function old new delta curve25519 881 832 -49 Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
		
			
				
	
	
		
			602 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			602 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2018 Denys Vlasenko
 | 
						|
 *
 | 
						|
 * Licensed under GPLv2, see file LICENSE in this source tree.
 | 
						|
 */
 | 
						|
#include "tls.h"
 | 
						|
 | 
						|
typedef uint8_t  byte;
 | 
						|
typedef uint16_t word16;
 | 
						|
typedef uint32_t word32;
 | 
						|
#define XMEMSET  memset
 | 
						|
 | 
						|
#define F25519_SIZE CURVE25519_KEYSIZE
 | 
						|
 | 
						|
/* The code below is taken from wolfssl-3.15.3/wolfcrypt/src/fe_low_mem.c
 | 
						|
 * Header comment is kept intact:
 | 
						|
 */
 | 
						|
 | 
						|
/* fe_low_mem.c
 | 
						|
 *
 | 
						|
 * Copyright (C) 2006-2017 wolfSSL Inc.
 | 
						|
 *
 | 
						|
 * This file is part of wolfSSL.
 | 
						|
 *
 | 
						|
 * wolfSSL is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * wolfSSL is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
/* Based from Daniel Beer's public domain work. */
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void fprime_copy(byte *x, const byte *a)
 | 
						|
{
 | 
						|
	memcpy(x, a, F25519_SIZE);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void lm_copy(byte* x, const byte* a)
 | 
						|
{
 | 
						|
	memcpy(x, a, F25519_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void fprime_select(byte *dst, const byte *zero, const byte *one, byte condition)
 | 
						|
{
 | 
						|
	const byte mask = -condition;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE; i++)
 | 
						|
		dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i]));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void fe_select(byte *dst,
 | 
						|
		   const byte *zero, const byte *one,
 | 
						|
		   byte condition)
 | 
						|
{
 | 
						|
	const byte mask = -condition;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE; i++)
 | 
						|
		dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i]));
 | 
						|
}
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void raw_add(byte *x, const byte *p)
 | 
						|
{
 | 
						|
	word16 c = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE; i++) {
 | 
						|
		c += ((word16)x[i]) + ((word16)p[i]);
 | 
						|
		x[i] = (byte)c;
 | 
						|
		c >>= 8;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void raw_try_sub(byte *x, const byte *p)
 | 
						|
{
 | 
						|
	byte minusp[F25519_SIZE];
 | 
						|
	word16 c = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE; i++) {
 | 
						|
		c = ((word16)x[i]) - ((word16)p[i]) - c;
 | 
						|
		minusp[i] = (byte)c;
 | 
						|
		c = (c >> 8) & 1;
 | 
						|
	}
 | 
						|
 | 
						|
	fprime_select(x, minusp, x, (byte)c);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static int prime_msb(const byte *p)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    byte x;
 | 
						|
    int shift = 1;
 | 
						|
    int z     = F25519_SIZE - 1;
 | 
						|
 | 
						|
   /*
 | 
						|
       Test for any hot bits.
 | 
						|
       As soon as one instance is encountered set shift to 0.
 | 
						|
    */
 | 
						|
	for (i = F25519_SIZE - 1; i >= 0; i--) {
 | 
						|
        shift &= ((shift ^ ((-p[i] | p[i]) >> 7)) & 1);
 | 
						|
        z -= shift;
 | 
						|
    }
 | 
						|
	x = p[z];
 | 
						|
	z <<= 3;
 | 
						|
    shift = 1;
 | 
						|
    for (i = 0; i < 8; i++) {
 | 
						|
        shift &= ((-(x >> i) | (x >> i)) >> (7 - i) & 1);
 | 
						|
        z += shift;
 | 
						|
    }
 | 
						|
 | 
						|
	return z - 1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void fprime_add(byte *r, const byte *a, const byte *modulus)
 | 
						|
{
 | 
						|
	raw_add(r, a);
 | 
						|
	raw_try_sub(r, modulus);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void fprime_sub(byte *r, const byte *a, const byte *modulus)
 | 
						|
{
 | 
						|
	raw_add(r, modulus);
 | 
						|
	raw_try_sub(r, a);
 | 
						|
	raw_try_sub(r, modulus);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void fprime_mul(byte *r, const byte *a, const byte *b,
 | 
						|
		const byte *modulus)
 | 
						|
{
 | 
						|
	word16 c = 0;
 | 
						|
	int i,j;
 | 
						|
 | 
						|
	XMEMSET(r, 0, F25519_SIZE);
 | 
						|
 | 
						|
	for (i = prime_msb(modulus); i >= 0; i--) {
 | 
						|
		const byte bit = (b[i >> 3] >> (i & 7)) & 1;
 | 
						|
		byte plusa[F25519_SIZE];
 | 
						|
 | 
						|
	    for (j = 0; j < F25519_SIZE; j++) {
 | 
						|
		    c |= ((word16)r[j]) << 1;
 | 
						|
		    r[j] = (byte)c;
 | 
						|
		    c >>= 8;
 | 
						|
	    }
 | 
						|
		raw_try_sub(r, modulus);
 | 
						|
 | 
						|
		fprime_copy(plusa, r);
 | 
						|
		fprime_add(plusa, a, modulus);
 | 
						|
 | 
						|
		fprime_select(r, r, plusa, bit);
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void fe_load(byte *x, word32 c)
 | 
						|
{
 | 
						|
	word32 i;
 | 
						|
 | 
						|
	for (i = 0; i < sizeof(c); i++) {
 | 
						|
		x[i] = c;
 | 
						|
		c >>= 8;
 | 
						|
	}
 | 
						|
 | 
						|
	for (; i < F25519_SIZE; i++)
 | 
						|
		x[i] = 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void fe_normalize(byte *x)
 | 
						|
{
 | 
						|
	byte minusp[F25519_SIZE];
 | 
						|
	unsigned c;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* Reduce using 2^255 = 19 mod p */
 | 
						|
	c = (x[31] >> 7) * 19;
 | 
						|
	x[31] &= 127;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE; i++) {
 | 
						|
		c += x[i];
 | 
						|
		x[i] = (byte)c;
 | 
						|
		c >>= 8;
 | 
						|
	}
 | 
						|
 | 
						|
	/* The number is now less than 2^255 + 18, and therefore less than
 | 
						|
	 * 2p. Try subtracting p, and conditionally load the subtracted
 | 
						|
	 * value if underflow did not occur.
 | 
						|
	 */
 | 
						|
	c = 19;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE - 1; i++) {
 | 
						|
		c += x[i];
 | 
						|
		minusp[i] = (byte)c;
 | 
						|
		c >>= 8;
 | 
						|
	}
 | 
						|
 | 
						|
	c += ((unsigned)x[i]) - 128;
 | 
						|
	minusp[31] = (byte)c;
 | 
						|
 | 
						|
	/* Load x-p if no underflow */
 | 
						|
	fe_select(x, minusp, x, (c >> 15) & 1);
 | 
						|
}
 | 
						|
 | 
						|
static void lm_add(byte* r, const byte* a, const byte* b)
 | 
						|
{
 | 
						|
	unsigned c = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* Add */
 | 
						|
	for (i = 0; i < F25519_SIZE; i++) {
 | 
						|
		c >>= 8;
 | 
						|
		c += ((unsigned)a[i]) + ((unsigned)b[i]);
 | 
						|
		r[i] = (byte)c;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Reduce with 2^255 = 19 mod p */
 | 
						|
	r[31] &= 127;
 | 
						|
	c = (c >> 7) * 19;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE; i++) {
 | 
						|
		c += r[i];
 | 
						|
		r[i] = (byte)c;
 | 
						|
		c >>= 8;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void lm_sub(byte* r, const byte* a, const byte* b)
 | 
						|
{
 | 
						|
	word32 c = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* Calculate a + 2p - b, to avoid underflow */
 | 
						|
	c = 218;
 | 
						|
	for (i = 0; i + 1 < F25519_SIZE; i++) {
 | 
						|
		c += 65280 + ((word32)a[i]) - ((word32)b[i]);
 | 
						|
		r[i] = c;
 | 
						|
		c >>= 8;
 | 
						|
	}
 | 
						|
 | 
						|
	c += ((word32)a[31]) - ((word32)b[31]);
 | 
						|
	r[31] = c & 127;
 | 
						|
	c = (c >> 7) * 19;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE; i++) {
 | 
						|
		c += r[i];
 | 
						|
		r[i] = c;
 | 
						|
		c >>= 8;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void lm_neg(byte* r, const byte* a)
 | 
						|
{
 | 
						|
	word32 c = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* Calculate 2p - a, to avoid underflow */
 | 
						|
	c = 218;
 | 
						|
	for (i = 0; i + 1 < F25519_SIZE; i++) {
 | 
						|
		c += 65280 - ((word32)a[i]);
 | 
						|
		r[i] = c;
 | 
						|
		c >>= 8;
 | 
						|
	}
 | 
						|
 | 
						|
	c -= ((word32)a[31]);
 | 
						|
	r[31] = c & 127;
 | 
						|
	c = (c >> 7) * 19;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE; i++) {
 | 
						|
		c += r[i];
 | 
						|
		r[i] = c;
 | 
						|
		c >>= 8;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void fe_mul__distinct(byte *r, const byte *a, const byte *b)
 | 
						|
{
 | 
						|
	word32 c = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE; i++) {
 | 
						|
		int j;
 | 
						|
 | 
						|
		c >>= 8;
 | 
						|
		for (j = 0; j <= i; j++)
 | 
						|
			c += ((word32)a[j]) * ((word32)b[i - j]);
 | 
						|
 | 
						|
		for (; j < F25519_SIZE; j++)
 | 
						|
			c += ((word32)a[j]) *
 | 
						|
			     ((word32)b[i + F25519_SIZE - j]) * 38;
 | 
						|
 | 
						|
		r[i] = c;
 | 
						|
	}
 | 
						|
 | 
						|
	r[31] &= 127;
 | 
						|
	c = (c >> 7) * 19;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE; i++) {
 | 
						|
		c += r[i];
 | 
						|
		r[i] = c;
 | 
						|
		c >>= 8;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void lm_mul(byte *r, const byte* a, const byte *b)
 | 
						|
{
 | 
						|
	byte tmp[F25519_SIZE];
 | 
						|
 | 
						|
	fe_mul__distinct(tmp, a, b);
 | 
						|
	lm_copy(r, tmp);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void fe_mul_c(byte *r, const byte *a, word32 b)
 | 
						|
{
 | 
						|
	word32 c = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE; i++) {
 | 
						|
		c >>= 8;
 | 
						|
		c += b * ((word32)a[i]);
 | 
						|
		r[i] = c;
 | 
						|
	}
 | 
						|
 | 
						|
	r[31] &= 127;
 | 
						|
	c >>= 7;
 | 
						|
	c *= 19;
 | 
						|
 | 
						|
	for (i = 0; i < F25519_SIZE; i++) {
 | 
						|
		c += r[i];
 | 
						|
		r[i] = c;
 | 
						|
		c >>= 8;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void fe_inv__distinct(byte *r, const byte *x)
 | 
						|
{
 | 
						|
	byte s[F25519_SIZE];
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* This is a prime field, so by Fermat's little theorem:
 | 
						|
	 *
 | 
						|
	 *     x^(p-1) = 1 mod p
 | 
						|
	 *
 | 
						|
	 * Therefore, raise to (p-2) = 2^255-21 to get a multiplicative
 | 
						|
	 * inverse.
 | 
						|
	 *
 | 
						|
	 * This is a 255-bit binary number with the digits:
 | 
						|
	 *
 | 
						|
	 *     11111111... 01011
 | 
						|
	 *
 | 
						|
	 * We compute the result by the usual binary chain, but
 | 
						|
	 * alternate between keeping the accumulator in r and s, so as
 | 
						|
	 * to avoid copying temporaries.
 | 
						|
	 */
 | 
						|
 | 
						|
	lm_copy(r, x);
 | 
						|
 | 
						|
	/* 1, 1 x 249 */
 | 
						|
	for (i = 0; i < 249; i++) {
 | 
						|
		fe_mul__distinct(s, r, r);
 | 
						|
		fe_mul__distinct(r, s, x);
 | 
						|
	}
 | 
						|
 | 
						|
	/* 0 */
 | 
						|
	fe_mul__distinct(s, r, r);
 | 
						|
 | 
						|
	/* 1 */
 | 
						|
	fe_mul__distinct(r, s, s);
 | 
						|
	fe_mul__distinct(s, r, x);
 | 
						|
 | 
						|
	/* 0 */
 | 
						|
	fe_mul__distinct(r, s, s);
 | 
						|
 | 
						|
	/* 1, 1 */
 | 
						|
	for (i = 0; i < 2; i++) {
 | 
						|
		fe_mul__distinct(s, r, r);
 | 
						|
		fe_mul__distinct(r, s, x);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void lm_invert(byte *r, const byte *x)
 | 
						|
{
 | 
						|
	byte tmp[F25519_SIZE];
 | 
						|
 | 
						|
	fe_inv__distinct(tmp, x);
 | 
						|
	lm_copy(r, tmp);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
/* Raise x to the power of (p-5)/8 = 2^252-3, using s for temporary
 | 
						|
 * storage.
 | 
						|
 */
 | 
						|
static void exp2523(byte *r, const byte *x, byte *s)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* This number is a 252-bit number with the binary expansion:
 | 
						|
	 *
 | 
						|
	 *     111111... 01
 | 
						|
	 */
 | 
						|
 | 
						|
	lm_copy(s, x);
 | 
						|
 | 
						|
	/* 1, 1 x 249 */
 | 
						|
	for (i = 0; i < 249; i++) {
 | 
						|
		fe_mul__distinct(r, s, s);
 | 
						|
		fe_mul__distinct(s, r, x);
 | 
						|
	}
 | 
						|
 | 
						|
	/* 0 */
 | 
						|
	fe_mul__distinct(r, s, s);
 | 
						|
 | 
						|
	/* 1 */
 | 
						|
	fe_mul__distinct(s, r, r);
 | 
						|
	fe_mul__distinct(r, s, x);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void fe_sqrt(byte *r, const byte *a)
 | 
						|
{
 | 
						|
	byte v[F25519_SIZE];
 | 
						|
	byte i[F25519_SIZE];
 | 
						|
	byte x[F25519_SIZE];
 | 
						|
	byte y[F25519_SIZE];
 | 
						|
 | 
						|
	/* v = (2a)^((p-5)/8) [x = 2a] */
 | 
						|
	fe_mul_c(x, a, 2);
 | 
						|
	exp2523(v, x, y);
 | 
						|
 | 
						|
	/* i = 2av^2 - 1 */
 | 
						|
	fe_mul__distinct(y, v, v);
 | 
						|
	fe_mul__distinct(i, x, y);
 | 
						|
	fe_load(y, 1);
 | 
						|
	lm_sub(i, i, y);
 | 
						|
 | 
						|
	/* r = avi */
 | 
						|
	fe_mul__distinct(x, v, a);
 | 
						|
	fe_mul__distinct(r, x, i);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Differential addition */
 | 
						|
static void xc_diffadd(byte *x5, byte *z5,
 | 
						|
		       const byte *x1, const byte *z1,
 | 
						|
		       const byte *x2, const byte *z2,
 | 
						|
		       const byte *x3, const byte *z3)
 | 
						|
{
 | 
						|
	/* Explicit formulas database: dbl-1987-m3
 | 
						|
	 *
 | 
						|
	 * source 1987 Montgomery "Speeding the Pollard and elliptic curve
 | 
						|
	 *   methods of factorization", page 261, fifth display, plus
 | 
						|
	 *   common-subexpression elimination
 | 
						|
	 * compute A = X2+Z2
 | 
						|
	 * compute B = X2-Z2
 | 
						|
	 * compute C = X3+Z3
 | 
						|
	 * compute D = X3-Z3
 | 
						|
	 * compute DA = D A
 | 
						|
	 * compute CB = C B
 | 
						|
	 * compute X5 = Z1(DA+CB)^2
 | 
						|
	 * compute Z5 = X1(DA-CB)^2
 | 
						|
	 */
 | 
						|
	byte da[F25519_SIZE];
 | 
						|
	byte cb[F25519_SIZE];
 | 
						|
	byte a[F25519_SIZE];
 | 
						|
	byte b[F25519_SIZE];
 | 
						|
 | 
						|
	lm_add(a, x2, z2);
 | 
						|
	lm_sub(b, x3, z3); /* D */
 | 
						|
	fe_mul__distinct(da, a, b);
 | 
						|
 | 
						|
	lm_sub(b, x2, z2);
 | 
						|
	lm_add(a, x3, z3); /* C */
 | 
						|
	fe_mul__distinct(cb, a, b);
 | 
						|
 | 
						|
	lm_add(a, da, cb);
 | 
						|
	fe_mul__distinct(b, a, a);
 | 
						|
	fe_mul__distinct(x5, z1, b);
 | 
						|
 | 
						|
	lm_sub(a, da, cb);
 | 
						|
	fe_mul__distinct(b, a, a);
 | 
						|
	fe_mul__distinct(z5, x1, b);
 | 
						|
}
 | 
						|
 | 
						|
/* Double an X-coordinate */
 | 
						|
static void xc_double(byte *x3, byte *z3,
 | 
						|
		      const byte *x1, const byte *z1)
 | 
						|
{
 | 
						|
	/* Explicit formulas database: dbl-1987-m
 | 
						|
	 *
 | 
						|
	 * source 1987 Montgomery "Speeding the Pollard and elliptic
 | 
						|
	 *   curve methods of factorization", page 261, fourth display
 | 
						|
	 * compute X3 = (X1^2-Z1^2)^2
 | 
						|
	 * compute Z3 = 4 X1 Z1 (X1^2 + a X1 Z1 + Z1^2)
 | 
						|
	 */
 | 
						|
	byte x1sq[F25519_SIZE];
 | 
						|
	byte z1sq[F25519_SIZE];
 | 
						|
	byte x1z1[F25519_SIZE];
 | 
						|
	byte a[F25519_SIZE];
 | 
						|
 | 
						|
	fe_mul__distinct(x1sq, x1, x1);
 | 
						|
	fe_mul__distinct(z1sq, z1, z1);
 | 
						|
	fe_mul__distinct(x1z1, x1, z1);
 | 
						|
 | 
						|
	lm_sub(a, x1sq, z1sq);
 | 
						|
	fe_mul__distinct(x3, a, a);
 | 
						|
 | 
						|
	fe_mul_c(a, x1z1, 486662);
 | 
						|
	lm_add(a, x1sq, a);
 | 
						|
	lm_add(a, z1sq, a);
 | 
						|
	fe_mul__distinct(x1sq, x1z1, a);
 | 
						|
	fe_mul_c(z3, x1sq, 4);
 | 
						|
}
 | 
						|
 | 
						|
void FAST_FUNC curve25519(byte *result, const byte *e, const byte *q)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	struct {
 | 
						|
		/* from wolfssl-3.15.3/wolfssl/wolfcrypt/fe_operations.h */
 | 
						|
		/*static const*/ byte f25519_one[F25519_SIZE]; // = {1};
 | 
						|
 | 
						|
		/* Current point: P_m */
 | 
						|
		byte xm[F25519_SIZE];
 | 
						|
		byte zm[F25519_SIZE]; // = {1};
 | 
						|
		/* Predecessor: P_(m-1) */
 | 
						|
		byte xm1[F25519_SIZE]; // = {1};
 | 
						|
		byte zm1[F25519_SIZE]; // = {0};
 | 
						|
	} z;
 | 
						|
#define f25519_one z.f25519_one
 | 
						|
#define xm         z.xm
 | 
						|
#define zm         z.zm
 | 
						|
#define xm1        z.xm1
 | 
						|
#define zm1        z.zm1
 | 
						|
	memset(&z, 0, sizeof(z));
 | 
						|
	f25519_one[0] = 1;
 | 
						|
	zm[0] = 1;
 | 
						|
	xm1[0] = 1;
 | 
						|
 | 
						|
	/* Note: bit 254 is assumed to be 1 */
 | 
						|
	lm_copy(xm, q);
 | 
						|
 | 
						|
	for (i = 253; i >= 0; i--) {
 | 
						|
		const int bit = (e[i >> 3] >> (i & 7)) & 1;
 | 
						|
		byte xms[F25519_SIZE];
 | 
						|
		byte zms[F25519_SIZE];
 | 
						|
 | 
						|
		/* From P_m and P_(m-1), compute P_(2m) and P_(2m-1) */
 | 
						|
		xc_diffadd(xm1, zm1, q, f25519_one, xm, zm, xm1, zm1);
 | 
						|
		xc_double(xm, zm, xm, zm);
 | 
						|
 | 
						|
		/* Compute P_(2m+1) */
 | 
						|
		xc_diffadd(xms, zms, xm1, zm1, xm, zm, q, f25519_one);
 | 
						|
 | 
						|
		/* Select:
 | 
						|
		 *   bit = 1 --> (P_(2m+1), P_(2m))
 | 
						|
		 *   bit = 0 --> (P_(2m), P_(2m-1))
 | 
						|
		 */
 | 
						|
		fe_select(xm1, xm1, xm, bit);
 | 
						|
		fe_select(zm1, zm1, zm, bit);
 | 
						|
		fe_select(xm, xm, xms, bit);
 | 
						|
		fe_select(zm, zm, zms, bit);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Freeze out of projective coordinates */
 | 
						|
	fe_inv__distinct(zm1, zm);
 | 
						|
	fe_mul__distinct(result, zm1, xm);
 | 
						|
	fe_normalize(result);
 | 
						|
}
 |