduces bss size by 32 bytes, because gcc sometimes aligns structures to
2007-03-19 21:34:11 +05:30
ridiculously large values. asm output diff for above example:
tabstop:
.zero 4
.section .bss.term_orig,"aw",@nobits
- .align 32
+ .align 4
.type term_orig, @object
.size term_orig, 60
term_orig:
.zero 60
.section .bss.term_vi,"aw",@nobits
- .align 32
+ .align 4
.type term_vi, @object
.size term_vi, 60
gcc doesn't seem to have options for altering this behaviour.
2007-03-20 16:38:39 +05:30
2007-03-20 21:23:11 +05:30
gcc 3.4.3 and 4.1.1 tested:
char c = 1;
2007-03-20 16:38:39 +05:30
// gcc aligns to 32 bytes if sizeof(struct) >= 32
2007-03-20 21:23:11 +05:30
struct {
int a,b,c,d;
int i1,i2,i3;
} s28 = { 1 }; // struct will be aligned to 4 bytes
struct {
int a,b,c,d;
int i1,i2,i3,i4;
} s32 = { 1 }; // struct will be aligned to 32 bytes
2007-03-20 16:38:39 +05:30
// same for arrays
char vc31[31] = { 1 }; // unaligned
char vc32[32] = { 1 }; // aligned to 32 bytes
2007-03-20 21:23:11 +05:30
-fpack-struct=1 reduces alignment of s28 to 1 (but probably will break layout
of many libc structs) but s32 and vc32 are still aligned to 32 bytes.