ntpd: remove unused USING_INITIAL_FREQ_ESTIMATION code
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
This commit is contained in:
parent
5024d86255
commit
423c4c25d8
@ -373,8 +373,7 @@ typedef struct {
|
||||
} peer_t;
|
||||
|
||||
|
||||
#define USING_KERNEL_PLL_LOOP 1
|
||||
#define USING_INITIAL_FREQ_ESTIMATION 0
|
||||
#define USING_KERNEL_PLL_LOOP 1
|
||||
|
||||
enum {
|
||||
OPT_n = (1 << 0),
|
||||
@ -657,104 +656,11 @@ filter_datapoints(peer_t *p)
|
||||
double sum, wavg;
|
||||
datapoint_t *fdp;
|
||||
|
||||
#if 0
|
||||
/* Simulations have shown that use of *averaged* offset for p->filter_offset
|
||||
* is in fact worse than simply using last received one: with large poll intervals
|
||||
* (>= 2048) averaging code uses offset values which are outdated by hours,
|
||||
* and time/frequency correction goes totally wrong when fed essentially bogus offsets.
|
||||
*/
|
||||
int got_newest;
|
||||
double minoff, maxoff, w;
|
||||
double x = x; /* for compiler */
|
||||
double oldest_off = oldest_off;
|
||||
double oldest_age = oldest_age;
|
||||
double newest_off = newest_off;
|
||||
double newest_age = newest_age;
|
||||
|
||||
fdp = p->filter_datapoint;
|
||||
|
||||
minoff = maxoff = fdp[0].d_offset;
|
||||
for (i = 1; i < NUM_DATAPOINTS; i++) {
|
||||
if (minoff > fdp[i].d_offset)
|
||||
minoff = fdp[i].d_offset;
|
||||
if (maxoff < fdp[i].d_offset)
|
||||
maxoff = fdp[i].d_offset;
|
||||
}
|
||||
|
||||
idx = p->datapoint_idx; /* most recent datapoint's index */
|
||||
/* Average offset:
|
||||
* Drop two outliers and take weighted average of the rest:
|
||||
* most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
|
||||
* we use older6/32, not older6/64 since sum of weights should be 1:
|
||||
* 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
|
||||
*/
|
||||
wavg = 0;
|
||||
w = 0.5;
|
||||
/* n-1
|
||||
* --- dispersion(i)
|
||||
* filter_dispersion = \ -------------
|
||||
* / (i+1)
|
||||
* --- 2
|
||||
* i=0
|
||||
*/
|
||||
got_newest = 0;
|
||||
sum = 0;
|
||||
for (i = 0; i < NUM_DATAPOINTS; i++) {
|
||||
VERB5 {
|
||||
bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
|
||||
i,
|
||||
fdp[idx].d_offset,
|
||||
fdp[idx].d_dispersion, dispersion(&fdp[idx]),
|
||||
G.cur_time - fdp[idx].d_recv_time,
|
||||
(minoff == fdp[idx].d_offset || maxoff == fdp[idx].d_offset)
|
||||
? " (outlier by offset)" : ""
|
||||
);
|
||||
}
|
||||
|
||||
sum += dispersion(&fdp[idx]) / (2 << i);
|
||||
|
||||
if (minoff == fdp[idx].d_offset) {
|
||||
minoff -= 1; /* so that we don't match it ever again */
|
||||
} else
|
||||
if (maxoff == fdp[idx].d_offset) {
|
||||
maxoff += 1;
|
||||
} else {
|
||||
oldest_off = fdp[idx].d_offset;
|
||||
oldest_age = G.cur_time - fdp[idx].d_recv_time;
|
||||
if (!got_newest) {
|
||||
got_newest = 1;
|
||||
newest_off = oldest_off;
|
||||
newest_age = oldest_age;
|
||||
}
|
||||
x = oldest_off * w;
|
||||
wavg += x;
|
||||
w /= 2;
|
||||
}
|
||||
|
||||
idx = (idx - 1) & (NUM_DATAPOINTS - 1);
|
||||
}
|
||||
p->filter_dispersion = sum;
|
||||
wavg += x; /* add another older6/64 to form older6/32 */
|
||||
/* Fix systematic underestimation with large poll intervals.
|
||||
* Imagine that we still have a bit of uncorrected drift,
|
||||
* and poll interval is big (say, 100 sec). Offsets form a progression:
|
||||
* 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
|
||||
* The algorithm above drops 0.0 and 0.7 as outliers,
|
||||
* and then we have this estimation, ~25% off from 0.7:
|
||||
* 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
|
||||
*/
|
||||
x = oldest_age - newest_age;
|
||||
if (x != 0) {
|
||||
x = newest_age / x; /* in above example, 100 / (600 - 100) */
|
||||
if (x < 1) { /* paranoia check */
|
||||
x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
|
||||
wavg += x;
|
||||
}
|
||||
}
|
||||
p->filter_offset = wavg;
|
||||
|
||||
#else
|
||||
|
||||
fdp = p->filter_datapoint;
|
||||
idx = p->datapoint_idx; /* most recent datapoint's index */
|
||||
|
||||
@ -777,7 +683,6 @@ filter_datapoints(peer_t *p)
|
||||
}
|
||||
wavg /= NUM_DATAPOINTS;
|
||||
p->filter_dispersion = sum;
|
||||
#endif
|
||||
|
||||
/* +----- -----+ ^ 1/2
|
||||
* | n-1 |
|
||||
@ -1572,8 +1477,6 @@ update_local_clock(peer_t *p)
|
||||
double abs_offset;
|
||||
#if !USING_KERNEL_PLL_LOOP
|
||||
double freq_drift;
|
||||
#endif
|
||||
#if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
|
||||
double since_last_update;
|
||||
#endif
|
||||
double etemp, dtemp;
|
||||
@ -1603,63 +1506,15 @@ update_local_clock(peer_t *p)
|
||||
* action is and defines how the system reacts to large time
|
||||
* and frequency errors.
|
||||
*/
|
||||
#if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
|
||||
since_last_update = recv_time - G.reftime;
|
||||
#endif
|
||||
#if !USING_KERNEL_PLL_LOOP
|
||||
since_last_update = recv_time - G.reftime;
|
||||
freq_drift = 0;
|
||||
#endif
|
||||
#if USING_INITIAL_FREQ_ESTIMATION
|
||||
if (G.discipline_state == STATE_FREQ) {
|
||||
/* Ignore updates until the stepout threshold */
|
||||
if (since_last_update < WATCH_THRESHOLD) {
|
||||
VERB4 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
|
||||
WATCH_THRESHOLD - since_last_update);
|
||||
return 0; /* "leave poll interval as is" */
|
||||
}
|
||||
# if !USING_KERNEL_PLL_LOOP
|
||||
freq_drift = (offset - G.last_update_offset) / since_last_update;
|
||||
# endif
|
||||
}
|
||||
#endif
|
||||
|
||||
/* There are two main regimes: when the
|
||||
* offset exceeds the step threshold and when it does not.
|
||||
*/
|
||||
if (abs_offset > STEP_THRESHOLD) {
|
||||
#if 0
|
||||
double remains;
|
||||
|
||||
// This "spike state" seems to be useless, peer selection already drops
|
||||
// occassional "bad" datapoints. If we are here, there were _many_
|
||||
// large offsets. When a few first large offsets are seen,
|
||||
// we end up in "no valid datapoints, no peer selected" state.
|
||||
// Only when enough of them are seen (which means it's not a fluke),
|
||||
// we end up here. Looks like _our_ clock is off.
|
||||
switch (G.discipline_state) {
|
||||
case STATE_SYNC:
|
||||
/* The first outlyer: ignore it, switch to SPIK state */
|
||||
VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
|
||||
p->p_dotted, offset,
|
||||
"");
|
||||
G.discipline_state = STATE_SPIK;
|
||||
return -1; /* "decrease poll interval" */
|
||||
|
||||
case STATE_SPIK:
|
||||
/* Ignore succeeding outlyers until either an inlyer
|
||||
* is found or the stepout threshold is exceeded.
|
||||
*/
|
||||
remains = WATCH_THRESHOLD - since_last_update;
|
||||
if (remains > 0) {
|
||||
VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
|
||||
p->p_dotted, offset,
|
||||
", datapoint ignored");
|
||||
return -1; /* "decrease poll interval" */
|
||||
}
|
||||
/* fall through: we need to step */
|
||||
} /* switch */
|
||||
#endif
|
||||
|
||||
/* Step the time and clamp down the poll interval.
|
||||
*
|
||||
* In NSET state an initial frequency correction is
|
||||
@ -1694,12 +1549,6 @@ update_local_clock(peer_t *p)
|
||||
|
||||
recv_time += offset;
|
||||
|
||||
#if USING_INITIAL_FREQ_ESTIMATION
|
||||
if (G.discipline_state == STATE_NSET) {
|
||||
set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
|
||||
return 1; /* "ok to increase poll interval" */
|
||||
}
|
||||
#endif
|
||||
abs_offset = offset = 0;
|
||||
set_new_values(STATE_SYNC, offset, recv_time);
|
||||
} else { /* abs_offset <= STEP_THRESHOLD */
|
||||
@ -1726,39 +1575,10 @@ update_local_clock(peer_t *p)
|
||||
*/
|
||||
exit(0);
|
||||
}
|
||||
#if USING_INITIAL_FREQ_ESTIMATION
|
||||
/* This is the first update received and the frequency
|
||||
* has not been initialized. The first thing to do
|
||||
* is directly measure the oscillator frequency.
|
||||
*/
|
||||
set_new_values(STATE_FREQ, offset, recv_time);
|
||||
#else
|
||||
set_new_values(STATE_SYNC, offset, recv_time);
|
||||
#endif
|
||||
VERB4 bb_simple_error_msg("transitioning to FREQ, datapoint ignored");
|
||||
return 0; /* "leave poll interval as is" */
|
||||
|
||||
#if 0 /* this is dead code for now */
|
||||
case STATE_FSET:
|
||||
/* This is the first update and the frequency
|
||||
* has been initialized. Adjust the phase, but
|
||||
* don't adjust the frequency until the next update.
|
||||
*/
|
||||
set_new_values(STATE_SYNC, offset, recv_time);
|
||||
/* freq_drift remains 0 */
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if USING_INITIAL_FREQ_ESTIMATION
|
||||
case STATE_FREQ:
|
||||
/* since_last_update >= WATCH_THRESHOLD, we waited enough.
|
||||
* Correct the phase and frequency and switch to SYNC state.
|
||||
* freq_drift was already estimated (see code above)
|
||||
*/
|
||||
set_new_values(STATE_SYNC, offset, recv_time);
|
||||
break;
|
||||
#endif
|
||||
|
||||
default:
|
||||
#if !USING_KERNEL_PLL_LOOP
|
||||
/* Compute freq_drift due to PLL and FLL contributions.
|
||||
|
Loading…
Reference in New Issue
Block a user