busybox/networking/tls.c
Denys Vlasenko 19e695ebad tls: do not use common_bufsiz
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
2017-01-20 14:27:58 +01:00

1525 lines
51 KiB
C

/*
* Copyright (C) 2017 Denys Vlasenko
*
* Licensed under GPLv2, see file LICENSE in this source tree.
*/
//config:config TLS
//config: bool "tls (debugging)"
//config: default n
//applet:IF_TLS(APPLET(tls, BB_DIR_USR_BIN, BB_SUID_DROP))
//kbuild:lib-$(CONFIG_TLS) += tls.o
//kbuild:lib-$(CONFIG_TLS) += tls_pstm.o
//kbuild:lib-$(CONFIG_TLS) += tls_pstm_montgomery_reduce.o
//kbuild:lib-$(CONFIG_TLS) += tls_pstm_mul_comba.o
//kbuild:lib-$(CONFIG_TLS) += tls_pstm_sqr_comba.o
//kbuild:lib-$(CONFIG_TLS) += tls_rsa.o
//kbuild:lib-$(CONFIG_TLS) += tls_aes.o
////kbuild:lib-$(CONFIG_TLS) += tls_aes_gcm.o
//usage:#define tls_trivial_usage
//usage: "HOST[:PORT]"
//usage:#define tls_full_usage "\n\n"
#include "tls.h"
//#include "common_bufsiz.h"
#define TLS_DEBUG 1
#define TLS_DEBUG_HASH 1
#define TLS_DEBUG_DER 0
#define TLS_DEBUG_FIXED_SECRETS 0
#if TLS_DEBUG
# define dbg(...) fprintf(stderr, __VA_ARGS__)
#else
# define dbg(...) ((void)0)
#endif
#if TLS_DEBUG_DER
# define dbg_der(...) fprintf(stderr, __VA_ARGS__)
#else
# define dbg_der(...) ((void)0)
#endif
#define RECORD_TYPE_CHANGE_CIPHER_SPEC 20
#define RECORD_TYPE_ALERT 21
#define RECORD_TYPE_HANDSHAKE 22
#define RECORD_TYPE_APPLICATION_DATA 23
#define HANDSHAKE_HELLO_REQUEST 0
#define HANDSHAKE_CLIENT_HELLO 1
#define HANDSHAKE_SERVER_HELLO 2
#define HANDSHAKE_HELLO_VERIFY_REQUEST 3
#define HANDSHAKE_NEW_SESSION_TICKET 4
#define HANDSHAKE_CERTIFICATE 11
#define HANDSHAKE_SERVER_KEY_EXCHANGE 12
#define HANDSHAKE_CERTIFICATE_REQUEST 13
#define HANDSHAKE_SERVER_HELLO_DONE 14
#define HANDSHAKE_CERTIFICATE_VERIFY 15
#define HANDSHAKE_CLIENT_KEY_EXCHANGE 16
#define HANDSHAKE_FINISHED 20
#define SSL_HS_RANDOM_SIZE 32
#define SSL_HS_RSA_PREMASTER_SIZE 48
#define SSL_NULL_WITH_NULL_NULL 0x0000
#define SSL_RSA_WITH_NULL_MD5 0x0001
#define SSL_RSA_WITH_NULL_SHA 0x0002
#define SSL_RSA_WITH_RC4_128_MD5 0x0004
#define SSL_RSA_WITH_RC4_128_SHA 0x0005
#define SSL_RSA_WITH_3DES_EDE_CBC_SHA 0x000A /* 10 */
#define TLS_RSA_WITH_AES_128_CBC_SHA 0x002F /* 47 */
#define TLS_RSA_WITH_AES_256_CBC_SHA 0x0035 /* 53 */
#define TLS_RSA_WITH_NULL_SHA256 0x003B /* 59 */
#define TLS_EMPTY_RENEGOTIATION_INFO_SCSV 0x00FF
#define TLS_RSA_WITH_IDEA_CBC_SHA 0x0007 /* 7 */
#define SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA 0x0016 /* 22 */
#define SSL_DH_anon_WITH_RC4_128_MD5 0x0018 /* 24 */
#define SSL_DH_anon_WITH_3DES_EDE_CBC_SHA 0x001B /* 27 */
#define TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x0033 /* 51 */
#define TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x0039 /* 57 */
#define TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 0x0067 /* 103 */
#define TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 0x006B /* 107 */
#define TLS_DH_anon_WITH_AES_128_CBC_SHA 0x0034 /* 52 */
#define TLS_DH_anon_WITH_AES_256_CBC_SHA 0x003A /* 58 */
#define TLS_RSA_WITH_AES_128_CBC_SHA256 0x003C /* 60 */
#define TLS_RSA_WITH_AES_256_CBC_SHA256 0x003D /* 61 */
#define TLS_RSA_WITH_SEED_CBC_SHA 0x0096 /* 150 */
#define TLS_PSK_WITH_AES_128_CBC_SHA 0x008C /* 140 */
#define TLS_PSK_WITH_AES_128_CBC_SHA256 0x00AE /* 174 */
#define TLS_PSK_WITH_AES_256_CBC_SHA384 0x00AF /* 175 */
#define TLS_PSK_WITH_AES_256_CBC_SHA 0x008D /* 141 */
#define TLS_DHE_PSK_WITH_AES_128_CBC_SHA 0x0090 /* 144 */
#define TLS_DHE_PSK_WITH_AES_256_CBC_SHA 0x0091 /* 145 */
#define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 0xC004 /* 49156 */
#define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 0xC005 /* 49157 */
#define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0xC009 /* 49161 */
#define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0xC00A /* 49162 */
#define TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0xC012 /* 49170 */
#define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0xC013 /* 49171 */
#define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0xC014 /* 49172 */
#define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA 0xC00E /* 49166 */
#define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA 0xC00F /* 49167 */
#define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0xC023 /* 49187 */
#define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0xC024 /* 49188 */
#define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 0xC025 /* 49189 */
#define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 0xC026 /* 49190 */
#define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0xC027 /* 49191 */
#define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0xC028 /* 49192 */
#define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 0xC029 /* 49193 */
#define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 0xC02A /* 49194 */
// RFC 5288 "AES Galois Counter Mode (GCM) Cipher Suites for TLS"
#define TLS_RSA_WITH_AES_128_GCM_SHA256 0x009C /* 156 */
#define TLS_RSA_WITH_AES_256_GCM_SHA384 0x009D /* 157 */
#define TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xC02B /* 49195 */
#define TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xC02C /* 49196 */
#define TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 0xC02D /* 49197 */
#define TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 0xC02E /* 49198 */
#define TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0xC02F /* 49199 */
#define TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0xC030 /* 49200 */
#define TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 0xC031 /* 49201 */
#define TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 0xC032 /* 49202 */
//Tested against kernel.org:
//TLS 1.1
//#define TLS_MAJ 3
//#define TLS_MIN 2
//#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA // ok, recvs SERVER_KEY_EXCHANGE
//TLS 1.2
#define TLS_MAJ 3
#define TLS_MIN 3
//#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA // ok, recvs SERVER_KEY_EXCHANGE *** matrixssl uses this on my box
//#define CIPHER_ID TLS_RSA_WITH_AES_256_CBC_SHA256 // ok, no SERVER_KEY_EXCHANGE
// All GCMs:
//#define CIPHER_ID TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 // SSL_ALERT_HANDSHAKE_FAILURE
//#define CIPHER_ID TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE
//#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 // ok, recvs SERVER_KEY_EXCHANGE
//#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
//#define CIPHER_ID TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
//#define CIPHER_ID TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE
//#define CIPHER_ID TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
//#define CIPHER_ID TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE
//#define CIPHER_ID TLS_RSA_WITH_AES_256_GCM_SHA384 // ok, no SERVER_KEY_EXCHANGE
//#define CIPHER_ID TLS_RSA_WITH_AES_128_GCM_SHA256 // ok, no SERVER_KEY_EXCHANGE *** select this?
//#define CIPHER_ID TLS_DH_anon_WITH_AES_256_CBC_SHA // SSL_ALERT_HANDSHAKE_FAILURE
//^^^^^^^^^^^^^^^^^^^^^^^ (tested b/c this one doesn't req server certs... no luck)
//test TLS_RSA_WITH_AES_128_CBC_SHA, in TLS 1.2 it's mandated to be always supported
// works against "openssl s_server -cipher NULL"
// and against wolfssl-3.9.10-stable/examples/server/server.c:
//#define CIPHER_ID TLS_RSA_WITH_NULL_SHA256 // for testing (does everything except encrypting)
// works against wolfssl-3.9.10-stable/examples/server/server.c
#define CIPHER_ID TLS_RSA_WITH_AES_256_CBC_SHA256 // ok, no SERVER_KEY_EXCHANGE
enum {
SHA256_INSIZE = 64,
SHA256_OUTSIZE = 32,
AES_BLOCKSIZE = 16,
AES128_KEYSIZE = 16,
AES256_KEYSIZE = 32,
RECHDR_LEN = 5,
MAX_TLS_RECORD = (1 << 14),
OUTBUF_PFX = 8 + AES_BLOCKSIZE, /* header + IV */
OUTBUF_SFX = SHA256_OUTSIZE + AES_BLOCKSIZE, /* MAC + padding */
MAX_OTBUF = MAX_TLS_RECORD - OUTBUF_PFX - OUTBUF_SFX,
};
struct record_hdr {
uint8_t type;
uint8_t proto_maj, proto_min;
uint8_t len16_hi, len16_lo;
};
typedef struct tls_state {
int fd;
psRsaKey_t server_rsa_pub_key;
sha256_ctx_t handshake_sha256_ctx;
uint8_t client_and_server_rand32[2 * 32];
uint8_t master_secret[48];
uint8_t encrypt_on_write;
int min_encrypted_len_on_read;
uint8_t client_write_MAC_key[SHA256_OUTSIZE];
uint8_t server_write_MAC_key[SHA256_OUTSIZE];
uint8_t client_write_key[AES256_KEYSIZE];
uint8_t server_write_key[AES256_KEYSIZE];
// RFC 5246
// sequence number
// Each connection state contains a sequence number, which is
// maintained separately for read and write states. The sequence
// number MUST be set to zero whenever a connection state is made the
// active state. Sequence numbers are of type uint64 and may not
// exceed 2^64-1.
uint64_t write_seq64_be;
int outbuf_size;
uint8_t *outbuf;
// RFC 5246
// |6.2.1. Fragmentation
// | The record layer fragments information blocks into TLSPlaintext
// | records carrying data in chunks of 2^14 bytes or less. Client
// | message boundaries are not preserved in the record layer (i.e.,
// | multiple client messages of the same ContentType MAY be coalesced
// | into a single TLSPlaintext record, or a single message MAY be
// | fragmented across several records)
// |...
// | length
// | The length (in bytes) of the following TLSPlaintext.fragment.
// | The length MUST NOT exceed 2^14.
// |...
// | 6.2.2. Record Compression and Decompression
// |...
// | Compression must be lossless and may not increase the content length
// | by more than 1024 bytes. If the decompression function encounters a
// | TLSCompressed.fragment that would decompress to a length in excess of
// | 2^14 bytes, it MUST report a fatal decompression failure error.
// |...
// | length
// | The length (in bytes) of the following TLSCompressed.fragment.
// | The length MUST NOT exceed 2^14 + 1024.
//
// Since our buffer also contains 5-byte headers, make it a bit bigger:
int insize;
int tail;
//needed?
uint64_t align____;
uint8_t inbuf[20*1024];
} tls_state_t;
static unsigned get24be(const uint8_t *p)
{
return 0x100*(0x100*p[0] + p[1]) + p[2];
}
#if TLS_DEBUG
static void dump_hex(const char *fmt, const void *vp, int len)
{
char hexbuf[32 * 1024 + 4];
const uint8_t *p = vp;
bin2hex(hexbuf, (void*)p, len)[0] = '\0';
dbg(fmt, hexbuf);
}
static void dump_tls_record(const void *vp, int len)
{
const uint8_t *p = vp;
while (len > 0) {
unsigned xhdr_len;
if (len < RECHDR_LEN) {
dump_hex("< |%s|\n", p, len);
return;
}
xhdr_len = 0x100*p[3] + p[4];
dbg("< hdr_type:%u ver:%u.%u len:%u", p[0], p[1], p[2], xhdr_len);
p += RECHDR_LEN;
len -= RECHDR_LEN;
if (len >= 4 && p[-RECHDR_LEN] == RECORD_TYPE_HANDSHAKE) {
unsigned len24 = get24be(p + 1);
dbg(" type:%u len24:%u", p[0], len24);
}
if (xhdr_len > len)
xhdr_len = len;
dump_hex(" |%s|\n", p, xhdr_len);
p += xhdr_len;
len -= xhdr_len;
}
}
#endif
void tls_get_random(void *buf, unsigned len)
{
if (len != open_read_close("/dev/urandom", buf, len))
xfunc_die();
}
//TODO rename this to sha256_hash, and sha256_hash -> sha256_update
static void hash_sha256(uint8_t out[SHA256_OUTSIZE], const void *data, unsigned size)
{
sha256_ctx_t ctx;
sha256_begin(&ctx);
sha256_hash(&ctx, data, size);
sha256_end(&ctx, out);
}
/* Nondestructively see the current hash value */
static void sha256_peek(sha256_ctx_t *ctx, void *buffer)
{
sha256_ctx_t ctx_copy = *ctx;
sha256_end(&ctx_copy, buffer);
}
#if TLS_DEBUG_HASH
static void sha256_hash_dbg(const char *fmt, sha256_ctx_t *ctx, const void *buffer, size_t len)
{
uint8_t h[SHA256_OUTSIZE];
sha256_hash(ctx, buffer, len);
dump_hex(fmt, buffer, len);
dbg(" (%u) ", (int)len);
sha256_peek(ctx, h);
dump_hex("%s\n", h, SHA256_OUTSIZE);
}
#else
# define sha256_hash_dbg(fmt, ctx, buffer, len) \
sha256_hash(ctx, buffer, len)
#endif
// RFC 2104
// HMAC(key, text) based on a hash H (say, sha256) is:
// ipad = [0x36 x INSIZE]
// opad = [0x5c x INSIZE]
// HMAC(key, text) = H((key XOR opad) + H((key XOR ipad) + text))
//
// H(key XOR opad) and H(key XOR ipad) can be precomputed
// if we often need HMAC hmac with the same key.
//
// text is often given in disjoint pieces.
static void hmac_sha256_precomputed_v(uint8_t out[SHA256_OUTSIZE],
sha256_ctx_t *hashed_key_xor_ipad,
sha256_ctx_t *hashed_key_xor_opad,
va_list va)
{
uint8_t *text;
/* hashed_key_xor_ipad contains unclosed "H((key XOR ipad) +" state */
/* hashed_key_xor_opad contains unclosed "H((key XOR opad) +" state */
/* calculate out = H((key XOR ipad) + text) */
while ((text = va_arg(va, uint8_t*)) != NULL) {
unsigned text_size = va_arg(va, unsigned);
sha256_hash(hashed_key_xor_ipad, text, text_size);
}
sha256_end(hashed_key_xor_ipad, out);
/* out = H((key XOR opad) + out) */
sha256_hash(hashed_key_xor_opad, out, SHA256_OUTSIZE);
sha256_end(hashed_key_xor_opad, out);
}
static void hmac_sha256(uint8_t out[SHA256_OUTSIZE], uint8_t *key, unsigned key_size, ...)
{
sha256_ctx_t hashed_key_xor_ipad;
sha256_ctx_t hashed_key_xor_opad;
uint8_t key_xor_ipad[SHA256_INSIZE];
uint8_t key_xor_opad[SHA256_INSIZE];
uint8_t tempkey[SHA256_OUTSIZE];
va_list va;
int i;
va_start(va, key_size);
// "The authentication key can be of any length up to INSIZE, the
// block length of the hash function. Applications that use keys longer
// than INSIZE bytes will first hash the key using H and then use the
// resultant OUTSIZE byte string as the actual key to HMAC."
if (key_size > SHA256_INSIZE) {
hash_sha256(tempkey, key, key_size);
key = tempkey;
key_size = SHA256_OUTSIZE;
}
for (i = 0; i < key_size; i++) {
key_xor_ipad[i] = key[i] ^ 0x36;
key_xor_opad[i] = key[i] ^ 0x5c;
}
for (; i < SHA256_INSIZE; i++) {
key_xor_ipad[i] = 0x36;
key_xor_opad[i] = 0x5c;
}
sha256_begin(&hashed_key_xor_ipad);
sha256_hash(&hashed_key_xor_ipad, key_xor_ipad, SHA256_INSIZE);
sha256_begin(&hashed_key_xor_opad);
sha256_hash(&hashed_key_xor_opad, key_xor_opad, SHA256_INSIZE);
hmac_sha256_precomputed_v(out, &hashed_key_xor_ipad, &hashed_key_xor_opad, va);
va_end(va);
}
// RFC 5246:
// 5. HMAC and the Pseudorandom Function
//...
// In this section, we define one PRF, based on HMAC. This PRF with the
// SHA-256 hash function is used for all cipher suites defined in this
// document and in TLS documents published prior to this document when
// TLS 1.2 is negotiated.
//...
// P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
// HMAC_hash(secret, A(2) + seed) +
// HMAC_hash(secret, A(3) + seed) + ...
// where + indicates concatenation.
// A() is defined as:
// A(0) = seed
// A(1) = HMAC_hash(secret, A(0)) = HMAC_hash(secret, seed)
// A(i) = HMAC_hash(secret, A(i-1))
// P_hash can be iterated as many times as necessary to produce the
// required quantity of data. For example, if P_SHA256 is being used to
// create 80 bytes of data, it will have to be iterated three times
// (through A(3)), creating 96 bytes of output data; the last 16 bytes
// of the final iteration will then be discarded, leaving 80 bytes of
// output data.
//
// TLS's PRF is created by applying P_hash to the secret as:
//
// PRF(secret, label, seed) = P_<hash>(secret, label + seed)
//
// The label is an ASCII string.
static void prf_hmac_sha256(
uint8_t *outbuf, unsigned outbuf_size,
uint8_t *secret, unsigned secret_size,
const char *label,
uint8_t *seed, unsigned seed_size)
{
uint8_t a[SHA256_OUTSIZE];
uint8_t *out_p = outbuf;
unsigned label_size = strlen(label);
/* In P_hash() calculation, "seed" is "label + seed": */
#define SEED label, label_size, seed, seed_size
#define SECRET secret, secret_size
#define A a, (int)(sizeof(a))
/* A(1) = HMAC_hash(secret, seed) */
hmac_sha256(a, SECRET, SEED, NULL);
//TODO: convert hmac_sha256 to precomputed
for(;;) {
/* HMAC_hash(secret, A(1) + seed) */
if (outbuf_size <= SHA256_OUTSIZE) {
/* Last, possibly incomplete, block */
/* (use a[] as temp buffer) */
hmac_sha256(a, SECRET, A, SEED, NULL);
memcpy(out_p, a, outbuf_size);
return;
}
/* Not last block. Store directly to result buffer */
hmac_sha256(out_p, SECRET, A, SEED, NULL);
out_p += SHA256_OUTSIZE;
outbuf_size -= SHA256_OUTSIZE;
/* A(2) = HMAC_hash(secret, A(1)) */
hmac_sha256(a, SECRET, A, NULL);
}
#undef A
#undef SECRET
#undef SEED
}
static tls_state_t *new_tls_state(void)
{
tls_state_t *tls = xzalloc(sizeof(*tls));
tls->fd = -1;
sha256_begin(&tls->handshake_sha256_ctx);
return tls;
}
static void tls_error_die(tls_state_t *tls)
{
dump_tls_record(tls->inbuf, tls->insize + tls->tail);
xfunc_die();
}
static void *tls_get_outbuf(tls_state_t *tls, int len)
{
if (len > MAX_OTBUF)
xfunc_die();
if (tls->outbuf_size < len + OUTBUF_PFX + OUTBUF_SFX) {
tls->outbuf_size = len + OUTBUF_PFX + OUTBUF_SFX;
tls->outbuf = xrealloc(tls->outbuf, tls->outbuf_size);
}
return tls->outbuf + OUTBUF_PFX;
}
// RFC 5246
// 6.2.3.1. Null or Standard Stream Cipher
//
// Stream ciphers (including BulkCipherAlgorithm.null; see Appendix A.6)
// convert TLSCompressed.fragment structures to and from stream
// TLSCiphertext.fragment structures.
//
// stream-ciphered struct {
// opaque content[TLSCompressed.length];
// opaque MAC[SecurityParameters.mac_length];
// } GenericStreamCipher;
//
// The MAC is generated as:
// MAC(MAC_write_key, seq_num +
// TLSCompressed.type +
// TLSCompressed.version +
// TLSCompressed.length +
// TLSCompressed.fragment);
// where "+" denotes concatenation.
// seq_num
// The sequence number for this record.
// MAC
// The MAC algorithm specified by SecurityParameters.mac_algorithm.
//
// Note that the MAC is computed before encryption. The stream cipher
// encrypts the entire block, including the MAC.
//...
// Appendix C. Cipher Suite Definitions
//...
// Key IV Block
// Cipher Type Material Size Size
// ------------ ------ -------- ---- -----
// AES_128_CBC Block 16 16 16
// AES_256_CBC Block 32 16 16
//
// MAC Algorithm mac_length mac_key_length
// -------- ----------- ---------- --------------
// SHA HMAC-SHA1 20 20
// SHA256 HMAC-SHA256 32 32
static void xwrite_encrypted(tls_state_t *tls, unsigned size, unsigned type)
{
uint8_t *buf = tls->outbuf + OUTBUF_PFX;
struct record_hdr *xhdr;
xhdr = (void*)(buf - RECHDR_LEN);
if (CIPHER_ID != TLS_RSA_WITH_NULL_SHA256)
xhdr = (void*)(buf - RECHDR_LEN - AES_BLOCKSIZE); /* place for IV */
xhdr->type = type;
xhdr->proto_maj = TLS_MAJ;
xhdr->proto_min = TLS_MIN;
/* fake unencrypted record header len for MAC calculation */
xhdr->len16_hi = size >> 8;
xhdr->len16_lo = size & 0xff;
/* Calculate MAC signature */
//TODO: convert hmac_sha256 to precomputed
hmac_sha256(buf + size,
tls->client_write_MAC_key, sizeof(tls->client_write_MAC_key),
&tls->write_seq64_be, sizeof(tls->write_seq64_be),
xhdr, RECHDR_LEN,
buf, size,
NULL);
tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(tls->write_seq64_be));
size += SHA256_OUTSIZE;
if (CIPHER_ID == TLS_RSA_WITH_NULL_SHA256) {
/* No encryption, only signing */
xhdr->len16_hi = size >> 8;
xhdr->len16_lo = size & 0xff;
dump_hex(">> %s\n", xhdr, RECHDR_LEN + size);
xwrite(tls->fd, xhdr, RECHDR_LEN + size);
dbg("wrote %u bytes (NULL crypt, SHA256 hash)\n", size);
return;
}
// RFC 5246
// 6.2.3.2. CBC Block Cipher
// For block ciphers (such as 3DES or AES), the encryption and MAC
// functions convert TLSCompressed.fragment structures to and from block
// TLSCiphertext.fragment structures.
// struct {
// opaque IV[SecurityParameters.record_iv_length];
// block-ciphered struct {
// opaque content[TLSCompressed.length];
// opaque MAC[SecurityParameters.mac_length];
// uint8 padding[GenericBlockCipher.padding_length];
// uint8 padding_length;
// };
// } GenericBlockCipher;
//...
// IV
// The Initialization Vector (IV) SHOULD be chosen at random, and
// MUST be unpredictable. Note that in versions of TLS prior to 1.1,
// there was no IV field (...). For block ciphers, the IV length is
// of length SecurityParameters.record_iv_length, which is equal to the
// SecurityParameters.block_size.
// padding
// Padding that is added to force the length of the plaintext to be
// an integral multiple of the block cipher's block length.
// padding_length
// The padding length MUST be such that the total size of the
// GenericBlockCipher structure is a multiple of the cipher's block
// length. Legal values range from zero to 255, inclusive.
//...
// Appendix C. Cipher Suite Definitions
//...
// Key IV Block
// Cipher Type Material Size Size
// ------------ ------ -------- ---- -----
// AES_128_CBC Block 16 16 16
// AES_256_CBC Block 32 16 16
{
psCipherContext_t ctx;
uint8_t *p;
uint8_t padding_length;
/* Build IV+content+MAC+padding in outbuf */
tls_get_random(buf - AES_BLOCKSIZE, AES_BLOCKSIZE); /* IV */
dbg("before crypt: 5 hdr + %u data + %u hash bytes\n", size, SHA256_OUTSIZE);
// RFC is talking nonsense:
// Padding that is added to force the length of the plaintext to be
// an integral multiple of the block cipher's block length.
// WRONG. _padding+padding_length_, not just _padding_,
// pads the data.
// IOW: padding_length is the last byte of padding[] array,
// contrary to what RFC depicts.
//
// What actually happens is that there is always padding.
// If you need one byte to reach BLOCKSIZE, this byte is 0x00.
// If you need two bytes, they are both 0x01.
// If you need three, they are 0x02,0x02,0x02. And so on.
// If you need no bytes to reach BLOCKSIZE, you have to pad a full
// BLOCKSIZE with bytes of value (BLOCKSIZE-1).
// It's ok to have more than minimum padding, but we do minimum.
p = buf + size;
padding_length = (~size) & (AES_BLOCKSIZE - 1);
do {
*p++ = padding_length; /* padding */
size++;
} while ((size & (AES_BLOCKSIZE - 1)) != 0);
/* Encrypt content+MAC+padding in place */
psAesInit(&ctx, buf - AES_BLOCKSIZE, /* IV */
tls->client_write_key, sizeof(tls->client_write_key)
);
psAesEncrypt(&ctx,
buf, /* plaintext */
buf, /* ciphertext */
size
);
/* Write out */
dbg("writing 5 + %u IV + %u encrypted bytes, padding_length:0x%02x\n",
AES_BLOCKSIZE, size, padding_length);
size += AES_BLOCKSIZE; /* + IV */
xhdr->len16_hi = size >> 8;
xhdr->len16_lo = size & 0xff;
dump_hex(">> %s\n", xhdr, RECHDR_LEN + size);
xwrite(tls->fd, xhdr, RECHDR_LEN + size);
dbg("wrote %u bytes\n", (int)RECHDR_LEN + size);
}
}
static void xwrite_and_update_handshake_hash(tls_state_t *tls, unsigned size)
{
if (!tls->encrypt_on_write) {
uint8_t *buf = tls->outbuf + OUTBUF_PFX;
struct record_hdr *xhdr = (void*)(buf - RECHDR_LEN);
xhdr->type = RECORD_TYPE_HANDSHAKE;
xhdr->proto_maj = TLS_MAJ;
xhdr->proto_min = TLS_MIN;
xhdr->len16_hi = size >> 8;
xhdr->len16_lo = size & 0xff;
dump_hex(">> %s\n", xhdr, RECHDR_LEN + size);
xwrite(tls->fd, xhdr, RECHDR_LEN + size);
dbg("wrote %u bytes\n", (int)RECHDR_LEN + size);
/* Handshake hash does not include record headers */
sha256_hash_dbg(">> sha256:%s", &tls->handshake_sha256_ctx, buf, size);
return;
}
xwrite_encrypted(tls, size, RECORD_TYPE_HANDSHAKE);
}
static int xread_tls_block(tls_state_t *tls)
{
struct record_hdr *xhdr;
int sz;
int total;
int target;
again:
dbg("insize:%u tail:%u\n", tls->insize, tls->tail);
if (tls->tail != 0)
memmove(tls->inbuf, tls->inbuf + tls->insize, tls->tail);
errno = 0;
total = tls->tail;
target = sizeof(tls->inbuf);
for (;;) {
if (total >= RECHDR_LEN && target == sizeof(tls->inbuf)) {
xhdr = (void*)tls->inbuf;
target = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo);
if (target >= sizeof(tls->inbuf)) {
/* malformed input (too long): yell and die */
tls->tail = 0;
tls->insize = total;
tls_error_die(tls);
}
// can also check type/proto_maj/proto_min here
}
/* if total >= target, we have a full packet (and possibly more)... */
if (total - target >= 0)
break;
sz = safe_read(tls->fd, tls->inbuf + total, sizeof(tls->inbuf) - total);
if (sz <= 0) {
if (sz == 0 && total == 0) {
/* "Abrupt" EOF, no TLS shutdown (seen from kernel.org) */
dbg("EOF (without TLS shutdown) from peer\n");
tls->tail = 0;
goto end;
}
bb_perror_msg_and_die("short read, have only %d", total);
}
dbg("read():%d\n", sz);
total += sz;
}
tls->tail = total - target;
tls->insize = target;
dbg("new insize:%u tail:%u\n", tls->insize, tls->tail);
sz = target - RECHDR_LEN;
/* Needs to be decrypted? */
if (tls->min_encrypted_len_on_read > SHA256_OUTSIZE) {
psCipherContext_t ctx;
uint8_t *p = tls->inbuf + RECHDR_LEN;
int padding_len;
if (sz & (AES_BLOCKSIZE-1)
|| sz < tls->min_encrypted_len_on_read
) {
bb_error_msg_and_die("bad encrypted len:%u", sz);
}
/* Decrypt content+MAC+padding in place */
psAesInit(&ctx, p, /* IV */
tls->server_write_key, sizeof(tls->server_write_key)
);
psAesDecrypt(&ctx,
p + AES_BLOCKSIZE, /* ciphertext */
p + AES_BLOCKSIZE, /* plaintext */
sz
);
padding_len = p[sz - 1];
dbg("encrypted size:%u type:0x%02x padding_length:0x%02x\n", sz, p[AES_BLOCKSIZE], padding_len);
padding_len++;
sz -= AES_BLOCKSIZE + SHA256_OUTSIZE + padding_len;
if (sz < 0) {
bb_error_msg_and_die("bad padding size:%u", padding_len);
}
if (sz != 0) {
/* Skip IV */
memmove(tls->inbuf + RECHDR_LEN, tls->inbuf + RECHDR_LEN + AES_BLOCKSIZE, sz);
}
} else {
/* if nonzero, then it's TLS_RSA_WITH_NULL_SHA256: drop MAC */
/* else: no encryption yet on input, subtract zero = NOP */
sz -= tls->min_encrypted_len_on_read;
}
//dump_hex("<< %s\n", tls->inbuf, RECHDR_LEN + sz);
xhdr = (void*)tls->inbuf;
if (xhdr->type == RECORD_TYPE_ALERT && sz >= 2) {
uint8_t *p = tls->inbuf + RECHDR_LEN;
dbg("ALERT size:%d level:%d description:%d\n", sz, p[0], p[1]);
if (p[0] == 1) { /*warning */
if (p[1] == 0) { /* warning, close_notify: EOF */
dbg("EOF (TLS encoded) from peer\n");
sz = 0;
goto end;
}
/* discard it, get next record */
goto again;
}
/* p[0] == 1: fatal error, others: not defined in protocol */
sz = 0;
goto end;
}
/* RFC 5246 is not saying it explicitly, but sha256 hash
* in our FINISHED record must include data of incoming packets too!
*/
if (tls->inbuf[0] == RECORD_TYPE_HANDSHAKE) {
sha256_hash_dbg("<< sha256:%s", &tls->handshake_sha256_ctx, tls->inbuf + RECHDR_LEN, sz);
}
end:
dbg("got block len:%u\n", sz);
return sz;
}
/*
* DER parsing routines
*/
static unsigned get_der_len(uint8_t **bodyp, uint8_t *der, uint8_t *end)
{
unsigned len, len1;
if (end - der < 2)
xfunc_die();
// if ((der[0] & 0x1f) == 0x1f) /* not single-byte item code? */
// xfunc_die();
len = der[1]; /* maybe it's short len */
if (len >= 0x80) {
/* no, it's long */
if (len == 0x80 || end - der < (int)(len - 0x7e)) {
/* 0x80 is "0 bytes of len", invalid DER: must use short len if can */
/* need 3 or 4 bytes for 81, 82 */
xfunc_die();
}
len1 = der[2]; /* if (len == 0x81) it's "ii 81 xx", fetch xx */
if (len > 0x82) {
/* >0x82 is "3+ bytes of len", should not happen realistically */
xfunc_die();
}
if (len == 0x82) { /* it's "ii 82 xx yy" */
len1 = 0x100*len1 + der[3];
der += 1; /* skip [yy] */
}
der += 1; /* skip [xx] */
len = len1;
// if (len < 0x80)
// xfunc_die(); /* invalid DER: must use short len if can */
}
der += 2; /* skip [code]+[1byte] */
if (end - der < (int)len)
xfunc_die();
*bodyp = der;
return len;
}
static uint8_t *enter_der_item(uint8_t *der, uint8_t **endp)
{
uint8_t *new_der;
unsigned len = get_der_len(&new_der, der, *endp);
dbg_der("entered der @%p:0x%02x len:%u inner_byte @%p:0x%02x\n", der, der[0], len, new_der, new_der[0]);
/* Move "end" position to cover only this item */
*endp = new_der + len;
return new_der;
}
static uint8_t *skip_der_item(uint8_t *der, uint8_t *end)
{
uint8_t *new_der;
unsigned len = get_der_len(&new_der, der, end);
/* Skip body */
new_der += len;
dbg_der("skipped der 0x%02x, next byte 0x%02x\n", der[0], new_der[0]);
return new_der;
}
static void der_binary_to_pstm(pstm_int *pstm_n, uint8_t *der, uint8_t *end)
{
uint8_t *bin_ptr;
unsigned len = get_der_len(&bin_ptr, der, end);
dbg_der("binary bytes:%u, first:0x%02x\n", len, bin_ptr[0]);
pstm_init_for_read_unsigned_bin(/*pool:*/ NULL, pstm_n, len);
pstm_read_unsigned_bin(pstm_n, bin_ptr, len);
//return bin + len;
}
static void find_key_in_der_cert(tls_state_t *tls, uint8_t *der, int len)
{
/* Certificate is a DER-encoded data structure. Each DER element has a length,
* which makes it easy to skip over large compound elements of any complexity
* without parsing them. Example: partial decode of kernel.org certificate:
* SEQ 0x05ac/1452 bytes (Certificate): 308205ac
* SEQ 0x0494/1172 bytes (tbsCertificate): 30820494
* [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0] 3 bytes: a003
* INTEGER (version): 0201 02
* INTEGER 0x11 bytes (serialNumber): 0211 00 9f85bf664b0cddafca508679501b2be4
* //^^^^^^note: matrixSSL also allows [ASN_CONTEXT_SPECIFIC | ASN_PRIMITIVE | 2] = 0x82 type
* SEQ 0x0d bytes (signatureAlgo): 300d
* OID 9 bytes: 0609 2a864886f70d01010b (OID_SHA256_RSA_SIG 42.134.72.134.247.13.1.1.11)
* NULL: 0500
* SEQ 0x5f bytes (issuer): 305f
* SET 11 bytes: 310b
* SEQ 9 bytes: 3009
* OID 3 bytes: 0603 550406
* Printable string "FR": 1302 4652
* SET 14 bytes: 310e
* SEQ 12 bytes: 300c
* OID 3 bytes: 0603 550408
* Printable string "Paris": 1305 5061726973
* SET 14 bytes: 310e
* SEQ 12 bytes: 300c
* OID 3 bytes: 0603 550407
* Printable string "Paris": 1305 5061726973
* SET 14 bytes: 310e
* SEQ 12 bytes: 300c
* OID 3 bytes: 0603 55040a
* Printable string "Gandi": 1305 47616e6469
* SET 32 bytes: 3120
* SEQ 30 bytes: 301e
* OID 3 bytes: 0603 550403
* Printable string "Gandi Standard SSL CA 2": 1317 47616e6469205374616e646172642053534c2043412032
* SEQ 30 bytes (validity): 301e
* TIME "161011000000Z": 170d 3136313031313030303030305a
* TIME "191011235959Z": 170d 3139313031313233353935395a
* SEQ 0x5b/91 bytes (subject): 305b //I did not decode this
* 3121301f060355040b1318446f6d61696e20436f
* 6e74726f6c2056616c6964617465643121301f06
* 0355040b1318506f73697469766553534c204d75
* 6c74692d446f6d61696e31133011060355040313
* 0a6b65726e656c2e6f7267
* SEQ 0x01a2/418 bytes (subjectPublicKeyInfo): 308201a2
* SEQ 13 bytes (algorithm): 300d
* OID 9 bytes: 0609 2a864886f70d010101 (OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1)
* NULL: 0500
* BITSTRING 0x018f/399 bytes (publicKey): 0382018f
* ????: 00
* //after the zero byte, it appears key itself uses DER encoding:
* SEQ 0x018a/394 bytes: 3082018a
* INTEGER 0x0181/385 bytes (modulus): 02820181
* 00b1ab2fc727a3bef76780c9349bf3
* ...24 more blocks of 15 bytes each...
* 90e895291c6bc8693b65
* INTEGER 3 bytes (exponent): 0203 010001
* [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0x3] 0x01e5 bytes (X509v3 extensions): a38201e5
* SEQ 0x01e1 bytes: 308201e1
* ...
* Certificate is a sequence of three elements:
* tbsCertificate (SEQ)
* signatureAlgorithm (AlgorithmIdentifier)
* signatureValue (BIT STRING)
*
* In turn, tbsCertificate is a sequence of:
* version
* serialNumber
* signatureAlgo (AlgorithmIdentifier)
* issuer (Name, has complex structure)
* validity (Validity, SEQ of two Times)
* subject (Name)
* subjectPublicKeyInfo (SEQ)
* ...
*
* subjectPublicKeyInfo is a sequence of:
* algorithm (AlgorithmIdentifier)
* publicKey (BIT STRING)
*
* We need Certificate.tbsCertificate.subjectPublicKeyInfo.publicKey
*/
uint8_t *end = der + len;
/* enter "Certificate" item: [der, end) will be only Cert */
der = enter_der_item(der, &end);
/* enter "tbsCertificate" item: [der, end) will be only tbsCert */
der = enter_der_item(der, &end);
/* skip up to subjectPublicKeyInfo */
der = skip_der_item(der, end); /* version */
der = skip_der_item(der, end); /* serialNumber */
der = skip_der_item(der, end); /* signatureAlgo */
der = skip_der_item(der, end); /* issuer */
der = skip_der_item(der, end); /* validity */
der = skip_der_item(der, end); /* subject */
/* enter subjectPublicKeyInfo */
der = enter_der_item(der, &end);
{ /* check subjectPublicKeyInfo.algorithm */
static const uint8_t expected[] = {
0x30,0x0d, // SEQ 13 bytes
0x06,0x09, 0x2a,0x86,0x48,0x86,0xf7,0x0d,0x01,0x01,0x01, // OID RSA_KEY_ALG 42.134.72.134.247.13.1.1.1
//0x05,0x00, // NULL
};
if (memcmp(der, expected, sizeof(expected)) != 0)
bb_error_msg_and_die("not RSA key");
}
/* skip subjectPublicKeyInfo.algorithm */
der = skip_der_item(der, end);
/* enter subjectPublicKeyInfo.publicKey */
// die_if_not_this_der_type(der, end, 0x03); /* must be BITSTRING */
der = enter_der_item(der, &end);
/* parse RSA key: */
//based on getAsnRsaPubKey(), pkcs1ParsePrivBin() is also of note
dbg("key bytes:%u, first:0x%02x\n", (int)(end - der), der[0]);
if (end - der < 14) xfunc_die();
/* example format:
* ignore bits: 00
* SEQ 0x018a/394 bytes: 3082018a
* INTEGER 0x0181/385 bytes (modulus): 02820181 XX...XXX
* INTEGER 3 bytes (exponent): 0203 010001
*/
if (*der != 0) /* "ignore bits", should be 0 */
xfunc_die();
der++;
der = enter_der_item(der, &end); /* enter SEQ */
/* memset(tls->server_rsa_pub_key, 0, sizeof(tls->server_rsa_pub_key)); - already is */
der_binary_to_pstm(&tls->server_rsa_pub_key.N, der, end); /* modulus */
der = skip_der_item(der, end);
der_binary_to_pstm(&tls->server_rsa_pub_key.e, der, end); /* exponent */
tls->server_rsa_pub_key.size = pstm_unsigned_bin_size(&tls->server_rsa_pub_key.N);
dbg("server_rsa_pub_key.size:%d\n", tls->server_rsa_pub_key.size);
}
/*
* TLS Handshake routines
*/
static int xread_tls_handshake_block(tls_state_t *tls, int min_len)
{
struct record_hdr *xhdr;
int len = xread_tls_block(tls);
xhdr = (void*)tls->inbuf;
if (len < min_len
|| xhdr->type != RECORD_TYPE_HANDSHAKE
|| xhdr->proto_maj != TLS_MAJ
|| xhdr->proto_min != TLS_MIN
) {
tls_error_die(tls);
}
dbg("got HANDSHAKE\n");
return len;
}
static ALWAYS_INLINE void fill_handshake_record_hdr(void *buf, unsigned type, unsigned len)
{
struct handshake_hdr {
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
} *h = buf;
len -= 4;
h->type = type;
h->len24_hi = len >> 16;
h->len24_mid = len >> 8;
h->len24_lo = len & 0xff;
}
//TODO: implement RFC 5746 (Renegotiation Indication Extension) - some servers will refuse to work with us otherwise
static void send_client_hello(tls_state_t *tls)
{
struct client_hello {
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
uint8_t proto_maj, proto_min;
uint8_t rand32[32];
uint8_t session_id_len;
/* uint8_t session_id[]; */
uint8_t cipherid_len16_hi, cipherid_len16_lo;
uint8_t cipherid[2 * 1]; /* actually variable */
uint8_t comprtypes_len;
uint8_t comprtypes[1]; /* actually variable */
};
struct client_hello *record = tls_get_outbuf(tls, sizeof(*record));
fill_handshake_record_hdr(record, HANDSHAKE_CLIENT_HELLO, sizeof(*record));
record->proto_maj = TLS_MAJ; /* the "requested" version of the protocol, */
record->proto_min = TLS_MIN; /* can be higher than one in record headers */
tls_get_random(record->rand32, sizeof(record->rand32));
if (TLS_DEBUG_FIXED_SECRETS)
memset(record->rand32, 0x11, sizeof(record->rand32));
memcpy(tls->client_and_server_rand32, record->rand32, sizeof(record->rand32));
record->session_id_len = 0;
record->cipherid_len16_hi = 0;
record->cipherid_len16_lo = 2 * 1;
record->cipherid[0] = CIPHER_ID >> 8;
record->cipherid[1] = CIPHER_ID & 0xff;
record->comprtypes_len = 1;
record->comprtypes[0] = 0;
//TODO: send options, at least SNI.
dbg(">> CLIENT_HELLO\n");
xwrite_and_update_handshake_hash(tls, sizeof(*record));
}
static void get_server_hello(tls_state_t *tls)
{
struct server_hello {
struct record_hdr xhdr;
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
uint8_t proto_maj, proto_min;
uint8_t rand32[32]; /* first 4 bytes are unix time in BE format */
uint8_t session_id_len;
uint8_t session_id[32];
uint8_t cipherid_hi, cipherid_lo;
uint8_t comprtype;
/* extensions may follow, but only those which client offered in its Hello */
};
struct server_hello *hp;
uint8_t *cipherid;
xread_tls_handshake_block(tls, 74);
hp = (void*)tls->inbuf;
// 74 bytes:
// 02 000046 03|03 58|78|cf|c1 50|a5|49|ee|7e|29|48|71|fe|97|fa|e8|2d|19|87|72|90|84|9d|37|a3|f0|cb|6f|5f|e3|3c|2f |20 |d8|1a|78|96|52|d6|91|01|24|b3|d6|5b|b7|d0|6c|b3|e1|78|4e|3c|95|de|74|a0|ba|eb|a7|3a|ff|bd|a2|bf |00|9c |00|
//SvHl len=70 maj.min unixtime^^^ 28randbytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^ slen sid32bytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ cipSel comprSel
if (hp->type != HANDSHAKE_SERVER_HELLO
|| hp->len24_hi != 0
|| hp->len24_mid != 0
/* hp->len24_lo checked later */
|| hp->proto_maj != TLS_MAJ
|| hp->proto_min != TLS_MIN
) {
tls_error_die(tls);
}
cipherid = &hp->cipherid_hi;
if (hp->session_id_len != 32) {
if (hp->session_id_len != 0)
tls_error_die(tls);
// session_id_len == 0: no session id
// "The server
// may return an empty session_id to indicate that the session will
// not be cached and therefore cannot be resumed."
cipherid -= 32;
hp->len24_lo += 32; /* what len would be if session id would be present */
}
if (hp->len24_lo < 70
|| cipherid[0] != (CIPHER_ID >> 8)
|| cipherid[1] != (CIPHER_ID & 0xff)
|| cipherid[2] != 0 /* comprtype */
) {
tls_error_die(tls);
}
dbg("<< SERVER_HELLO\n");
memcpy(tls->client_and_server_rand32 + 32, hp->rand32, sizeof(hp->rand32));
}
static void get_server_cert(tls_state_t *tls)
{
struct record_hdr *xhdr;
uint8_t *certbuf;
int len, len1;
len = xread_tls_handshake_block(tls, 10);
xhdr = (void*)tls->inbuf;
certbuf = (void*)(xhdr + 1);
if (certbuf[0] != HANDSHAKE_CERTIFICATE)
tls_error_die(tls);
dbg("<< CERTIFICATE\n");
// 4392 bytes:
// 0b 00|11|24 00|11|21 00|05|b0 30|82|05|ac|30|82|04|94|a0|03|02|01|02|02|11|00|9f|85|bf|66|4b|0c|dd|af|ca|50|86|79|50|1b|2b|e4|30|0d...
//Cert len=4388 ChainLen CertLen^ DER encoded X509 starts here. openssl x509 -in FILE -inform DER -noout -text
len1 = get24be(certbuf + 1);
if (len1 > len - 4) tls_error_die(tls);
len = len1;
len1 = get24be(certbuf + 4);
if (len1 > len - 3) tls_error_die(tls);
len = len1;
len1 = get24be(certbuf + 7);
if (len1 > len - 3) tls_error_die(tls);
len = len1;
if (len)
find_key_in_der_cert(tls, certbuf + 10, len);
}
static void send_client_key_exchange(tls_state_t *tls)
{
struct client_key_exchange {
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
/* keylen16 exists for RSA (in TLS, not in SSL), but not for some other key types */
uint8_t keylen16_hi, keylen16_lo;
uint8_t key[4 * 1024]; // size??
};
//FIXME: better size estimate
struct client_key_exchange *record = tls_get_outbuf(tls, sizeof(*record));
uint8_t rsa_premaster[SSL_HS_RSA_PREMASTER_SIZE];
int len;
tls_get_random(rsa_premaster, sizeof(rsa_premaster));
if (TLS_DEBUG_FIXED_SECRETS)
memset(rsa_premaster, 0x44, sizeof(rsa_premaster));
// RFC 5246
// "Note: The version number in the PreMasterSecret is the version
// offered by the client in the ClientHello.client_version, not the
// version negotiated for the connection."
rsa_premaster[0] = TLS_MAJ;
rsa_premaster[1] = TLS_MIN;
len = psRsaEncryptPub(/*pool:*/ NULL,
/* psRsaKey_t* */ &tls->server_rsa_pub_key,
rsa_premaster, /*inlen:*/ sizeof(rsa_premaster),
record->key, sizeof(record->key),
data_param_ignored
);
record->keylen16_hi = len >> 8;
record->keylen16_lo = len & 0xff;
len += 2;
record->type = HANDSHAKE_CLIENT_KEY_EXCHANGE;
record->len24_hi = 0;
record->len24_mid = len >> 8;
record->len24_lo = len & 0xff;
len += 4;
dbg(">> CLIENT_KEY_EXCHANGE\n");
xwrite_and_update_handshake_hash(tls, len);
// RFC 5246
// For all key exchange methods, the same algorithm is used to convert
// the pre_master_secret into the master_secret. The pre_master_secret
// should be deleted from memory once the master_secret has been
// computed.
// master_secret = PRF(pre_master_secret, "master secret",
// ClientHello.random + ServerHello.random)
// [0..47];
// The master secret is always exactly 48 bytes in length. The length
// of the premaster secret will vary depending on key exchange method.
prf_hmac_sha256(
tls->master_secret, sizeof(tls->master_secret),
rsa_premaster, sizeof(rsa_premaster),
"master secret",
tls->client_and_server_rand32, sizeof(tls->client_and_server_rand32)
);
dump_hex("master secret:%s\n", tls->master_secret, sizeof(tls->master_secret));
// RFC 5246
// 6.3. Key Calculation
//
// The Record Protocol requires an algorithm to generate keys required
// by the current connection state (see Appendix A.6) from the security
// parameters provided by the handshake protocol.
//
// The master secret is expanded into a sequence of secure bytes, which
// is then split to a client write MAC key, a server write MAC key, a
// client write encryption key, and a server write encryption key. Each
// of these is generated from the byte sequence in that order. Unused
// values are empty. Some AEAD ciphers may additionally require a
// client write IV and a server write IV (see Section 6.2.3.3).
//
// When keys and MAC keys are generated, the master secret is used as an
// entropy source.
//
// To generate the key material, compute
//
// key_block = PRF(SecurityParameters.master_secret,
// "key expansion",
// SecurityParameters.server_random +
// SecurityParameters.client_random);
//
// until enough output has been generated. Then, the key_block is
// partitioned as follows:
//
// client_write_MAC_key[SecurityParameters.mac_key_length]
// server_write_MAC_key[SecurityParameters.mac_key_length]
// client_write_key[SecurityParameters.enc_key_length]
// server_write_key[SecurityParameters.enc_key_length]
// client_write_IV[SecurityParameters.fixed_iv_length]
// server_write_IV[SecurityParameters.fixed_iv_length]
{
uint8_t tmp64[64];
/* make "server_rand32 + client_rand32" */
memcpy(&tmp64[0] , &tls->client_and_server_rand32[32], 32);
memcpy(&tmp64[32], &tls->client_and_server_rand32[0] , 32);
prf_hmac_sha256(
tls->client_write_MAC_key, 2 * (SHA256_OUTSIZE + AES256_KEYSIZE),
// also fills:
// server_write_MAC_key[SHA256_OUTSIZE]
// client_write_key[AES256_KEYSIZE]
// server_write_key[AES256_KEYSIZE]
tls->master_secret, sizeof(tls->master_secret),
"key expansion",
tmp64, 64
);
dump_hex("client_write_MAC_key:%s\n",
tls->client_write_MAC_key, sizeof(tls->client_write_MAC_key)
);
dump_hex("client_write_key:%s\n",
tls->client_write_key, sizeof(tls->client_write_key)
);
}
}
static const uint8_t rec_CHANGE_CIPHER_SPEC[] = {
RECORD_TYPE_CHANGE_CIPHER_SPEC, TLS_MAJ, TLS_MIN, 00, 01,
01
};
static void send_change_cipher_spec(tls_state_t *tls)
{
dbg(">> CHANGE_CIPHER_SPEC\n");
xwrite(tls->fd, rec_CHANGE_CIPHER_SPEC, sizeof(rec_CHANGE_CIPHER_SPEC));
}
// 7.4.9. Finished
// A Finished message is always sent immediately after a change
// cipher spec message to verify that the key exchange and
// authentication processes were successful. It is essential that a
// change cipher spec message be received between the other handshake
// messages and the Finished message.
//...
// The Finished message is the first one protected with the just
// negotiated algorithms, keys, and secrets. Recipients of Finished
// messages MUST verify that the contents are correct. Once a side
// has sent its Finished message and received and validated the
// Finished message from its peer, it may begin to send and receive
// application data over the connection.
//...
// struct {
// opaque verify_data[verify_data_length];
// } Finished;
//
// verify_data
// PRF(master_secret, finished_label, Hash(handshake_messages))
// [0..verify_data_length-1];
//
// finished_label
// For Finished messages sent by the client, the string
// "client finished". For Finished messages sent by the server,
// the string "server finished".
//
// Hash denotes a Hash of the handshake messages. For the PRF
// defined in Section 5, the Hash MUST be the Hash used as the basis
// for the PRF. Any cipher suite which defines a different PRF MUST
// also define the Hash to use in the Finished computation.
//
// In previous versions of TLS, the verify_data was always 12 octets
// long. In the current version of TLS, it depends on the cipher
// suite. Any cipher suite which does not explicitly specify
// verify_data_length has a verify_data_length equal to 12. This
// includes all existing cipher suites.
static void send_client_finished(tls_state_t *tls)
{
struct finished {
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
uint8_t prf_result[12];
};
struct finished *record = tls_get_outbuf(tls, sizeof(*record));
uint8_t handshake_hash[SHA256_OUTSIZE];
fill_handshake_record_hdr(record, HANDSHAKE_FINISHED, sizeof(*record));
sha256_peek(&tls->handshake_sha256_ctx, handshake_hash);
prf_hmac_sha256(record->prf_result, sizeof(record->prf_result),
tls->master_secret, sizeof(tls->master_secret),
"client finished",
handshake_hash, sizeof(handshake_hash)
);
dump_hex("from secret: %s\n", tls->master_secret, sizeof(tls->master_secret));
dump_hex("from labelSeed: %s", "client finished", sizeof("client finished")-1);
dump_hex("%s\n", handshake_hash, sizeof(handshake_hash));
dump_hex("=> digest: %s\n", record->prf_result, sizeof(record->prf_result));
dbg(">> FINISHED\n");
xwrite_encrypted(tls, sizeof(*record), RECORD_TYPE_HANDSHAKE);
}
static void tls_handshake(tls_state_t *tls)
{
// Client RFC 5246 Server
// (*) - optional messages, not always sent
//
// ClientHello ------->
// ServerHello
// Certificate*
// ServerKeyExchange*
// CertificateRequest*
// <------- ServerHelloDone
// Certificate*
// ClientKeyExchange
// CertificateVerify*
// [ChangeCipherSpec]
// Finished ------->
// [ChangeCipherSpec]
// <------- Finished
// Application Data <------> Application Data
int len;
send_client_hello(tls);
get_server_hello(tls);
//RFC 5246
// The server MUST send a Certificate message whenever the agreed-
// upon key exchange method uses certificates for authentication
// (this includes all key exchange methods defined in this document
// except DH_anon). This message will always immediately follow the
// ServerHello message.
//
// IOW: in practice, Certificate *always* follows.
// (for example, kernel.org does not even accept DH_anon cipher id)
get_server_cert(tls);
len = xread_tls_handshake_block(tls, 4);
if (tls->inbuf[RECHDR_LEN] == HANDSHAKE_SERVER_KEY_EXCHANGE) {
// 459 bytes:
// 0c 00|01|c7 03|00|17|41|04|87|94|2e|2f|68|d0|c9|f4|97|a8|2d|ef|ed|67|ea|c6|f3|b3|56|47|5d|27|b6|bd|ee|70|25|30|5e|b0|8e|f6|21|5a...
//SvKey len=455^
// with TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: 461 bytes:
// 0c 00|01|c9 03|00|17|41|04|cd|9b|b4|29|1f|f6|b0|c2|84|82|7f|29|6a|47|4e|ec|87|0b|c1|9c|69|e1|f8|c6|d0|53|e9|27|90|a5|c8|02|15|75...
dbg("<< SERVER_KEY_EXCHANGE len:%u\n", len);
//probably need to save it
xread_tls_handshake_block(tls, 4);
}
// if (tls->inbuf[RECHDR_LEN] == HANDSHAKE_CERTIFICATE_REQUEST) {
// dbg("<< CERTIFICATE_REQUEST\n");
//RFC 5246: (in response to this,) "If no suitable certificate is available,
// the client MUST send a certificate message containing no
// certificates. That is, the certificate_list structure has a
// length of zero. ...
// Client certificates are sent using the Certificate structure
// defined in Section 7.4.2."
// (i.e. the same format as server certs)
// xread_tls_handshake_block(tls, 4);
// }
if (tls->inbuf[RECHDR_LEN] != HANDSHAKE_SERVER_HELLO_DONE)
tls_error_die(tls);
// 0e 000000 (len:0)
dbg("<< SERVER_HELLO_DONE\n");
send_client_key_exchange(tls);
send_change_cipher_spec(tls);
/* from now on we should send encrypted */
/* tls->write_seq64_be = 0; - already is */
tls->encrypt_on_write = 1;
send_client_finished(tls);
/* Get CHANGE_CIPHER_SPEC */
len = xread_tls_block(tls);
if (len != 1 || memcmp(tls->inbuf, rec_CHANGE_CIPHER_SPEC, 6) != 0)
tls_error_die(tls);
dbg("<< CHANGE_CIPHER_SPEC\n");
if (CIPHER_ID == TLS_RSA_WITH_NULL_SHA256)
tls->min_encrypted_len_on_read = SHA256_OUTSIZE;
else
/* all incoming packets now should be encrypted and have IV + MAC + padding */
tls->min_encrypted_len_on_read = AES_BLOCKSIZE + SHA256_OUTSIZE + AES_BLOCKSIZE;
/* Get (encrypted) FINISHED from the server */
len = xread_tls_block(tls);
if (len < 4 || tls->inbuf[RECHDR_LEN] != HANDSHAKE_FINISHED)
tls_error_die(tls);
dbg("<< FINISHED\n");
/* application data can be sent/received */
}
static void tls_xwrite(tls_state_t *tls, int len)
{
dbg(">> DATA\n");
xwrite_encrypted(tls, len, RECORD_TYPE_APPLICATION_DATA);
}
// To run a test server using openssl:
// openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
// openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -no_tls1 -no_tls1_1
//
// Unencryped SHA256 example:
// openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
// openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher NULL
// openssl s_client -connect 127.0.0.1:4433 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher NULL-SHA256
//
// Talk to kernel.org:
// printf "GET / HTTP/1.1\r\nHost: kernel.org\r\n\r\n" | ./busybox tls kernel.org
int tls_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int tls_main(int argc UNUSED_PARAM, char **argv)
{
tls_state_t *tls;
fd_set readfds, testfds;
int cfd;
// INIT_G();
// getopt32(argv, "myopts")
if (!argv[1])
bb_show_usage();
cfd = create_and_connect_stream_or_die(argv[1], 443);
tls = new_tls_state();
tls->fd = cfd;
tls_handshake(tls);
/* Select loop copying stdin to cfd, and cfd to stdout */
FD_ZERO(&readfds);
FD_SET(cfd, &readfds);
FD_SET(STDIN_FILENO, &readfds);
//#define iobuf bb_common_bufsiz1
// setup_common_bufsiz();
for (;;) {
int nread;
testfds = readfds;
if (select(cfd + 1, &testfds, NULL, NULL, NULL) < 0)
bb_perror_msg_and_die("select");
if (FD_ISSET(STDIN_FILENO, &testfds)) {
void *buf;
dbg("STDIN HAS DATA\n");
//TODO: growable buffer
buf = tls_get_outbuf(tls, 4 * 1024);
nread = safe_read(STDIN_FILENO, buf, 4 * 1024);
if (nread < 1) {
//&& errno != EAGAIN
/* Close outgoing half-connection so they get EOF,
* but leave incoming alone so we can see response */
//TLS has no way to encode this, doubt it's ok to do it "raw"
// shutdown(cfd, SHUT_WR);
FD_CLR(STDIN_FILENO, &readfds);
}
tls_xwrite(tls, nread);
}
if (FD_ISSET(cfd, &testfds)) {
dbg("NETWORK HAS DATA\n");
nread = xread_tls_block(tls);
if (nread < 1)
//TODO: if eof, just close stdout, but not exit!
return EXIT_SUCCESS;
xwrite(STDOUT_FILENO, tls->inbuf + RECHDR_LEN, nread);
}
}
return EXIT_SUCCESS;
}