ntpd: remove unused USING_INITIAL_FREQ_ESTIMATION code

Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
This commit is contained in:
Denys Vlasenko 2021-02-21 09:05:48 +01:00
parent 5024d86255
commit 423c4c25d8

View File

@ -373,8 +373,7 @@ typedef struct {
} peer_t;
#define USING_KERNEL_PLL_LOOP 1
#define USING_INITIAL_FREQ_ESTIMATION 0
#define USING_KERNEL_PLL_LOOP 1
enum {
OPT_n = (1 << 0),
@ -657,104 +656,11 @@ filter_datapoints(peer_t *p)
double sum, wavg;
datapoint_t *fdp;
#if 0
/* Simulations have shown that use of *averaged* offset for p->filter_offset
* is in fact worse than simply using last received one: with large poll intervals
* (>= 2048) averaging code uses offset values which are outdated by hours,
* and time/frequency correction goes totally wrong when fed essentially bogus offsets.
*/
int got_newest;
double minoff, maxoff, w;
double x = x; /* for compiler */
double oldest_off = oldest_off;
double oldest_age = oldest_age;
double newest_off = newest_off;
double newest_age = newest_age;
fdp = p->filter_datapoint;
minoff = maxoff = fdp[0].d_offset;
for (i = 1; i < NUM_DATAPOINTS; i++) {
if (minoff > fdp[i].d_offset)
minoff = fdp[i].d_offset;
if (maxoff < fdp[i].d_offset)
maxoff = fdp[i].d_offset;
}
idx = p->datapoint_idx; /* most recent datapoint's index */
/* Average offset:
* Drop two outliers and take weighted average of the rest:
* most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
* we use older6/32, not older6/64 since sum of weights should be 1:
* 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
*/
wavg = 0;
w = 0.5;
/* n-1
* --- dispersion(i)
* filter_dispersion = \ -------------
* / (i+1)
* --- 2
* i=0
*/
got_newest = 0;
sum = 0;
for (i = 0; i < NUM_DATAPOINTS; i++) {
VERB5 {
bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
i,
fdp[idx].d_offset,
fdp[idx].d_dispersion, dispersion(&fdp[idx]),
G.cur_time - fdp[idx].d_recv_time,
(minoff == fdp[idx].d_offset || maxoff == fdp[idx].d_offset)
? " (outlier by offset)" : ""
);
}
sum += dispersion(&fdp[idx]) / (2 << i);
if (minoff == fdp[idx].d_offset) {
minoff -= 1; /* so that we don't match it ever again */
} else
if (maxoff == fdp[idx].d_offset) {
maxoff += 1;
} else {
oldest_off = fdp[idx].d_offset;
oldest_age = G.cur_time - fdp[idx].d_recv_time;
if (!got_newest) {
got_newest = 1;
newest_off = oldest_off;
newest_age = oldest_age;
}
x = oldest_off * w;
wavg += x;
w /= 2;
}
idx = (idx - 1) & (NUM_DATAPOINTS - 1);
}
p->filter_dispersion = sum;
wavg += x; /* add another older6/64 to form older6/32 */
/* Fix systematic underestimation with large poll intervals.
* Imagine that we still have a bit of uncorrected drift,
* and poll interval is big (say, 100 sec). Offsets form a progression:
* 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
* The algorithm above drops 0.0 and 0.7 as outliers,
* and then we have this estimation, ~25% off from 0.7:
* 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
*/
x = oldest_age - newest_age;
if (x != 0) {
x = newest_age / x; /* in above example, 100 / (600 - 100) */
if (x < 1) { /* paranoia check */
x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
wavg += x;
}
}
p->filter_offset = wavg;
#else
fdp = p->filter_datapoint;
idx = p->datapoint_idx; /* most recent datapoint's index */
@ -777,7 +683,6 @@ filter_datapoints(peer_t *p)
}
wavg /= NUM_DATAPOINTS;
p->filter_dispersion = sum;
#endif
/* +----- -----+ ^ 1/2
* | n-1 |
@ -1572,8 +1477,6 @@ update_local_clock(peer_t *p)
double abs_offset;
#if !USING_KERNEL_PLL_LOOP
double freq_drift;
#endif
#if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
double since_last_update;
#endif
double etemp, dtemp;
@ -1603,63 +1506,15 @@ update_local_clock(peer_t *p)
* action is and defines how the system reacts to large time
* and frequency errors.
*/
#if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
since_last_update = recv_time - G.reftime;
#endif
#if !USING_KERNEL_PLL_LOOP
since_last_update = recv_time - G.reftime;
freq_drift = 0;
#endif
#if USING_INITIAL_FREQ_ESTIMATION
if (G.discipline_state == STATE_FREQ) {
/* Ignore updates until the stepout threshold */
if (since_last_update < WATCH_THRESHOLD) {
VERB4 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
WATCH_THRESHOLD - since_last_update);
return 0; /* "leave poll interval as is" */
}
# if !USING_KERNEL_PLL_LOOP
freq_drift = (offset - G.last_update_offset) / since_last_update;
# endif
}
#endif
/* There are two main regimes: when the
* offset exceeds the step threshold and when it does not.
*/
if (abs_offset > STEP_THRESHOLD) {
#if 0
double remains;
// This "spike state" seems to be useless, peer selection already drops
// occassional "bad" datapoints. If we are here, there were _many_
// large offsets. When a few first large offsets are seen,
// we end up in "no valid datapoints, no peer selected" state.
// Only when enough of them are seen (which means it's not a fluke),
// we end up here. Looks like _our_ clock is off.
switch (G.discipline_state) {
case STATE_SYNC:
/* The first outlyer: ignore it, switch to SPIK state */
VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
p->p_dotted, offset,
"");
G.discipline_state = STATE_SPIK;
return -1; /* "decrease poll interval" */
case STATE_SPIK:
/* Ignore succeeding outlyers until either an inlyer
* is found or the stepout threshold is exceeded.
*/
remains = WATCH_THRESHOLD - since_last_update;
if (remains > 0) {
VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
p->p_dotted, offset,
", datapoint ignored");
return -1; /* "decrease poll interval" */
}
/* fall through: we need to step */
} /* switch */
#endif
/* Step the time and clamp down the poll interval.
*
* In NSET state an initial frequency correction is
@ -1694,12 +1549,6 @@ update_local_clock(peer_t *p)
recv_time += offset;
#if USING_INITIAL_FREQ_ESTIMATION
if (G.discipline_state == STATE_NSET) {
set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
return 1; /* "ok to increase poll interval" */
}
#endif
abs_offset = offset = 0;
set_new_values(STATE_SYNC, offset, recv_time);
} else { /* abs_offset <= STEP_THRESHOLD */
@ -1726,39 +1575,10 @@ update_local_clock(peer_t *p)
*/
exit(0);
}
#if USING_INITIAL_FREQ_ESTIMATION
/* This is the first update received and the frequency
* has not been initialized. The first thing to do
* is directly measure the oscillator frequency.
*/
set_new_values(STATE_FREQ, offset, recv_time);
#else
set_new_values(STATE_SYNC, offset, recv_time);
#endif
VERB4 bb_simple_error_msg("transitioning to FREQ, datapoint ignored");
return 0; /* "leave poll interval as is" */
#if 0 /* this is dead code for now */
case STATE_FSET:
/* This is the first update and the frequency
* has been initialized. Adjust the phase, but
* don't adjust the frequency until the next update.
*/
set_new_values(STATE_SYNC, offset, recv_time);
/* freq_drift remains 0 */
break;
#endif
#if USING_INITIAL_FREQ_ESTIMATION
case STATE_FREQ:
/* since_last_update >= WATCH_THRESHOLD, we waited enough.
* Correct the phase and frequency and switch to SYNC state.
* freq_drift was already estimated (see code above)
*/
set_new_values(STATE_SYNC, offset, recv_time);
break;
#endif
default:
#if !USING_KERNEL_PLL_LOOP
/* Compute freq_drift due to PLL and FLL contributions.