zcip: simplify code

function                                             old     new   delta
zcip_main                                           1411    1263    -148

Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
This commit is contained in:
Denys Vlasenko 2015-08-04 03:27:56 +02:00
parent 64ed5f0d3c
commit 16aa7a73c4

View File

@ -56,26 +56,26 @@ struct arp_packet {
} PACKED; } PACKED;
enum { enum {
/* 169.254.0.0 */ /* 169.254.0.0 */
LINKLOCAL_ADDR = 0xa9fe0000, LINKLOCAL_ADDR = 0xa9fe0000,
/* protocol timeout parameters, specified in seconds */ /* 0-1 seconds before sending 1st probe */
PROBE_WAIT = 1, PROBE_WAIT = 1,
/* 1-2 seconds between probes */
PROBE_MIN = 1, PROBE_MIN = 1,
PROBE_MAX = 2, PROBE_MAX = 2,
PROBE_NUM = 3, PROBE_NUM = 3, /* total probes to send */
MAX_CONFLICTS = 10, ANNOUNCE_INTERVAL = 2, /* 2 seconds between announces */
RATE_LIMIT_INTERVAL = 60, ANNOUNCE_NUM = 3, /* announces to send */
ANNOUNCE_WAIT = 2, /* if probe/announce sees a conflict, multiply RANDOM(NUM_CONFLICT) by... */
ANNOUNCE_NUM = 2, CONFLICT_MULTIPLIER = 2,
ANNOUNCE_INTERVAL = 2, /* if we monitor and see a conflict, how long is defend state? */
DEFEND_INTERVAL = 10 DEFEND_INTERVAL = 10
}; };
/* States during the configuration process. */ /* States during the configuration process. */
enum { enum {
PROBE = 0, PROBE = 0,
RATE_LIMIT_PROBE,
ANNOUNCE, ANNOUNCE,
MONITOR, MONITOR,
DEFEND DEFEND
@ -89,13 +89,11 @@ enum {
}; };
struct globals { struct globals {
struct sockaddr saddr; struct sockaddr iface_sockaddr;
struct ether_addr eth_addr; struct ether_addr eth_addr;
uint32_t localnet_ip; uint32_t localnet_ip;
} FIX_ALIASING; } FIX_ALIASING;
#define G (*(struct globals*)&bb_common_bufsiz1) #define G (*(struct globals*)&bb_common_bufsiz1)
#define saddr (G.saddr )
#define eth_addr (G.eth_addr)
#define INIT_G() do { } while (0) #define INIT_G() do { } while (0)
@ -113,17 +111,24 @@ static uint32_t pick_nip(void)
return htonl((G.localnet_ip + 0x0100) + tmp); return htonl((G.localnet_ip + 0x0100) + tmp);
} }
static const char *nip_to_a(uint32_t nip)
{
struct in_addr in;
in.s_addr = nip;
return inet_ntoa(in);
}
/** /**
* Broadcast an ARP packet. * Broadcast an ARP packet.
*/ */
static void arp( static void arp(
/* int op, - always ARPOP_REQUEST */ /* int op, - always ARPOP_REQUEST */
/* const struct ether_addr *source_eth, - always &eth_addr */ /* const struct ether_addr *source_eth, - always &G.eth_addr */
struct in_addr source_ip, uint32_t source_nip,
const struct ether_addr *target_eth, struct in_addr target_ip) const struct ether_addr *target_eth, uint32_t target_nip)
{ {
enum { op = ARPOP_REQUEST }; enum { op = ARPOP_REQUEST };
#define source_eth (&eth_addr) #define source_eth (&G.eth_addr)
struct arp_packet p; struct arp_packet p;
memset(&p, 0, sizeof(p)); memset(&p, 0, sizeof(p));
@ -140,18 +145,18 @@ static void arp(
p.arp.arp_pln = 4; p.arp.arp_pln = 4;
p.arp.arp_op = htons(op); p.arp.arp_op = htons(op);
memcpy(&p.arp.arp_sha, source_eth, ETH_ALEN); memcpy(&p.arp.arp_sha, source_eth, ETH_ALEN);
memcpy(&p.arp.arp_spa, &source_ip, sizeof(p.arp.arp_spa)); memcpy(&p.arp.arp_spa, &source_nip, 4);
memcpy(&p.arp.arp_tha, target_eth, ETH_ALEN); memcpy(&p.arp.arp_tha, target_eth, ETH_ALEN);
memcpy(&p.arp.arp_tpa, &target_ip, sizeof(p.arp.arp_tpa)); memcpy(&p.arp.arp_tpa, &target_nip, 4);
// send it // send it
// Even though sock_fd is already bound to saddr, just send() // Even though sock_fd is already bound to G.iface_sockaddr, just send()
// won't work, because "socket is not connected" // won't work, because "socket is not connected"
// (and connect() won't fix that, "operation not supported"). // (and connect() won't fix that, "operation not supported").
// Thus we sendto() to saddr. I wonder which sockaddr // Thus we sendto() to G.iface_sockaddr. I wonder which sockaddr
// (from bind() or from sendto()?) kernel actually uses // (from bind() or from sendto()?) kernel actually uses
// to determine iface to emit the packet from... // to determine iface to emit the packet from...
xsendto(sock_fd, &p, sizeof(p), &saddr, sizeof(saddr)); xsendto(sock_fd, &p, sizeof(p), &G.iface_sockaddr, sizeof(G.iface_sockaddr));
#undef source_eth #undef source_eth
} }
@ -159,18 +164,18 @@ static void arp(
* Run a script. * Run a script.
* argv[0]:intf argv[1]:script_name argv[2]:junk argv[3]:NULL * argv[0]:intf argv[1]:script_name argv[2]:junk argv[3]:NULL
*/ */
static int run(char *argv[3], const char *param, struct in_addr *ip) static int run(char *argv[3], const char *param, uint32_t nip)
{ {
int status; int status;
char *addr = addr; /* for gcc */ const char *addr = addr; /* for gcc */
const char *fmt = "%s %s %s" + 3; const char *fmt = "%s %s %s" + 3;
argv[2] = (char*)param; argv[2] = (char*)param;
VDBG("%s run %s %s\n", argv[0], argv[1], argv[2]); VDBG("%s run %s %s\n", argv[0], argv[1], argv[2]);
if (ip) { if (nip != 0) {
addr = inet_ntoa(*ip); addr = nip_to_a(nip);
xsetenv("ip", addr); xsetenv("ip", addr);
fmt -= 3; fmt -= 3;
} }
@ -207,26 +212,22 @@ int zcip_main(int argc UNUSED_PARAM, char **argv)
// ugly trick, but I want these zeroed in one go // ugly trick, but I want these zeroed in one go
struct { struct {
const struct in_addr null_ip;
const struct ether_addr null_addr; const struct ether_addr null_addr;
struct in_addr ip;
struct ifreq ifr; struct ifreq ifr;
uint32_t chosen_nip;
int timeout_ms; /* must be signed */ int timeout_ms; /* must be signed */
unsigned conflicts; unsigned conflicts;
unsigned nprobes; unsigned nprobes;
unsigned nclaims; unsigned nclaims;
int ready;
int verbose; int verbose;
} L; } L;
#define null_ip (L.null_ip )
#define null_addr (L.null_addr ) #define null_addr (L.null_addr )
#define ip (L.ip ) #define chosen_nip (L.chosen_nip)
#define ifr (L.ifr ) #define ifr (L.ifr )
#define timeout_ms (L.timeout_ms) #define timeout_ms (L.timeout_ms)
#define conflicts (L.conflicts ) #define conflicts (L.conflicts )
#define nprobes (L.nprobes ) #define nprobes (L.nprobes )
#define nclaims (L.nclaims ) #define nclaims (L.nclaims )
#define ready (L.ready )
#define verbose (L.verbose ) #define verbose (L.verbose )
memset(&L, 0, sizeof(L)); memset(&L, 0, sizeof(L));
@ -264,11 +265,13 @@ int zcip_main(int argc UNUSED_PARAM, char **argv)
G.localnet_ip = ntohl(net.s_addr); G.localnet_ip = ntohl(net.s_addr);
} }
if (opts & 4) { // -r n.n.n.n if (opts & 4) { // -r n.n.n.n
struct in_addr ip;
if (inet_aton(r_opt, &ip) == 0 if (inet_aton(r_opt, &ip) == 0
|| (ntohl(ip.s_addr) & IN_CLASSB_NET) != G.localnet_ip || (ntohl(ip.s_addr) & IN_CLASSB_NET) != G.localnet_ip
) { ) {
bb_error_msg_and_die("invalid link address"); bb_error_msg_and_die("invalid link address");
} }
chosen_nip = ip.s_addr;
} }
argv += optind - 1; argv += optind - 1;
@ -282,23 +285,23 @@ int zcip_main(int argc UNUSED_PARAM, char **argv)
xsetenv("interface", argv_intf); xsetenv("interface", argv_intf);
// initialize the interface (modprobe, ifup, etc) // initialize the interface (modprobe, ifup, etc)
if (run(argv, "init", NULL)) if (run(argv, "init", 0))
return EXIT_FAILURE; return EXIT_FAILURE;
// initialize saddr // initialize G.iface_sockaddr
// saddr is: { u16 sa_family; u8 sa_data[14]; } // G.iface_sockaddr is: { u16 sa_family; u8 sa_data[14]; }
//memset(&saddr, 0, sizeof(saddr)); //memset(&G.iface_sockaddr, 0, sizeof(G.iface_sockaddr));
//TODO: are we leaving sa_family == 0 (AF_UNSPEC)?! //TODO: are we leaving sa_family == 0 (AF_UNSPEC)?!
safe_strncpy(saddr.sa_data, argv_intf, sizeof(saddr.sa_data)); safe_strncpy(G.iface_sockaddr.sa_data, argv_intf, sizeof(G.iface_sockaddr.sa_data));
// bind to the interface's ARP socket // bind to the interface's ARP socket
xbind(sock_fd, &saddr, sizeof(saddr)); xbind(sock_fd, &G.iface_sockaddr, sizeof(G.iface_sockaddr));
// get the interface's ethernet address // get the interface's ethernet address
//memset(&ifr, 0, sizeof(ifr)); //memset(&ifr, 0, sizeof(ifr));
strncpy_IFNAMSIZ(ifr.ifr_name, argv_intf); strncpy_IFNAMSIZ(ifr.ifr_name, argv_intf);
xioctl(sock_fd, SIOCGIFHWADDR, &ifr); xioctl(sock_fd, SIOCGIFHWADDR, &ifr);
memcpy(&eth_addr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN); memcpy(&G.eth_addr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN);
// start with some stable ip address, either a function of // start with some stable ip address, either a function of
// the hardware address or else the last address we used. // the hardware address or else the last address we used.
@ -308,11 +311,11 @@ int zcip_main(int argc UNUSED_PARAM, char **argv)
// depending on when we detect conflicts. // depending on when we detect conflicts.
{ {
uint32_t t; uint32_t t;
move_from_unaligned32(t, ((char *)&eth_addr + 2)); move_from_unaligned32(t, ((char *)&G.eth_addr + 2));
srand(t); srand(t);
} }
if (ip.s_addr == 0) if (chosen_nip == 0)
ip.s_addr = pick_nip(); chosen_nip = pick_nip();
// FIXME cases to handle: // FIXME cases to handle:
// - zcip already running! // - zcip already running!
@ -331,7 +334,9 @@ int zcip_main(int argc UNUSED_PARAM, char **argv)
// - start with some address we want to try // - start with some address we want to try
// - short random delay // - short random delay
// - arp probes to see if another host uses it // - arp probes to see if another host uses it
// 00:04:e2:64:23:c2 > ff:ff:ff:ff:ff:ff, ARP (0x0806): arp who-has 169.254.194.171 tell 0.0.0.0
// - arp announcements that we're claiming it // - arp announcements that we're claiming it
// 00:04:e2:64:23:c2 > ff:ff:ff:ff:ff:ff, ARP (0x0806): arp who-has 169.254.194.171 (00:04:e2:64:23:c2) tell 169.254.194.171
// - use it // - use it
// - defend it, within limits // - defend it, within limits
// exit if: // exit if:
@ -382,78 +387,47 @@ int zcip_main(int argc UNUSED_PARAM, char **argv)
if (nprobes < PROBE_NUM) { if (nprobes < PROBE_NUM) {
nprobes++; nprobes++;
VDBG("probe/%u %s@%s\n", VDBG("probe/%u %s@%s\n",
nprobes, argv_intf, inet_ntoa(ip)); nprobes, argv_intf, nip_to_a(chosen_nip));
timeout_ms = PROBE_MIN * 1000; timeout_ms = PROBE_MIN * 1000;
timeout_ms += random_delay_ms(PROBE_MAX - PROBE_MIN); timeout_ms += random_delay_ms(PROBE_MAX - PROBE_MIN);
arp(/* ARPOP_REQUEST, */ arp(/* ARPOP_REQUEST, */
/* &eth_addr, */ null_ip, /* &G.eth_addr, */ 0,
&null_addr, ip); &null_addr, chosen_nip);
break;
} }
else { // Switch to announce state.
// Switch to announce state.
state = ANNOUNCE;
nclaims = 0;
VDBG("announce/%u %s@%s\n",
nclaims, argv_intf, inet_ntoa(ip));
timeout_ms = ANNOUNCE_INTERVAL * 1000;
arp(/* ARPOP_REQUEST, */
/* &eth_addr, */ ip,
&eth_addr, ip);
}
break;
case RATE_LIMIT_PROBE:
// timeouts in the RATE_LIMIT_PROBE state mean no conflicting ARP packets
// have been received, so we can move immediately to the announce state
state = ANNOUNCE;
nclaims = 0; nclaims = 0;
VDBG("announce/%u %s@%s\n", state = ANNOUNCE;
nclaims, argv_intf, inet_ntoa(ip)); goto send_announce;
timeout_ms = ANNOUNCE_INTERVAL * 1000;
arp(/* ARPOP_REQUEST, */
/* &eth_addr, */ ip,
&eth_addr, ip);
break;
case ANNOUNCE: case ANNOUNCE:
// timeouts in the ANNOUNCE state mean no conflicting ARP packets // timeouts in the ANNOUNCE state mean no conflicting ARP packets
// have been received, so we can progress through the states // have been received, so we can progress through the states
if (nclaims < ANNOUNCE_NUM) { if (nclaims < ANNOUNCE_NUM) {
send_announce:
nclaims++; nclaims++;
VDBG("announce/%u %s@%s\n", VDBG("announce/%u %s@%s\n",
nclaims, argv_intf, inet_ntoa(ip)); nclaims, argv_intf, nip_to_a(chosen_nip));
timeout_ms = ANNOUNCE_INTERVAL * 1000; timeout_ms = ANNOUNCE_INTERVAL * 1000;
arp(/* ARPOP_REQUEST, */ arp(/* ARPOP_REQUEST, */
/* &eth_addr, */ ip, /* &G.eth_addr, */ chosen_nip,
&eth_addr, ip); &G.eth_addr, chosen_nip);
} break;
else {
// Switch to monitor state.
state = MONITOR;
// link is ok to use earlier
// FIXME update filters
run(argv, "config", &ip);
ready = 1;
conflicts = 0;
timeout_ms = -1; // Never timeout in the monitor state.
// NOTE: all other exit paths
// should deconfig ...
if (QUIT)
return EXIT_SUCCESS;
} }
// Switch to monitor state.
// FIXME update filters
run(argv, "config", chosen_nip);
// NOTE: all other exit paths should deconfig...
if (QUIT)
return EXIT_SUCCESS;
conflicts = 0;
timeout_ms = -1; // Never timeout in the monitor state.
state = MONITOR;
break; break;
case DEFEND: case DEFEND:
// We won! No ARP replies, so just go back to monitor. // Defend period ended with no ARP replies - we won.
state = MONITOR;
timeout_ms = -1;
conflicts = 0; conflicts = 0;
break; timeout_ms = -1;
default: state = MONITOR;
// Invalid, should never happen. Restart the whole protocol.
state = PROBE;
ip.s_addr = pick_nip();
timeout_ms = 0;
nprobes = 0;
nclaims = 0;
break; break;
} // switch (state) } // switch (state)
break; // case 0 (timeout) break; // case 0 (timeout)
@ -466,13 +440,10 @@ int zcip_main(int argc UNUSED_PARAM, char **argv)
unsigned diff = deadline_us - MONOTONIC_US(); unsigned diff = deadline_us - MONOTONIC_US();
if ((int)(diff) < 0) { if ((int)(diff) < 0) {
// Current time is greater than the expected timeout time. // Current time is greater than the expected timeout time.
// Should never happen. diff = 0;
VDBG("missed an expected timeout\n");
timeout_ms = 0;
} else {
VDBG("adjusting timeout\n");
timeout_ms = (diff / 1000) | 1; /* never 0 */
} }
VDBG("adjusting timeout\n");
timeout_ms = (diff / 1000) | 1; /* never 0 */
} }
if ((fds[0].revents & POLLIN) == 0) { if ((fds[0].revents & POLLIN) == 0) {
@ -480,8 +451,9 @@ int zcip_main(int argc UNUSED_PARAM, char **argv)
// FIXME: links routinely go down; // FIXME: links routinely go down;
// this shouldn't necessarily exit. // this shouldn't necessarily exit.
bb_error_msg("iface %s is down", argv_intf); bb_error_msg("iface %s is down", argv_intf);
if (ready) { if (state >= MONITOR) {
run(argv, "deconfig", &ip); /* only if we are in MONITOR or DEFEND */
run(argv, "deconfig", chosen_nip);
} }
return EXIT_FAILURE; return EXIT_FAILURE;
} }
@ -492,8 +464,14 @@ int zcip_main(int argc UNUSED_PARAM, char **argv)
if (safe_read(sock_fd, &p, sizeof(p)) < 0) { if (safe_read(sock_fd, &p, sizeof(p)) < 0) {
bb_perror_msg_and_die(bb_msg_read_error); bb_perror_msg_and_die(bb_msg_read_error);
} }
if (p.eth.ether_type != htons(ETHERTYPE_ARP)) if (p.eth.ether_type != htons(ETHERTYPE_ARP))
continue; continue;
if (p.arp.arp_op != htons(ARPOP_REQUEST)
&& p.arp.arp_op != htons(ARPOP_REPLY)
) {
continue;
}
#ifdef DEBUG #ifdef DEBUG
{ {
struct ether_addr *sha = (struct ether_addr *) p.arp.arp_sha; struct ether_addr *sha = (struct ether_addr *) p.arp.arp_sha;
@ -511,23 +489,17 @@ int zcip_main(int argc UNUSED_PARAM, char **argv)
inet_ntoa(*tpa)); inet_ntoa(*tpa));
} }
#endif #endif
if (p.arp.arp_op != htons(ARPOP_REQUEST)
&& p.arp.arp_op != htons(ARPOP_REPLY)
) {
continue;
}
source_ip_conflict = 0; source_ip_conflict = 0;
target_ip_conflict = 0; target_ip_conflict = 0;
if (memcmp(&p.arp.arp_sha, &eth_addr, ETH_ALEN) != 0) { if (memcmp(&p.arp.arp_sha, &G.eth_addr, ETH_ALEN) != 0) {
if (memcmp(p.arp.arp_spa, &ip.s_addr, sizeof(struct in_addr)) == 0) { if (memcmp(p.arp.arp_spa, &chosen_nip, 4) == 0) {
/* A probe or reply with source_ip == chosen ip */ /* A probe or reply with source_ip == chosen ip */
source_ip_conflict = 1; source_ip_conflict = 1;
} }
if (p.arp.arp_op == htons(ARPOP_REQUEST) if (p.arp.arp_op == htons(ARPOP_REQUEST)
&& memcmp(p.arp.arp_spa, &null_ip, sizeof(struct in_addr)) == 0 && memcmp(p.arp.arp_spa, &const_int_0, 4) == 0
&& memcmp(p.arp.arp_tpa, &ip.s_addr, sizeof(struct in_addr)) == 0 && memcmp(p.arp.arp_tpa, &chosen_nip, 4) == 0
) { ) {
/* A probe with source_ip == 0.0.0.0, target_ip == chosen ip: /* A probe with source_ip == 0.0.0.0, target_ip == chosen ip:
* another host trying to claim this ip! * another host trying to claim this ip!
@ -545,54 +517,39 @@ int zcip_main(int argc UNUSED_PARAM, char **argv)
// and other hosts doing ARP probes (target IP conflicts). // and other hosts doing ARP probes (target IP conflicts).
if (source_ip_conflict || target_ip_conflict) { if (source_ip_conflict || target_ip_conflict) {
conflicts++; conflicts++;
if (conflicts >= MAX_CONFLICTS) { timeout_ms = PROBE_MIN * 1000
VDBG("%s ratelimit\n", argv_intf); + CONFLICT_MULTIPLIER * random_delay_ms(conflicts);
timeout_ms = RATE_LIMIT_INTERVAL * 1000; chosen_nip = pick_nip();
state = RATE_LIMIT_PROBE;
}
// restart the whole protocol
ip.s_addr = pick_nip();
timeout_ms = 0;
nprobes = 0; nprobes = 0;
nclaims = 0; nclaims = 0;
state = PROBE;
} }
break; break;
case MONITOR: case MONITOR:
// If a conflict, we try to defend with a single ARP probe. // If a conflict, we try to defend with a single ARP probe.
if (source_ip_conflict) { if (source_ip_conflict) {
VDBG("monitor conflict -- defending\n"); VDBG("monitor conflict -- defending\n");
state = DEFEND;
timeout_ms = DEFEND_INTERVAL * 1000; timeout_ms = DEFEND_INTERVAL * 1000;
state = DEFEND;
arp(/* ARPOP_REQUEST, */ arp(/* ARPOP_REQUEST, */
/* &eth_addr, */ ip, /* &G.eth_addr, */ chosen_nip,
&eth_addr, ip); &G.eth_addr, chosen_nip);
} }
break; break;
case DEFEND: case DEFEND:
// Well, we tried. Start over (on conflict). // Well, we tried. Start over (on conflict).
if (source_ip_conflict) { if (source_ip_conflict) {
state = PROBE;
VDBG("defend conflict -- starting over\n"); VDBG("defend conflict -- starting over\n");
ready = 0; run(argv, "deconfig", chosen_nip);
run(argv, "deconfig", &ip);
// restart the whole protocol // restart the whole protocol
ip.s_addr = pick_nip();
timeout_ms = 0; timeout_ms = 0;
chosen_nip = pick_nip();
nprobes = 0; nprobes = 0;
nclaims = 0; nclaims = 0;
state = PROBE;
} }
break; break;
default:
// Invalid, should never happen. Restart the whole protocol.
VDBG("invalid state -- starting over\n");
state = PROBE;
ip.s_addr = pick_nip();
timeout_ms = 0;
nprobes = 0;
nclaims = 0;
break;
} // switch state } // switch state
break; // case 1 (packets arriving) break; // case 1 (packets arriving)
} // switch poll } // switch poll