uclibc insists on having 70k static buffer for crypt.

For bbox it's not acceptable. Roll our own des and md5 crypt
implementation. Against older uclibc:

   text    data     bss     dec     hex filename
 759945     604    6684  767233   bb501 busybox_old
 759766     604    6684  767054   bb44e busybox_unstripped

so, we still save on code size.
This commit is contained in:
Denis Vlasenko 2008-06-12 16:55:59 +00:00
parent 9de4622055
commit 4ea83bf562
10 changed files with 1458 additions and 26 deletions

View File

@ -1032,8 +1032,19 @@ extern int restricted_shell(const char *shell);
extern void setup_environment(const char *shell, int clear_env, int change_env, const struct passwd *pw); extern void setup_environment(const char *shell, int clear_env, int change_env, const struct passwd *pw);
extern int correct_password(const struct passwd *pw); extern int correct_password(const struct passwd *pw);
/* Returns a ptr to static storage */ /* Returns a ptr to static storage */
extern char *pw_encrypt(const char *clear, const char *salt); extern char *pw_encrypt(const char *clear, const char *salt, int cleanup);
extern int obscure(const char *old, const char *newval, const struct passwd *pwdp); extern int obscure(const char *old, const char *newval, const struct passwd *pwdp);
/* rnd is additional random input. New one is returned.
* Useful if you call crypt_make_salt many times in a row:
* rnd = crypt_make_salt(buf1, 4, 0);
* rnd = crypt_make_salt(buf2, 4, rnd);
* rnd = crypt_make_salt(buf3, 4, rnd);
* (otherwise we risk having same salt generated)
*/
extern int crypt_make_salt(char *p, int cnt, int rnd);
/* Returns number of lines changed, or -1 on error */
extern int update_passwd(const char *filename, const char *username,
const char *new_pw);
int index_in_str_array(const char *const string_array[], const char *key); int index_in_str_array(const char *const string_array[], const char *key);
int index_in_strings(const char *strings, const char *key); int index_in_strings(const char *strings, const char *key);
@ -1044,19 +1055,6 @@ const char *nth_string(const char *strings, int n);
extern void print_login_issue(const char *issue_file, const char *tty); extern void print_login_issue(const char *issue_file, const char *tty);
extern void print_login_prompt(void); extern void print_login_prompt(void);
/* rnd is additional random input. New one is returned.
* Useful if you call crypt_make_salt many times in a row:
* rnd = crypt_make_salt(buf1, 4, 0);
* rnd = crypt_make_salt(buf2, 4, rnd);
* rnd = crypt_make_salt(buf3, 4, rnd);
* (otherwise we risk having same salt generated)
*/
extern int crypt_make_salt(char *p, int cnt, int rnd);
/* Returns number of lines changed, or -1 on error */
extern int update_passwd(const char *filename, const char *username,
const char *new_pw);
/* NB: typically you want to pass fd 0, not 1. Think 'applet | grep something' */ /* NB: typically you want to pass fd 0, not 1. Think 'applet | grep something' */
int get_terminal_width_height(int fd, unsigned *width, unsigned *height); int get_terminal_width_height(int fd, unsigned *width, unsigned *height);

View File

@ -71,7 +71,7 @@ int correct_password(const struct passwd *pw)
if (!unencrypted) { if (!unencrypted) {
return 0; return 0;
} }
encrypted = crypt(unencrypted, correct); encrypted = pw_encrypt(unencrypted, correct, 1);
memset(unencrypted, 0, strlen(unencrypted)); memset(unencrypted, 0, strlen(unencrypted));
return strcmp(encrypted, correct) == 0; return strcmp(encrypted, correct) == 0;
} }

View File

@ -8,11 +8,52 @@
*/ */
#include "libbb.h" #include "libbb.h"
#include <crypt.h>
char *pw_encrypt(const char *clear, const char *salt) /*
* DES and MD5 crypt implementations are taken from uclibc.
* They were modified to not use static buffers.
* Comparison with uclibc (before uclibc had 70k staic buffers reinstated):
* text data bss dec hex filename
* 759909 604 6684 767197 bb4dd busybox_old
* 759579 604 6684 766867 bb393 busybox_unstripped
*/
/* Common for them */
static const uint8_t ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
#include "pw_encrypt_des.c"
#include "pw_encrypt_md5.c"
static struct const_des_ctx *des_cctx;
static struct des_ctx *des_ctx;
/* my_crypt returns malloc'ed data */
static char *my_crypt(const char *key, const char *salt)
{
/* First, check if we are supposed to be using the MD5 replacement
* instead of DES... */
if (salt[0] == '$' && salt[1] == '1' && salt[2] == '$') {
return md5_crypt(xzalloc(MD5_OUT_BUFSIZE), (unsigned char*)key, (unsigned char*)salt);
}
{
if (!des_cctx)
des_cctx = const_des_init();
des_ctx = des_init(des_ctx, des_cctx);
return des_crypt(des_ctx, xzalloc(DES_OUT_BUFSIZE), (unsigned char*)key, (unsigned char*)salt);
}
}
/* So far nobody wants to have it public */
static void my_crypt_cleanup(void)
{
free(des_cctx);
free(des_ctx);
des_cctx = NULL;
des_ctx = NULL;
}
char *pw_encrypt(const char *clear, const char *salt, int cleanup)
{ {
/* Was static char[BIGNUM]. Malloced thing works as well */
static char *cipher; static char *cipher;
#if 0 /* was CONFIG_FEATURE_SHA1_PASSWORDS, but there is no such thing??? */ #if 0 /* was CONFIG_FEATURE_SHA1_PASSWORDS, but there is no such thing??? */
@ -22,6 +63,10 @@ char *pw_encrypt(const char *clear, const char *salt)
#endif #endif
free(cipher); free(cipher);
cipher = xstrdup(crypt(clear, salt)); cipher = my_crypt(clear, salt);
if (cleanup)
my_crypt_cleanup();
return cipher; return cipher;
} }

703
libbb/pw_encrypt_des.c Normal file
View File

@ -0,0 +1,703 @@
/*
* FreeSec: libcrypt for NetBSD
*
* Copyright (c) 1994 David Burren
* All rights reserved.
*
* Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
* this file should now *only* export crypt(), in order to make
* binaries of libcrypt exportable from the USA
*
* Adapted for FreeBSD-4.0 by Mark R V Murray
* this file should now *only* export crypt_des(), in order to make
* a module that can be optionally included in libcrypt.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of other contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This is an original implementation of the DES and the crypt(3) interfaces
* by David Burren <davidb@werj.com.au>.
*
* An excellent reference on the underlying algorithm (and related
* algorithms) is:
*
* B. Schneier, Applied Cryptography: protocols, algorithms,
* and source code in C, John Wiley & Sons, 1994.
*
* Note that in that book's description of DES the lookups for the initial,
* pbox, and final permutations are inverted (this has been brought to the
* attention of the author). A list of errata for this book has been
* posted to the sci.crypt newsgroup by the author and is available for FTP.
*
* ARCHITECTURE ASSUMPTIONS:
* It is assumed that the 8-byte arrays passed by reference can be
* addressed as arrays of uint32_t's (ie. the CPU is not picky about
* alignment).
*/
/* A pile of data */
static const uint8_t IP[64] = {
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
};
static const uint8_t key_perm[56] = {
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
};
static const uint8_t key_shifts[16] = {
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};
static const uint8_t comp_perm[48] = {
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
};
/*
* No E box is used, as it's replaced by some ANDs, shifts, and ORs.
*/
static const uint8_t sbox[8][64] = {
{
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
},
{
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
},
{
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
},
{
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
},
{
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
},
{
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
},
{
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
},
{
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
}
};
static const uint8_t pbox[32] = {
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
};
static const uint32_t bits32[32] =
{
0x80000000, 0x40000000, 0x20000000, 0x10000000,
0x08000000, 0x04000000, 0x02000000, 0x01000000,
0x00800000, 0x00400000, 0x00200000, 0x00100000,
0x00080000, 0x00040000, 0x00020000, 0x00010000,
0x00008000, 0x00004000, 0x00002000, 0x00001000,
0x00000800, 0x00000400, 0x00000200, 0x00000100,
0x00000080, 0x00000040, 0x00000020, 0x00000010,
0x00000008, 0x00000004, 0x00000002, 0x00000001
};
static const uint8_t bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
static int
ascii_to_bin(char ch)
{
if (ch > 'z')
return 0;
if (ch >= 'a')
return (ch - 'a' + 38);
if (ch > 'Z')
return 0;
if (ch >= 'A')
return (ch - 'A' + 12);
if (ch > '9')
return 0;
if (ch >= '.')
return (ch - '.');
return 0;
}
/* Static stuff that stays resident and doesn't change after
* being initialized, and therefore doesn't need to be made
* reentrant. */
struct const_des_ctx {
uint8_t init_perm[64], final_perm[64]; /* referenced 2 times each */
uint8_t m_sbox[4][4096]; /* 5 times */
};
#define C (*cctx)
#define init_perm (C.init_perm )
#define final_perm (C.final_perm)
#define m_sbox (C.m_sbox )
static struct const_des_ctx*
const_des_init(void)
{
int i, j, b;
uint8_t u_sbox[8][64];
struct const_des_ctx *cctx;
cctx = xmalloc(sizeof(*cctx));
/*
* Invert the S-boxes, reordering the input bits.
*/
for (i = 0; i < 8; i++) {
for (j = 0; j < 64; j++) {
b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
u_sbox[i][j] = sbox[i][b];
}
}
/*
* Convert the inverted S-boxes into 4 arrays of 8 bits.
* Each will handle 12 bits of the S-box input.
*/
for (b = 0; b < 4; b++)
for (i = 0; i < 64; i++)
for (j = 0; j < 64; j++)
m_sbox[b][(i << 6) | j] =
(uint8_t)((u_sbox[(b << 1)][i] << 4) |
u_sbox[(b << 1) + 1][j]);
/*
* Set up the initial & final permutations into a useful form.
*/
for (i = 0; i < 64; i++) {
final_perm[i] = IP[i] - 1;
init_perm[final_perm[i]] = (uint8_t)i;
}
return cctx;
}
struct des_ctx {
const struct const_des_ctx *const_ctx;
uint32_t saltbits; /* referenced 5 times */
uint32_t old_salt; /* 3 times */
uint32_t old_rawkey0, old_rawkey1; /* 3 times each */
uint8_t un_pbox[32]; /* 2 times */
uint8_t inv_comp_perm[56]; /* 3 times */
uint8_t inv_key_perm[64]; /* 3 times */
uint32_t en_keysl[16], en_keysr[16]; /* 2 times each */
uint32_t de_keysl[16], de_keysr[16]; /* 2 times each */
uint32_t ip_maskl[8][256], ip_maskr[8][256]; /* 9 times each */
uint32_t fp_maskl[8][256], fp_maskr[8][256]; /* 9 times each */
uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; /* 9 times */
uint32_t comp_maskl[8][128], comp_maskr[8][128]; /* 9 times each */
uint32_t psbox[4][256]; /* 5 times */
};
#define D (*ctx)
#define const_ctx (D.const_ctx )
#define saltbits (D.saltbits )
#define old_salt (D.old_salt )
#define old_rawkey0 (D.old_rawkey0 )
#define old_rawkey1 (D.old_rawkey1 )
#define un_pbox (D.un_pbox )
#define inv_comp_perm (D.inv_comp_perm )
#define inv_key_perm (D.inv_key_perm )
#define en_keysl (D.en_keysl )
#define en_keysr (D.en_keysr )
#define de_keysl (D.de_keysl )
#define de_keysr (D.de_keysr )
#define ip_maskl (D.ip_maskl )
#define ip_maskr (D.ip_maskr )
#define fp_maskl (D.fp_maskl )
#define fp_maskr (D.fp_maskr )
#define key_perm_maskl (D.key_perm_maskl )
#define key_perm_maskr (D.key_perm_maskr )
#define comp_maskl (D.comp_maskl )
#define comp_maskr (D.comp_maskr )
#define psbox (D.psbox )
static struct des_ctx*
des_init(struct des_ctx *ctx, const struct const_des_ctx *cctx)
{
int i, j, b, k, inbit, obit;
uint32_t *p, *il, *ir, *fl, *fr;
const uint32_t *bits28, *bits24;
if (!ctx)
ctx = xmalloc(sizeof(*ctx));
const_ctx = cctx;
old_rawkey0 = old_rawkey1 = 0L;
saltbits = 0L;
old_salt = 0L;
bits28 = bits32 + 4;
bits24 = bits28 + 4;
/*
* Initialise the inverted key permutation.
*/
for (i = 0; i < 64; i++) {
inv_key_perm[i] = 255;
}
/*
* Invert the key permutation and initialise the inverted key
* compression permutation.
*/
for (i = 0; i < 56; i++) {
inv_key_perm[key_perm[i] - 1] = (uint8_t)i;
inv_comp_perm[i] = 255;
}
/*
* Invert the key compression permutation.
*/
for (i = 0; i < 48; i++) {
inv_comp_perm[comp_perm[i] - 1] = (uint8_t)i;
}
/*
* Set up the OR-mask arrays for the initial and final permutations,
* and for the key initial and compression permutations.
*/
for (k = 0; k < 8; k++) {
for (i = 0; i < 256; i++) {
il = &ip_maskl[k][i];
ir = &ip_maskr[k][i];
fl = &fp_maskl[k][i];
fr = &fp_maskr[k][i];
*il = 0;
*ir = 0;
*fl = 0;
*fr = 0;
for (j = 0; j < 8; j++) {
inbit = 8 * k + j;
if (i & bits8[j]) {
obit = init_perm[inbit];
if (obit < 32)
*il |= bits32[obit];
else
*ir |= bits32[obit - 32];
obit = final_perm[inbit];
if (obit < 32)
*fl |= bits32[obit];
else
*fr |= bits32[obit - 32];
}
}
}
for (i = 0; i < 128; i++) {
il = &key_perm_maskl[k][i];
ir = &key_perm_maskr[k][i];
*il = 0;
*ir = 0;
for (j = 0; j < 7; j++) {
inbit = 8 * k + j;
if (i & bits8[j + 1]) {
obit = inv_key_perm[inbit];
if (obit == 255)
continue;
if (obit < 28)
*il |= bits28[obit];
else
*ir |= bits28[obit - 28];
}
}
il = &comp_maskl[k][i];
ir = &comp_maskr[k][i];
*il = 0;
*ir = 0;
for (j = 0; j < 7; j++) {
inbit = 7 * k + j;
if (i & bits8[j + 1]) {
obit = inv_comp_perm[inbit];
if (obit == 255)
continue;
if (obit < 24)
*il |= bits24[obit];
else
*ir |= bits24[obit - 24];
}
}
}
}
/*
* Invert the P-box permutation, and convert into OR-masks for
* handling the output of the S-box arrays setup above.
*/
for (i = 0; i < 32; i++)
un_pbox[pbox[i] - 1] = (uint8_t)i;
for (b = 0; b < 4; b++) {
for (i = 0; i < 256; i++) {
p = &psbox[b][i];
*p = 0;
for (j = 0; j < 8; j++) {
if (i & bits8[j])
*p |= bits32[un_pbox[8 * b + j]];
}
}
}
return ctx;
}
static void
setup_salt(struct des_ctx *ctx, uint32_t salt)
{
// const struct const_des_ctx *cctx = const_ctx;
uint32_t obit, saltbit;
int i;
if (salt == old_salt)
return;
old_salt = salt;
saltbits = 0L;
saltbit = 1;
obit = 0x800000;
for (i = 0; i < 24; i++) {
if (salt & saltbit)
saltbits |= obit;
saltbit <<= 1;
obit >>= 1;
}
}
static void
des_setkey(struct des_ctx *ctx, const char *key)
{
// const struct const_des_ctx *cctx = const_ctx;
uint32_t k0, k1, rawkey0, rawkey1;
int shifts, round;
rawkey0 = ntohl(*(const uint32_t *) key);
rawkey1 = ntohl(*(const uint32_t *) (key + 4));
if ((rawkey0 | rawkey1)
&& rawkey0 == old_rawkey0
&& rawkey1 == old_rawkey1
) {
/*
* Already setup for this key.
* This optimisation fails on a zero key (which is weak and
* has bad parity anyway) in order to simplify the starting
* conditions.
*/
return;
}
old_rawkey0 = rawkey0;
old_rawkey1 = rawkey1;
/*
* Do key permutation and split into two 28-bit subkeys.
*/
k0 = key_perm_maskl[0][rawkey0 >> 25]
| key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
| key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
| key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
| key_perm_maskl[4][rawkey1 >> 25]
| key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
| key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
| key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
k1 = key_perm_maskr[0][rawkey0 >> 25]
| key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
| key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
| key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
| key_perm_maskr[4][rawkey1 >> 25]
| key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
| key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
| key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
/*
* Rotate subkeys and do compression permutation.
*/
shifts = 0;
for (round = 0; round < 16; round++) {
uint32_t t0, t1;
shifts += key_shifts[round];
t0 = (k0 << shifts) | (k0 >> (28 - shifts));
t1 = (k1 << shifts) | (k1 >> (28 - shifts));
de_keysl[15 - round] =
en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
| comp_maskl[1][(t0 >> 14) & 0x7f]
| comp_maskl[2][(t0 >> 7) & 0x7f]
| comp_maskl[3][t0 & 0x7f]
| comp_maskl[4][(t1 >> 21) & 0x7f]
| comp_maskl[5][(t1 >> 14) & 0x7f]
| comp_maskl[6][(t1 >> 7) & 0x7f]
| comp_maskl[7][t1 & 0x7f];
de_keysr[15 - round] =
en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
| comp_maskr[1][(t0 >> 14) & 0x7f]
| comp_maskr[2][(t0 >> 7) & 0x7f]
| comp_maskr[3][t0 & 0x7f]
| comp_maskr[4][(t1 >> 21) & 0x7f]
| comp_maskr[5][(t1 >> 14) & 0x7f]
| comp_maskr[6][(t1 >> 7) & 0x7f]
| comp_maskr[7][t1 & 0x7f];
}
}
static int
do_des(struct des_ctx *ctx, uint32_t l_in, uint32_t r_in, uint32_t *l_out, uint32_t *r_out, int count)
{
const struct const_des_ctx *cctx = const_ctx;
/*
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
*/
uint32_t l, r, *kl, *kr, *kl1, *kr1;
uint32_t f = f; /* silence gcc */
uint32_t r48l, r48r;
int round;
/*
* Encrypting
*/
kl1 = en_keysl;
kr1 = en_keysr;
/*
* Do initial permutation (IP).
*/
l = ip_maskl[0][l_in >> 24]
| ip_maskl[1][(l_in >> 16) & 0xff]
| ip_maskl[2][(l_in >> 8) & 0xff]
| ip_maskl[3][l_in & 0xff]
| ip_maskl[4][r_in >> 24]
| ip_maskl[5][(r_in >> 16) & 0xff]
| ip_maskl[6][(r_in >> 8) & 0xff]
| ip_maskl[7][r_in & 0xff];
r = ip_maskr[0][l_in >> 24]
| ip_maskr[1][(l_in >> 16) & 0xff]
| ip_maskr[2][(l_in >> 8) & 0xff]
| ip_maskr[3][l_in & 0xff]
| ip_maskr[4][r_in >> 24]
| ip_maskr[5][(r_in >> 16) & 0xff]
| ip_maskr[6][(r_in >> 8) & 0xff]
| ip_maskr[7][r_in & 0xff];
while (count--) {
/*
* Do each round.
*/
kl = kl1;
kr = kr1;
round = 16;
while (round--) {
/*
* Expand R to 48 bits (simulate the E-box).
*/
r48l = ((r & 0x00000001) << 23)
| ((r & 0xf8000000) >> 9)
| ((r & 0x1f800000) >> 11)
| ((r & 0x01f80000) >> 13)
| ((r & 0x001f8000) >> 15);
r48r = ((r & 0x0001f800) << 7)
| ((r & 0x00001f80) << 5)
| ((r & 0x000001f8) << 3)
| ((r & 0x0000001f) << 1)
| ((r & 0x80000000) >> 31);
/*
* Do salting for crypt() and friends, and
* XOR with the permuted key.
*/
f = (r48l ^ r48r) & saltbits;
r48l ^= f ^ *kl++;
r48r ^= f ^ *kr++;
/*
* Do sbox lookups (which shrink it back to 32 bits)
* and do the pbox permutation at the same time.
*/
f = psbox[0][m_sbox[0][r48l >> 12]]
| psbox[1][m_sbox[1][r48l & 0xfff]]
| psbox[2][m_sbox[2][r48r >> 12]]
| psbox[3][m_sbox[3][r48r & 0xfff]];
/*
* Now that we've permuted things, complete f().
*/
f ^= l;
l = r;
r = f;
}
r = l;
l = f;
}
/*
* Do final permutation (inverse of IP).
*/
*l_out = fp_maskl[0][l >> 24]
| fp_maskl[1][(l >> 16) & 0xff]
| fp_maskl[2][(l >> 8) & 0xff]
| fp_maskl[3][l & 0xff]
| fp_maskl[4][r >> 24]
| fp_maskl[5][(r >> 16) & 0xff]
| fp_maskl[6][(r >> 8) & 0xff]
| fp_maskl[7][r & 0xff];
*r_out = fp_maskr[0][l >> 24]
| fp_maskr[1][(l >> 16) & 0xff]
| fp_maskr[2][(l >> 8) & 0xff]
| fp_maskr[3][l & 0xff]
| fp_maskr[4][r >> 24]
| fp_maskr[5][(r >> 16) & 0xff]
| fp_maskr[6][(r >> 8) & 0xff]
| fp_maskr[7][r & 0xff];
return 0;
}
#define DES_OUT_BUFSIZE 21
static char *
des_crypt(struct des_ctx *ctx, char output[21], const unsigned char *key, const unsigned char *setting)
{
uint32_t salt, l, r0, r1, keybuf[2];
uint8_t *p, *q;
/*
* Copy the key, shifting each character up by one bit
* and padding with zeros.
*/
q = (uint8_t *)keybuf;
while (q - (uint8_t *)keybuf - 8) {
*q++ = *key << 1;
if (*(q - 1))
key++;
}
des_setkey(ctx, (char *)keybuf);
/*
* setting - 2 bytes of salt
* key - up to 8 characters
*/
salt = (ascii_to_bin(setting[1]) << 6)
| ascii_to_bin(setting[0]);
output[0] = setting[0];
/*
* If the encrypted password that the salt was extracted from
* is only 1 character long, the salt will be corrupted. We
* need to ensure that the output string doesn't have an extra
* NUL in it!
*/
output[1] = setting[1] ? setting[1] : output[0];
p = (uint8_t *)output + 2;
setup_salt(ctx, salt);
/*
* Do it.
*/
do_des(ctx, 0L, 0L, &r0, &r1, 25 /* count */);
/*
* Now encode the result...
*/
l = (r0 >> 8);
*p++ = ascii64[(l >> 18) & 0x3f];
*p++ = ascii64[(l >> 12) & 0x3f];
*p++ = ascii64[(l >> 6) & 0x3f];
*p++ = ascii64[l & 0x3f];
l = (r0 << 16) | ((r1 >> 16) & 0xffff);
*p++ = ascii64[(l >> 18) & 0x3f];
*p++ = ascii64[(l >> 12) & 0x3f];
*p++ = ascii64[(l >> 6) & 0x3f];
*p++ = ascii64[l & 0x3f];
l = r1 << 2;
*p++ = ascii64[(l >> 12) & 0x3f];
*p++ = ascii64[(l >> 6) & 0x3f];
*p++ = ascii64[l & 0x3f];
*p = 0;
return output;
}
// des_setkey never fails
#undef C
#undef init_perm
#undef final_perm
#undef m_sbox
#undef D
#undef const_ctx
#undef saltbits
#undef old_salt
#undef old_rawkey0
#undef old_rawkey1
#undef un_pbox
#undef inv_comp_perm
#undef inv_key_perm
#undef en_keysl
#undef en_keysr
#undef de_keysl
#undef de_keysr
#undef ip_maskl
#undef ip_maskr
#undef fp_maskl
#undef fp_maskr
#undef key_perm_maskl
#undef key_perm_maskr
#undef comp_maskl
#undef comp_maskr
#undef psbox

656
libbb/pw_encrypt_md5.c Normal file
View File

@ -0,0 +1,656 @@
/*
* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
*
* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
* rights reserved.
*
* License to copy and use this software is granted provided that it
* is identified as the "RSA Data Security, Inc. MD5 Message-Digest
* Algorithm" in all material mentioning or referencing this software
* or this function.
*
* License is also granted to make and use derivative works provided
* that such works are identified as "derived from the RSA Data
* Security, Inc. MD5 Message-Digest Algorithm" in all material
* mentioning or referencing the derived work.
*
* RSA Data Security, Inc. makes no representations concerning either
* the merchantability of this software or the suitability of this
* software for any particular purpose. It is provided "as is"
* without express or implied warranty of any kind.
*
* These notices must be retained in any copies of any part of this
* documentation and/or software.
*
* $FreeBSD: src/lib/libmd/md5c.c,v 1.9.2.1 1999/08/29 14:57:12 peter Exp $
*
* This code is the same as the code published by RSA Inc. It has been
* edited for clarity and style only.
*
* ----------------------------------------------------------------------------
* The md5_crypt() function was taken from freeBSD's libcrypt and contains
* this license:
* "THE BEER-WARE LICENSE" (Revision 42):
* <phk@login.dknet.dk> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
*
* $FreeBSD: src/lib/libcrypt/crypt.c,v 1.7.2.1 1999/08/29 14:56:33 peter Exp $
*
* ----------------------------------------------------------------------------
* On April 19th, 2001 md5_crypt() was modified to make it reentrant
* by Erik Andersen <andersen@uclibc.org>
*
*
* June 28, 2001 Manuel Novoa III
*
* "Un-inlined" code using loops and static const tables in order to
* reduce generated code size (on i386 from approx 4k to approx 2.5k).
*
* June 29, 2001 Manuel Novoa III
*
* Completely removed static PADDING array.
*
* Reintroduced the loop unrolling in MD5_Transform and added the
* MD5_SIZE_OVER_SPEED option for configurability. Define below as:
* 0 fully unrolled loops
* 1 partially unrolled (4 ops per loop)
* 2 no unrolling -- introduces the need to swap 4 variables (slow)
* 3 no unrolling and all 4 loops merged into one with switch
* in each loop (glacial)
* On i386, sizes are roughly (-Os -fno-builtin):
* 0: 3k 1: 2.5k 2: 2.2k 3: 2k
*
*
* Since SuSv3 does not require crypt_r, modified again August 7, 2002
* by Erik Andersen to remove reentrance stuff...
*/
/*
* Valid values are 1 (fastest/largest) to 3 (smallest/slowest).
*/
#define MD5_SIZE_OVER_SPEED 3
/**********************************************************************/
/* MD5 context. */
struct MD5Context {
uint32_t state[4]; /* state (ABCD) */
uint32_t count[2]; /* number of bits, modulo 2^64 (lsb first) */
unsigned char buffer[64]; /* input buffer */
};
static void __md5_Init(struct MD5Context *);
static void __md5_Update(struct MD5Context *, const unsigned char *, unsigned int);
static void __md5_Pad(struct MD5Context *);
static void __md5_Final(unsigned char [16], struct MD5Context *);
static void __md5_Transform(uint32_t [4], const unsigned char [64]);
#define MD5_MAGIC_STR "$1$"
#define MD5_MAGIC_LEN (sizeof(MD5_MAGIC_STR) - 1)
static const unsigned char __md5__magic[] = MD5_MAGIC_STR;
#ifdef i386
#define __md5_Encode memcpy
#define __md5_Decode memcpy
#else /* i386 */
/*
* __md5_Encodes input (uint32_t) into output (unsigned char). Assumes len is
* a multiple of 4.
*/
static void
__md5_Encode(unsigned char *output, uint32_t *input, unsigned int len)
{
unsigned int i, j;
for (i = 0, j = 0; j < len; i++, j += 4) {
output[j] = input[i];
output[j+1] = (input[i] >> 8);
output[j+2] = (input[i] >> 16);
output[j+3] = (input[i] >> 24);
}
}
/*
* __md5_Decodes input (unsigned char) into output (uint32_t). Assumes len is
* a multiple of 4.
*/
static void
__md5_Decode(uint32_t *output, const unsigned char *input, unsigned int len)
{
unsigned int i, j;
for (i = 0, j = 0; j < len; i++, j += 4)
output[i] = ((uint32_t)input[j]) | (((uint32_t)input[j+1]) << 8) |
(((uint32_t)input[j+2]) << 16) | (((uint32_t)input[j+3]) << 24);
}
#endif /* i386 */
/* F, G, H and I are basic MD5 functions. */
#define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
/* ROTATE_LEFT rotates x left n bits. */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
/*
* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
* Rotation is separate from addition to prevent recomputation.
*/
#define FF(a, b, c, d, x, s, ac) { \
(a) += F ((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
#define GG(a, b, c, d, x, s, ac) { \
(a) += G ((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
#define HH(a, b, c, d, x, s, ac) { \
(a) += H ((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
#define II(a, b, c, d, x, s, ac) { \
(a) += I ((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
/* MD5 initialization. Begins an MD5 operation, writing a new context. */
static void __md5_Init(struct MD5Context *context)
{
context->count[0] = context->count[1] = 0;
/* Load magic initialization constants. */
context->state[0] = 0x67452301;
context->state[1] = 0xefcdab89;
context->state[2] = 0x98badcfe;
context->state[3] = 0x10325476;
}
/*
* MD5 block update operation. Continues an MD5 message-digest
* operation, processing another message block, and updating the
* context.
*/
static void __md5_Update(struct MD5Context *context, const unsigned char *input, unsigned int inputLen)
{
unsigned int i, idx, partLen;
/* Compute number of bytes mod 64 */
idx = (context->count[0] >> 3) & 0x3F;
/* Update number of bits */
context->count[0] += (inputLen << 3);
if (context->count[0] < (inputLen << 3))
context->count[1]++;
context->count[1] += (inputLen >> 29);
partLen = 64 - idx;
/* Transform as many times as possible. */
if (inputLen >= partLen) {
memcpy(&context->buffer[idx], input, partLen);
__md5_Transform(context->state, context->buffer);
for (i = partLen; i + 63 < inputLen; i += 64)
__md5_Transform(context->state, &input[i]);
idx = 0;
} else
i = 0;
/* Buffer remaining input */
memcpy(&context->buffer[idx], &input[i], inputLen - i);
}
/*
* MD5 padding. Adds padding followed by original length.
*/
static void __md5_Pad(struct MD5Context *context)
{
unsigned char bits[8];
unsigned int idx, padLen;
unsigned char PADDING[64];
memset(PADDING, 0, sizeof(PADDING));
PADDING[0] = 0x80;
/* Save number of bits */
__md5_Encode(bits, context->count, 8);
/* Pad out to 56 mod 64. */
idx = (context->count[0] >> 3) & 0x3f;
padLen = (idx < 56) ? (56 - idx) : (120 - idx);
__md5_Update(context, PADDING, padLen);
/* Append length (before padding) */
__md5_Update(context, bits, 8);
}
/*
* MD5 finalization. Ends an MD5 message-digest operation, writing the
* the message digest and zeroizing the context.
*/
static void __md5_Final(unsigned char digest[16], struct MD5Context *context)
{
/* Do padding. */
__md5_Pad(context);
/* Store state in digest */
__md5_Encode(digest, context->state, 16);
/* Zeroize sensitive information. */
memset(context, 0, sizeof(*context));
}
/* MD5 basic transformation. Transforms state based on block. */
static void __md5_Transform(uint32_t state[4], const unsigned char block[64])
{
uint32_t a, b, c, d, x[16];
#if MD5_SIZE_OVER_SPEED > 1
uint32_t temp;
const unsigned char *ps;
static const unsigned char S[] = {
7, 12, 17, 22,
5, 9, 14, 20,
4, 11, 16, 23,
6, 10, 15, 21
};
#endif /* MD5_SIZE_OVER_SPEED > 1 */
#if MD5_SIZE_OVER_SPEED > 0
const uint32_t *pc;
const unsigned char *pp;
int i;
static const uint32_t C[] = {
/* round 1 */
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
/* round 2 */
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
/* round 3 */
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
/* round 4 */
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
};
static const unsigned char P[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */
};
#endif /* MD5_SIZE_OVER_SPEED > 0 */
__md5_Decode(x, block, 64);
a = state[0]; b = state[1]; c = state[2]; d = state[3];
#if MD5_SIZE_OVER_SPEED > 2
pc = C; pp = P; ps = S - 4;
for (i = 0; i < 64; i++) {
if ((i & 0x0f) == 0) ps += 4;
temp = a;
switch (i>>4) {
case 0:
temp += F(b, c, d);
break;
case 1:
temp += G(b, c, d);
break;
case 2:
temp += H(b, c, d);
break;
case 3:
temp += I(b, c, d);
break;
}
temp += x[*pp++] + *pc++;
temp = ROTATE_LEFT(temp, ps[i & 3]);
temp += b;
a = d; d = c; c = b; b = temp;
}
#elif MD5_SIZE_OVER_SPEED > 1
pc = C; pp = P; ps = S;
/* Round 1 */
for (i = 0; i < 16; i++) {
FF(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++;
temp = d; d = c; c = b; b = a; a = temp;
}
/* Round 2 */
ps += 4;
for (; i < 32; i++) {
GG(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++;
temp = d; d = c; c = b; b = a; a = temp;
}
/* Round 3 */
ps += 4;
for (; i < 48; i++) {
HH(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++;
temp = d; d = c; c = b; b = a; a = temp;
}
/* Round 4 */
ps += 4;
for (; i < 64; i++) {
II(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++;
temp = d; d = c; c = b; b = a; a = temp;
}
#elif MD5_SIZE_OVER_SPEED > 0
pc = C; pp = P;
/* Round 1 */
for (i = 0; i < 4; i++) {
FF(a, b, c, d, x[*pp], 7, *pc); pp++; pc++;
FF(d, a, b, c, x[*pp], 12, *pc); pp++; pc++;
FF(c, d, a, b, x[*pp], 17, *pc); pp++; pc++;
FF(b, c, d, a, x[*pp], 22, *pc); pp++; pc++;
}
/* Round 2 */
for (i = 0; i < 4; i++) {
GG(a, b, c, d, x[*pp], 5, *pc); pp++; pc++;
GG(d, a, b, c, x[*pp], 9, *pc); pp++; pc++;
GG(c, d, a, b, x[*pp], 14, *pc); pp++; pc++;
GG(b, c, d, a, x[*pp], 20, *pc); pp++; pc++;
}
/* Round 3 */
for (i = 0; i < 4; i++) {
HH(a, b, c, d, x[*pp], 4, *pc); pp++; pc++;
HH(d, a, b, c, x[*pp], 11, *pc); pp++; pc++;
HH(c, d, a, b, x[*pp], 16, *pc); pp++; pc++;
HH(b, c, d, a, x[*pp], 23, *pc); pp++; pc++;
}
/* Round 4 */
for (i = 0; i < 4; i++) {
II(a, b, c, d, x[*pp], 6, *pc); pp++; pc++;
II(d, a, b, c, x[*pp], 10, *pc); pp++; pc++;
II(c, d, a, b, x[*pp], 15, *pc); pp++; pc++;
II(b, c, d, a, x[*pp], 21, *pc); pp++; pc++;
}
#else
/* Round 1 */
#define S11 7
#define S12 12
#define S13 17
#define S14 22
FF(a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
FF(d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
FF(c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
FF(b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
FF(a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
FF(d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
FF(c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
FF(b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
FF(a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
FF(d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
/* Round 2 */
#define S21 5
#define S22 9
#define S23 14
#define S24 20
GG(a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
GG(d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
GG(b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
GG(a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */
GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
GG(b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
GG(a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
GG(c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
GG(b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
GG(d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
GG(c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
/* Round 3 */
#define S31 4
#define S32 11
#define S33 16
#define S34 23
HH(a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
HH(d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
HH(a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
HH(d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
HH(c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
HH(d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
HH(c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
HH(b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */
HH(a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
HH(b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */
/* Round 4 */
#define S41 6
#define S42 10
#define S43 15
#define S44 21
II(a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
II(d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
II(b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
II(d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
II(b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
II(a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
II(c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
II(a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
II(c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
II(b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */
#endif
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
/* Zeroize sensitive information. */
memset(x, 0, sizeof(x));
}
static void
__md5_to64(char *s, unsigned long v, int n)
{
while (--n >= 0) {
*s++ = ascii64[v & 0x3f];
v >>= 6;
}
}
/*
* UNIX password
*
* Use MD5 for what it is best at...
*/
#define MD5_OUT_BUFSIZE 120
static char *
md5_crypt(char passwd[120], const unsigned char *pw, const unsigned char *salt)
{
const unsigned char *sp, *ep;
char *p;
unsigned char final[17]; /* final[16] exists only to aid in looping */
int sl, pl, i, pw_len;
struct MD5Context ctx, ctx1;
unsigned long l;
/* Refine the Salt first */
sp = salt;
// always true for bbox
// /* If it starts with the magic string, then skip that */
// if (!strncmp(sp, __md5__magic, MD5_MAGIC_LEN))
sp += MD5_MAGIC_LEN;
/* It stops at the first '$', max 8 chars */
for (ep = sp; *ep && *ep != '$' && ep < (sp+8); ep++)
continue;
/* get the length of the true salt */
sl = ep - sp;
__md5_Init(&ctx);
/* The password first, since that is what is most unknown */
pw_len = strlen((char*)pw);
__md5_Update(&ctx, pw, pw_len);
/* Then our magic string */
__md5_Update(&ctx, __md5__magic, MD5_MAGIC_LEN);
/* Then the raw salt */
__md5_Update(&ctx, sp, sl);
/* Then just as many characters of the MD5(pw, salt, pw) */
__md5_Init(&ctx1);
__md5_Update(&ctx1, pw, pw_len);
__md5_Update(&ctx1, sp, sl);
__md5_Update(&ctx1, pw, pw_len);
__md5_Final(final, &ctx1);
for (pl = pw_len; pl > 0; pl -= 16)
__md5_Update(&ctx, final, pl > 16 ? 16 : pl);
/* Don't leave anything around in vm they could use. */
//TODO: the above comment seems to be wrong. final is used later.
memset(final, 0, sizeof(final));
/* Then something really weird... */
for (i = pw_len; i; i >>= 1) {
__md5_Update(&ctx, ((i & 1) ? final : (const unsigned char *) pw), 1);
}
/* Now make the output string */
passwd[0] = '$';
passwd[1] = '1';
passwd[2] = '$';
strncpy(passwd + 3, (char*)sp, sl);
passwd[sl + 3] = '$';
passwd[sl + 4] = '\0';
__md5_Final(final, &ctx);
/*
* and now, just to make sure things don't run too fast
* On a 60 Mhz Pentium this takes 34 msec, so you would
* need 30 seconds to build a 1000 entry dictionary...
*/
for (i = 0; i < 1000; i++) {
__md5_Init(&ctx1);
if (i & 1)
__md5_Update(&ctx1, pw, pw_len);
else
__md5_Update(&ctx1, final, 16);
if (i % 3)
__md5_Update(&ctx1, sp, sl);
if (i % 7)
__md5_Update(&ctx1, pw, pw_len);
if (i & 1)
__md5_Update(&ctx1, final, 16);
else
__md5_Update(&ctx1, pw, pw_len);
__md5_Final(final, &ctx1);
}
p = passwd + sl + 4; /*strlen(passwd);*/
final[16] = final[5];
for (i = 0; i < 5; i++) {
l = (final[i] << 16) | (final[i+6] << 8) | final[i+12];
__md5_to64(p, l, 4); p += 4;
}
l = final[11];
__md5_to64(p, l, 2); p += 2;
*p = '\0';
/* Don't leave anything around in vm they could use. */
memset(final, 0, sizeof(final));
return passwd;
}
#undef MD5_SIZE_OVER_SPEED
#undef MD5_MAGIC_STR
#undef MD5_MAGIC_LEN
#undef __md5_Encode
#undef __md5_Decode
#undef F
#undef G
#undef H
#undef I
#undef ROTATE_LEFT
#undef FF
#undef GG
#undef HH
#undef II
#undef S11
#undef S12
#undef S13
#undef S14
#undef S21
#undef S22
#undef S23
#undef S24
#undef S31
#undef S32
#undef S33
#undef S34
#undef S41
#undef S42
#undef S43
#undef S44

View File

@ -47,7 +47,7 @@ int chpasswd_main(int argc ATTRIBUTE_UNUSED, char **argv)
strcpy(salt, "$1$"); strcpy(salt, "$1$");
rnd = crypt_make_salt(salt + 3, 4, rnd); rnd = crypt_make_salt(salt + 3, 4, rnd);
} }
pass = pw_encrypt(pass, salt); pass = pw_encrypt(pass, salt, 0);
} }
/* This is rather complex: if user is not found in /etc/shadow, /* This is rather complex: if user is not found in /etc/shadow,

View File

@ -7,6 +7,30 @@
#include "libbb.h" #include "libbb.h"
#define TESTING 0
/*
set TESTING to 1 and pipe some file through this script
if you played with bbox's crypt implementation.
while read line; do
n=`./busybox cryptpw -a des -- "$line"`
o=`./busybox_old cryptpw -a des -- "$line"`
test "$n" != "$o" && {
echo n="$n"
echo o="$o"
exit
}
n=`./busybox cryptpw -- "$line"`
o=`./busybox_old cryptpw -- "$line"`
test "$n" != "$o" && {
echo n="$n"
echo o="$o"
exit
}
done
*/
int cryptpw_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE; int cryptpw_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int cryptpw_main(int argc ATTRIBUTE_UNUSED, char **argv) int cryptpw_main(int argc ATTRIBUTE_UNUSED, char **argv)
{ {
@ -18,11 +42,17 @@ int cryptpw_main(int argc ATTRIBUTE_UNUSED, char **argv)
//((uint32_t*)&salt)[0] = '$' + '1'*0x100 + '$'*0x10000; //((uint32_t*)&salt)[0] = '$' + '1'*0x100 + '$'*0x10000;
/* Hope one day gcc will do it itself (inlining strcpy) */ /* Hope one day gcc will do it itself (inlining strcpy) */
crypt_make_salt(salt + 3, 4, 0); /* md5 */ crypt_make_salt(salt + 3, 4, 0); /* md5 */
#if TESTING
strcpy(salt + 3, "ajg./bcf");
#endif
} else { } else {
crypt_make_salt(salt, 1, 0); /* des */ crypt_make_salt(salt, 1, 0); /* des */
#if TESTING
strcpy(salt, "a.");
#endif
} }
puts(pw_encrypt(argv[optind] ? argv[optind] : xmalloc_fgetline(stdin), salt)); puts(pw_encrypt(argv[optind] ? argv[optind] : xmalloc_fgetline(stdin), salt, 1));
return 0; return 0;
} }

View File

@ -24,7 +24,7 @@ static char* new_password(const struct passwd *pw, uid_t myuid, int algo)
orig = bb_askpass(0, "Old password:"); /* returns ptr to static */ orig = bb_askpass(0, "Old password:"); /* returns ptr to static */
if (!orig) if (!orig)
goto err_ret; goto err_ret;
cipher = pw_encrypt(orig, pw->pw_passwd); /* returns ptr to static */ cipher = pw_encrypt(orig, pw->pw_passwd, 1); /* returns ptr to static */
if (strcmp(cipher, pw->pw_passwd) != 0) { if (strcmp(cipher, pw->pw_passwd) != 0) {
syslog(LOG_WARNING, "incorrect password for '%s'", syslog(LOG_WARNING, "incorrect password for '%s'",
pw->pw_name); pw->pw_name);
@ -56,7 +56,7 @@ static char* new_password(const struct passwd *pw, uid_t myuid, int algo)
crypt_make_salt(salt + 3, 4, 0); crypt_make_salt(salt + 3, 4, 0);
} }
/* pw_encrypt returns ptr to static */ /* pw_encrypt returns ptr to static */
ret = xstrdup(pw_encrypt(newp, salt)); ret = xstrdup(pw_encrypt(newp, salt, 1));
/* whee, success! */ /* whee, success! */
err_ret: err_ret:

View File

@ -81,7 +81,7 @@ int sulogin_main(int argc ATTRIBUTE_UNUSED, char **argv)
bb_info_msg("Normal startup"); bb_info_msg("Normal startup");
return 0; return 0;
} }
if (strcmp(pw_encrypt(cp, pwd->pw_passwd), pwd->pw_passwd) == 0) { if (strcmp(pw_encrypt(cp, pwd->pw_passwd, 1), pwd->pw_passwd) == 0) {
break; break;
} }
bb_do_delay(FAIL_DELAY); bb_do_delay(FAIL_DELAY);

View File

@ -1733,7 +1733,7 @@ static int checkPerm(const char *path, const char *request)
&& pp[3] == '$' && pp[4] && pp[3] == '$' && pp[4]
) { ) {
pp++; pp++;
cipher = pw_encrypt(u+1, pp); cipher = pw_encrypt(u+1, pp, 1);
if (strcmp(cipher, pp) == 0) if (strcmp(cipher, pp) == 0)
goto set_remoteuser_var; /* Ok */ goto set_remoteuser_var; /* Ok */
/* unauthorized */ /* unauthorized */
@ -2352,7 +2352,7 @@ int httpd_main(int argc ATTRIBUTE_UNUSED, char **argv)
#endif #endif
#if ENABLE_FEATURE_HTTPD_AUTH_MD5 #if ENABLE_FEATURE_HTTPD_AUTH_MD5
if (opt & OPT_MD5) { if (opt & OPT_MD5) {
puts(pw_encrypt(pass, "$1$")); puts(pw_encrypt(pass, "$1$", 1));
return 0; return 0;
} }
#endif #endif