busybox/networking/tls.c
Denys Vlasenko cccf8e735d tls: teach it to decrypt AES256-encrypted data
This adds decryption only.
There is no MAC verification, code simply throws away MAC.

Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
2017-01-19 00:20:45 +01:00

1604 lines
58 KiB
C

/*
* Copyright (C) 2017 Denys Vlasenko
*
* Licensed under GPLv2, see file LICENSE in this source tree.
*/
//config:config TLS
//config: bool "tls (debugging)"
//config: default n
//applet:IF_TLS(APPLET(tls, BB_DIR_USR_BIN, BB_SUID_DROP))
//kbuild:lib-$(CONFIG_TLS) += tls.o
//kbuild:lib-$(CONFIG_TLS) += tls_pstm.o
//kbuild:lib-$(CONFIG_TLS) += tls_pstm_montgomery_reduce.o
//kbuild:lib-$(CONFIG_TLS) += tls_pstm_mul_comba.o
//kbuild:lib-$(CONFIG_TLS) += tls_pstm_sqr_comba.o
//kbuild:lib-$(CONFIG_TLS) += tls_rsa.o
//kbuild:lib-$(CONFIG_TLS) += tls_aes.o
////kbuild:lib-$(CONFIG_TLS) += tls_aes_gcm.o
//usage:#define tls_trivial_usage
//usage: "HOST[:PORT]"
//usage:#define tls_full_usage "\n\n"
#include "tls.h"
#define TLS_DEBUG 1
#define TLS_DEBUG_HASH 0
#define TLS_DEBUG_DER 0
#if TLS_DEBUG
# define dbg(...) fprintf(stderr, __VA_ARGS__)
#else
# define dbg(...) ((void)0)
#endif
#if TLS_DEBUG_DER
# define dbg_der(...) fprintf(stderr, __VA_ARGS__)
#else
# define dbg_der(...) ((void)0)
#endif
#define RECORD_TYPE_CHANGE_CIPHER_SPEC 20
#define RECORD_TYPE_ALERT 21
#define RECORD_TYPE_HANDSHAKE 22
#define RECORD_TYPE_APPLICATION_DATA 23
#define HANDSHAKE_HELLO_REQUEST 0
#define HANDSHAKE_CLIENT_HELLO 1
#define HANDSHAKE_SERVER_HELLO 2
#define HANDSHAKE_HELLO_VERIFY_REQUEST 3
#define HANDSHAKE_NEW_SESSION_TICKET 4
#define HANDSHAKE_CERTIFICATE 11
#define HANDSHAKE_SERVER_KEY_EXCHANGE 12
#define HANDSHAKE_CERTIFICATE_REQUEST 13
#define HANDSHAKE_SERVER_HELLO_DONE 14
#define HANDSHAKE_CERTIFICATE_VERIFY 15
#define HANDSHAKE_CLIENT_KEY_EXCHANGE 16
#define HANDSHAKE_FINISHED 20
#define SSL_HS_RANDOM_SIZE 32
#define SSL_HS_RSA_PREMASTER_SIZE 48
#define SSL_NULL_WITH_NULL_NULL 0x0000
#define SSL_RSA_WITH_NULL_MD5 0x0001
#define SSL_RSA_WITH_NULL_SHA 0x0002
#define SSL_RSA_WITH_RC4_128_MD5 0x0004
#define SSL_RSA_WITH_RC4_128_SHA 0x0005
#define SSL_RSA_WITH_3DES_EDE_CBC_SHA 0x000A /* 10 */
#define TLS_RSA_WITH_AES_128_CBC_SHA 0x002F /* 47 */
#define TLS_RSA_WITH_AES_256_CBC_SHA 0x0035 /* 53 */
#define TLS_RSA_WITH_NULL_SHA256 0x003B /* 59 */
#define TLS_EMPTY_RENEGOTIATION_INFO_SCSV 0x00FF
#define TLS_RSA_WITH_IDEA_CBC_SHA 0x0007 /* 7 */
#define SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA 0x0016 /* 22 */
#define SSL_DH_anon_WITH_RC4_128_MD5 0x0018 /* 24 */
#define SSL_DH_anon_WITH_3DES_EDE_CBC_SHA 0x001B /* 27 */
#define TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x0033 /* 51 */
#define TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x0039 /* 57 */
#define TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 0x0067 /* 103 */
#define TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 0x006B /* 107 */
#define TLS_DH_anon_WITH_AES_128_CBC_SHA 0x0034 /* 52 */
#define TLS_DH_anon_WITH_AES_256_CBC_SHA 0x003A /* 58 */
#define TLS_RSA_WITH_AES_128_CBC_SHA256 0x003C /* 60 */
#define TLS_RSA_WITH_AES_256_CBC_SHA256 0x003D /* 61 */
#define TLS_RSA_WITH_SEED_CBC_SHA 0x0096 /* 150 */
#define TLS_PSK_WITH_AES_128_CBC_SHA 0x008C /* 140 */
#define TLS_PSK_WITH_AES_128_CBC_SHA256 0x00AE /* 174 */
#define TLS_PSK_WITH_AES_256_CBC_SHA384 0x00AF /* 175 */
#define TLS_PSK_WITH_AES_256_CBC_SHA 0x008D /* 141 */
#define TLS_DHE_PSK_WITH_AES_128_CBC_SHA 0x0090 /* 144 */
#define TLS_DHE_PSK_WITH_AES_256_CBC_SHA 0x0091 /* 145 */
#define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 0xC004 /* 49156 */
#define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 0xC005 /* 49157 */
#define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0xC009 /* 49161 */
#define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0xC00A /* 49162 */
#define TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0xC012 /* 49170 */
#define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0xC013 /* 49171 */
#define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0xC014 /* 49172 */
#define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA 0xC00E /* 49166 */
#define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA 0xC00F /* 49167 */
#define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0xC023 /* 49187 */
#define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0xC024 /* 49188 */
#define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 0xC025 /* 49189 */
#define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 0xC026 /* 49190 */
#define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0xC027 /* 49191 */
#define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0xC028 /* 49192 */
#define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 0xC029 /* 49193 */
#define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 0xC02A /* 49194 */
// RFC 5288 "AES Galois Counter Mode (GCM) Cipher Suites for TLS"
#define TLS_RSA_WITH_AES_128_GCM_SHA256 0x009C /* 156 */
#define TLS_RSA_WITH_AES_256_GCM_SHA384 0x009D /* 157 */
#define TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xC02B /* 49195 */
#define TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xC02C /* 49196 */
#define TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 0xC02D /* 49197 */
#define TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 0xC02E /* 49198 */
#define TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0xC02F /* 49199 */
#define TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0xC030 /* 49200 */
#define TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 0xC031 /* 49201 */
#define TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 0xC032 /* 49202 */
//Tested against kernel.org:
//TLS 1.1
//#define TLS_MAJ 3
//#define TLS_MIN 2
//#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA // ok, recvs SERVER_KEY_EXCHANGE
//TLS 1.2
#define TLS_MAJ 3
#define TLS_MIN 3
//#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA // ok, recvs SERVER_KEY_EXCHANGE *** matrixssl uses this on my box
//#define CIPHER_ID TLS_RSA_WITH_AES_256_CBC_SHA256 // ok, no SERVER_KEY_EXCHANGE
// All GCMs:
//#define CIPHER_ID TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 // SSL_ALERT_HANDSHAKE_FAILURE
//#define CIPHER_ID TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE
//#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 // ok, recvs SERVER_KEY_EXCHANGE
//#define CIPHER_ID TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
//#define CIPHER_ID TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
//#define CIPHER_ID TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE
//#define CIPHER_ID TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
//#define CIPHER_ID TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 // SSL_ALERT_HANDSHAKE_FAILURE
//#define CIPHER_ID TLS_RSA_WITH_AES_256_GCM_SHA384 // ok, no SERVER_KEY_EXCHANGE
//#define CIPHER_ID TLS_RSA_WITH_AES_128_GCM_SHA256 // ok, no SERVER_KEY_EXCHANGE *** select this?
//#define CIPHER_ID TLS_DH_anon_WITH_AES_256_CBC_SHA // SSL_ALERT_HANDSHAKE_FAILURE
//^^^^^^^^^^^^^^^^^^^^^^^ (tested b/c this one doesn't req server certs... no luck)
//test TLS_RSA_WITH_AES_128_CBC_SHA, in TLS 1.2 it's mandated to be always supported
// works against "openssl s_server -cipher NULL"
// and against wolfssl-3.9.10-stable/examples/server/server.c:
//#define CIPHER_ID TLS_RSA_WITH_NULL_SHA256 // for testing (does everything except encrypting)
// "works", meaning
// "can send encrypted FINISHED to wolfssl-3.9.10-stable/examples/server/server.c",
// don't yet read its encrypted answers:
#define CIPHER_ID TLS_RSA_WITH_AES_256_CBC_SHA256 // ok, no SERVER_KEY_EXCHANGE
enum {
SHA256_INSIZE = 64,
SHA256_OUTSIZE = 32,
AES_BLOCKSIZE = 16,
AES128_KEYSIZE = 16,
AES256_KEYSIZE = 32,
};
struct record_hdr {
uint8_t type;
uint8_t proto_maj, proto_min;
uint8_t len16_hi, len16_lo;
};
typedef struct tls_state {
int fd;
psRsaKey_t server_rsa_pub_key;
sha256_ctx_t handshake_sha256_ctx;
uint8_t client_and_server_rand32[2 * 32];
uint8_t master_secret[48];
uint8_t encrypt_on_write;
int min_encrypted_len_on_read;
uint8_t client_write_MAC_key[SHA256_OUTSIZE];
uint8_t server_write_MAC_key[SHA256_OUTSIZE];
uint8_t client_write_key[AES256_KEYSIZE];
uint8_t server_write_key[AES256_KEYSIZE];
// RFC 5246
// sequence number
// Each connection state contains a sequence number, which is
// maintained separately for read and write states. The sequence
// number MUST be set to zero whenever a connection state is made the
// active state. Sequence numbers are of type uint64 and may not
// exceed 2^64-1.
uint64_t write_seq64_be;
// RFC 5246
// |6.2.1. Fragmentation
// | The record layer fragments information blocks into TLSPlaintext
// | records carrying data in chunks of 2^14 bytes or less. Client
// | message boundaries are not preserved in the record layer (i.e.,
// | multiple client messages of the same ContentType MAY be coalesced
// | into a single TLSPlaintext record, or a single message MAY be
// | fragmented across several records)
// |...
// | length
// | The length (in bytes) of the following TLSPlaintext.fragment.
// | The length MUST NOT exceed 2^14.
// |...
// | 6.2.2. Record Compression and Decompression
// |...
// | Compression must be lossless and may not increase the content length
// | by more than 1024 bytes. If the decompression function encounters a
// | TLSCompressed.fragment that would decompress to a length in excess of
// | 2^14 bytes, it MUST report a fatal decompression failure error.
// |...
// | length
// | The length (in bytes) of the following TLSCompressed.fragment.
// | The length MUST NOT exceed 2^14 + 1024.
//
// Since our buffer also contains 5-byte headers, make it a bit bigger:
int insize;
int tail;
//needed?
uint64_t align____;
uint8_t inbuf[20*1024];
uint8_t outbuf[20*1024];
} tls_state_t;
static unsigned get24be(const uint8_t *p)
{
return 0x100*(0x100*p[0] + p[1]) + p[2];
}
#if TLS_DEBUG
static void dump_hex(const char *fmt, const void *vp, int len)
{
char hexbuf[32 * 1024 + 4];
const uint8_t *p = vp;
bin2hex(hexbuf, (void*)p, len)[0] = '\0';
dbg(fmt, hexbuf);
}
static void dump_tls_record(const void *vp, int len)
{
const uint8_t *p = vp;
while (len > 0) {
unsigned xhdr_len;
if (len < 5) {
dump_hex("< |%s|\n", p, len);
return;
}
xhdr_len = 0x100*p[3] + p[4];
dbg("< hdr_type:%u ver:%u.%u len:%u", p[0], p[1], p[2], xhdr_len);
p += 5;
len -= 5;
if (len >= 4 && p[-5] == RECORD_TYPE_HANDSHAKE) {
unsigned len24 = get24be(p + 1);
dbg(" type:%u len24:%u", p[0], len24);
}
if (xhdr_len > len)
xhdr_len = len;
dump_hex(" |%s|\n", p, xhdr_len);
p += xhdr_len;
len -= xhdr_len;
}
}
#endif
void tls_get_random(void *buf, unsigned len)
{
if (len != open_read_close("/dev/urandom", buf, len))
xfunc_die();
}
//TODO rename this to sha256_hash, and sha256_hash -> sha256_update
static void hash_sha256(uint8_t out[SHA256_OUTSIZE], const void *data, unsigned size)
{
sha256_ctx_t ctx;
sha256_begin(&ctx);
sha256_hash(&ctx, data, size);
sha256_end(&ctx, out);
}
/* Nondestructively see the current hash value */
static void sha256_peek(sha256_ctx_t *ctx, void *buffer)
{
sha256_ctx_t ctx_copy = *ctx;
sha256_end(&ctx_copy, buffer);
}
#if TLS_DEBUG_HASH
static void sha256_hash_dbg(const char *fmt, sha256_ctx_t *ctx, const void *buffer, size_t len)
{
uint8_t h[SHA256_OUTSIZE];
sha256_hash(ctx, buffer, len);
dump_hex(fmt, buffer, len);
dbg(" (%u) ", (int)len);
sha256_peek(ctx, h);
dump_hex("%s\n", h, SHA256_OUTSIZE);
}
#else
# define sha256_hash_dbg(fmt, ctx, buffer, len) \
sha256_hash(ctx, buffer, len)
#endif
// RFC 2104
// HMAC(key, text) based on a hash H (say, sha256) is:
// ipad = [0x36 x INSIZE]
// opad = [0x5c x INSIZE]
// HMAC(key, text) = H((key XOR opad) + H((key XOR ipad) + text))
//
// H(key XOR opad) and H(key XOR ipad) can be precomputed
// if we often need HMAC hmac with the same key.
//
// text is often given in disjoint pieces.
static void hmac_sha256_precomputed_v(uint8_t out[SHA256_OUTSIZE],
sha256_ctx_t *hashed_key_xor_ipad,
sha256_ctx_t *hashed_key_xor_opad,
va_list va)
{
uint8_t *text;
/* hashed_key_xor_ipad contains unclosed "H((key XOR ipad) +" state */
/* hashed_key_xor_opad contains unclosed "H((key XOR opad) +" state */
/* calculate out = H((key XOR ipad) + text) */
while ((text = va_arg(va, uint8_t*)) != NULL) {
unsigned text_size = va_arg(va, unsigned);
sha256_hash(hashed_key_xor_ipad, text, text_size);
}
sha256_end(hashed_key_xor_ipad, out);
/* out = H((key XOR opad) + out) */
sha256_hash(hashed_key_xor_opad, out, SHA256_OUTSIZE);
sha256_end(hashed_key_xor_opad, out);
}
static void hmac_sha256(uint8_t out[SHA256_OUTSIZE], uint8_t *key, unsigned key_size, ...)
{
sha256_ctx_t hashed_key_xor_ipad;
sha256_ctx_t hashed_key_xor_opad;
uint8_t key_xor_ipad[SHA256_INSIZE];
uint8_t key_xor_opad[SHA256_INSIZE];
uint8_t tempkey[SHA256_OUTSIZE];
va_list va;
int i;
va_start(va, key_size);
// "The authentication key can be of any length up to INSIZE, the
// block length of the hash function. Applications that use keys longer
// than INSIZE bytes will first hash the key using H and then use the
// resultant OUTSIZE byte string as the actual key to HMAC."
if (key_size > SHA256_INSIZE) {
hash_sha256(tempkey, key, key_size);
key = tempkey;
key_size = SHA256_OUTSIZE;
}
for (i = 0; i < key_size; i++) {
key_xor_ipad[i] = key[i] ^ 0x36;
key_xor_opad[i] = key[i] ^ 0x5c;
}
for (; i < SHA256_INSIZE; i++) {
key_xor_ipad[i] = 0x36;
key_xor_opad[i] = 0x5c;
}
sha256_begin(&hashed_key_xor_ipad);
sha256_hash(&hashed_key_xor_ipad, key_xor_ipad, SHA256_INSIZE);
sha256_begin(&hashed_key_xor_opad);
sha256_hash(&hashed_key_xor_opad, key_xor_opad, SHA256_INSIZE);
hmac_sha256_precomputed_v(out, &hashed_key_xor_ipad, &hashed_key_xor_opad, va);
va_end(va);
}
// RFC 5246:
// 5. HMAC and the Pseudorandom Function
//...
// In this section, we define one PRF, based on HMAC. This PRF with the
// SHA-256 hash function is used for all cipher suites defined in this
// document and in TLS documents published prior to this document when
// TLS 1.2 is negotiated.
//...
// P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
// HMAC_hash(secret, A(2) + seed) +
// HMAC_hash(secret, A(3) + seed) + ...
// where + indicates concatenation.
// A() is defined as:
// A(0) = seed
// A(1) = HMAC_hash(secret, A(0)) = HMAC_hash(secret, seed)
// A(i) = HMAC_hash(secret, A(i-1))
// P_hash can be iterated as many times as necessary to produce the
// required quantity of data. For example, if P_SHA256 is being used to
// create 80 bytes of data, it will have to be iterated three times
// (through A(3)), creating 96 bytes of output data; the last 16 bytes
// of the final iteration will then be discarded, leaving 80 bytes of
// output data.
//
// TLS's PRF is created by applying P_hash to the secret as:
//
// PRF(secret, label, seed) = P_<hash>(secret, label + seed)
//
// The label is an ASCII string.
static void prf_hmac_sha256(
uint8_t *outbuf, unsigned outbuf_size,
uint8_t *secret, unsigned secret_size,
const char *label,
uint8_t *seed, unsigned seed_size)
{
uint8_t a[SHA256_OUTSIZE];
uint8_t *out_p = outbuf;
unsigned label_size = strlen(label);
/* In P_hash() calculation, "seed" is "label + seed": */
#define SEED label, label_size, seed, seed_size
#define SECRET secret, secret_size
#define A a, (int)(sizeof(a))
/* A(1) = HMAC_hash(secret, seed) */
hmac_sha256(a, SECRET, SEED, NULL);
//TODO: convert hmac_sha256 to precomputed
for(;;) {
/* HMAC_hash(secret, A(1) + seed) */
if (outbuf_size <= SHA256_OUTSIZE) {
/* Last, possibly incomplete, block */
/* (use a[] as temp buffer) */
hmac_sha256(a, SECRET, A, SEED, NULL);
memcpy(out_p, a, outbuf_size);
return;
}
/* Not last block. Store directly to result buffer */
hmac_sha256(out_p, SECRET, A, SEED, NULL);
out_p += SHA256_OUTSIZE;
outbuf_size -= SHA256_OUTSIZE;
/* A(2) = HMAC_hash(secret, A(1)) */
hmac_sha256(a, SECRET, A, NULL);
}
#undef A
#undef SECRET
#undef SEED
}
static tls_state_t *new_tls_state(void)
{
tls_state_t *tls = xzalloc(sizeof(*tls));
tls->fd = -1;
sha256_begin(&tls->handshake_sha256_ctx);
return tls;
}
static void tls_error_die(tls_state_t *tls)
{
dump_tls_record(tls->inbuf, tls->insize + tls->tail);
xfunc_die();
}
// RFC 5246
// 6.2.3.1. Null or Standard Stream Cipher
//
// Stream ciphers (including BulkCipherAlgorithm.null; see Appendix A.6)
// convert TLSCompressed.fragment structures to and from stream
// TLSCiphertext.fragment structures.
//
// stream-ciphered struct {
// opaque content[TLSCompressed.length];
// opaque MAC[SecurityParameters.mac_length];
// } GenericStreamCipher;
//
// The MAC is generated as:
// MAC(MAC_write_key, seq_num +
// TLSCompressed.type +
// TLSCompressed.version +
// TLSCompressed.length +
// TLSCompressed.fragment);
// where "+" denotes concatenation.
// seq_num
// The sequence number for this record.
// MAC
// The MAC algorithm specified by SecurityParameters.mac_algorithm.
//
// Note that the MAC is computed before encryption. The stream cipher
// encrypts the entire block, including the MAC.
//...
// Appendix C. Cipher Suite Definitions
//...
// Key IV Block
// Cipher Type Material Size Size
// ------------ ------ -------- ---- -----
// AES_128_CBC Block 16 16 16
// AES_256_CBC Block 32 16 16
//
// MAC Algorithm mac_length mac_key_length
// -------- ----------- ---------- --------------
// SHA HMAC-SHA1 20 20
// SHA256 HMAC-SHA256 32 32
static void xwrite_and_hash(tls_state_t *tls, /*const*/ void *buf, unsigned size)
{
uint8_t mac_hash[SHA256_OUTSIZE];
struct record_hdr *xhdr = buf;
if (!tls->encrypt_on_write) {
xwrite(tls->fd, buf, size);
dbg("wrote %u bytes\n", size);
/* Handshake hash does not include record headers */
if (size > 5 && xhdr->type == RECORD_TYPE_HANDSHAKE) {
sha256_hash_dbg(">> sha256:%s", &tls->handshake_sha256_ctx, (uint8_t*)buf + 5, size - 5);
}
return;
}
//TODO: convert hmac_sha256 to precomputed
hmac_sha256(mac_hash,
tls->client_write_MAC_key, sizeof(tls->client_write_MAC_key),
&tls->write_seq64_be, sizeof(tls->write_seq64_be),
buf, size,
NULL);
tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(tls->write_seq64_be));
if (CIPHER_ID == TLS_RSA_WITH_NULL_SHA256) {
/* No encryption, only signing */
xhdr->len16_lo += SHA256_OUTSIZE;
//FIXME: overflow into len16_hi?
xwrite(tls->fd, buf, size);
xhdr->len16_lo -= SHA256_OUTSIZE;
dbg("wrote %u bytes\n", size);
xwrite(tls->fd, mac_hash, sizeof(mac_hash));
dbg("wrote %u bytes of hash\n", (int)sizeof(mac_hash));
return;
}
// RFC 5246
// 6.2.3.2. CBC Block Cipher
// For block ciphers (such as 3DES or AES), the encryption and MAC
// functions convert TLSCompressed.fragment structures to and from block
// TLSCiphertext.fragment structures.
// struct {
// opaque IV[SecurityParameters.record_iv_length];
// block-ciphered struct {
// opaque content[TLSCompressed.length];
// opaque MAC[SecurityParameters.mac_length];
// uint8 padding[GenericBlockCipher.padding_length];
// uint8 padding_length;
// };
// } GenericBlockCipher;
//...
// IV
// The Initialization Vector (IV) SHOULD be chosen at random, and
// MUST be unpredictable. Note that in versions of TLS prior to 1.1,
// there was no IV field (...). For block ciphers, the IV length is
// of length SecurityParameters.record_iv_length, which is equal to the
// SecurityParameters.block_size.
// padding
// Padding that is added to force the length of the plaintext to be
// an integral multiple of the block cipher's block length.
// padding_length
// The padding length MUST be such that the total size of the
// GenericBlockCipher structure is a multiple of the cipher's block
// length. Legal values range from zero to 255, inclusive.
//...
// Appendix C. Cipher Suite Definitions
//...
// Key IV Block
// Cipher Type Material Size Size
// ------------ ------ -------- ---- -----
// AES_128_CBC Block 16 16 16
// AES_256_CBC Block 32 16 16
{
psCipherContext_t ctx;
uint8_t *p;
uint8_t padding_length;
/* Build IV+content+MAC+padding in outbuf */
tls_get_random(tls->outbuf, AES_BLOCKSIZE); /* IV */
p = tls->outbuf + AES_BLOCKSIZE;
size -= sizeof(*xhdr);
dbg("before crypt: 5 hdr + %u data + %u hash bytes\n", size, sizeof(mac_hash));
p = mempcpy(p, buf + sizeof(*xhdr), size); /* content */
p = mempcpy(p, mac_hash, sizeof(mac_hash)); /* MAC */
size += sizeof(mac_hash);
// RFC is talking nonsense:
// Padding that is added to force the length of the plaintext to be
// an integral multiple of the block cipher's block length.
// WRONG. _padding+padding_length_, not just _padding_,
// pads the data.
// IOW: padding_length is the last byte of padding[] array,
// contrary to what RFC depicts.
//
// What actually happens is that there is always padding.
// If you need one byte to reach BLOCKSIZE, this byte is 0x00.
// If you need two bytes, they are both 0x01.
// If you need three, they are 0x02,0x02,0x02. And so on.
// If you need no bytes to reach BLOCKSIZE, you have to pad a full
// BLOCKSIZE with bytes of value (BLOCKSIZE-1).
// It's ok to have more than minimum padding, but we do minimum.
padding_length = (~size) & (AES_BLOCKSIZE - 1);
do {
*p++ = padding_length; /* padding */
size++;
} while ((size & (AES_BLOCKSIZE - 1)) != 0);
/* Encrypt content+MAC+padding in place */
psAesInit(&ctx, tls->outbuf, /* IV */
tls->client_write_key, sizeof(tls->client_write_key)
);
psAesEncrypt(&ctx,
tls->outbuf + AES_BLOCKSIZE, /* plaintext */
tls->outbuf + AES_BLOCKSIZE, /* ciphertext */
size
);
/* Write out */
dbg("writing 5 + %u IV + %u encrypted bytes, padding_length:0x%02x\n",
AES_BLOCKSIZE, size, padding_length);
size += AES_BLOCKSIZE; /* + IV */
xhdr->len16_hi = size >> 8;
xhdr->len16_lo = size & 0xff;
xwrite(tls->fd, xhdr, sizeof(*xhdr));
xwrite(tls->fd, tls->outbuf, size);
dbg("wrote %u bytes\n", sizeof(*xhdr) + size);
//restore xhdr->len16_hi = ;
//restore xhdr->len16_lo = ;
}
}
static int xread_tls_block(tls_state_t *tls)
{
struct record_hdr *xhdr;
int sz;
int total;
int target;
dbg("insize:%u tail:%u\n", tls->insize, tls->tail);
memmove(tls->inbuf, tls->inbuf + tls->insize, tls->tail);
errno = 0;
total = tls->tail;
target = sizeof(tls->inbuf);
for (;;) {
if (total >= sizeof(*xhdr) && target == sizeof(tls->inbuf)) {
xhdr = (void*)tls->inbuf;
target = sizeof(*xhdr) + (0x100 * xhdr->len16_hi + xhdr->len16_lo);
if (target >= sizeof(tls->inbuf)) {
/* malformed input (too long): yell and die */
tls->tail = 0;
tls->insize = total;
tls_error_die(tls);
}
// can also check type/proto_maj/proto_min here
}
/* if total >= target, we have a full packet (and possibly more)... */
if (total - target >= 0)
break;
sz = safe_read(tls->fd, tls->inbuf + total, sizeof(tls->inbuf) - total);
if (sz <= 0)
bb_perror_msg_and_die("short read");
total += sz;
}
tls->tail = total - target;
tls->insize = target;
sz = target - sizeof(*xhdr);
/* Needs to be decrypted? */
if (tls->min_encrypted_len_on_read) {
psCipherContext_t ctx;
uint8_t *p = tls->inbuf + sizeof(*xhdr);
int padding_len;
if (sz & (AES_BLOCKSIZE-1)
|| sz < tls->min_encrypted_len_on_read
) {
bb_error_msg_and_die("bad encrypted len:%u", sz);
}
/* Decrypt content+MAC+padding in place */
psAesInit(&ctx, p, /* IV */
tls->server_write_key, sizeof(tls->server_write_key)
);
psAesDecrypt(&ctx,
p + AES_BLOCKSIZE, /* ciphertext */
p + AES_BLOCKSIZE, /* plaintext */
sz
);
padding_len = p[sz - 1];
dbg("encrypted size:%u type:0x%02x padding_length:0x%02x\n", sz, p[AES_BLOCKSIZE], padding_len);
padding_len++;
sz -= AES_BLOCKSIZE + SHA256_OUTSIZE + padding_len;
if (sz < 0) {
bb_error_msg_and_die("bad padding size:%u", padding_len);
}
if (sz != 0) {
/* Skip IV */
memmove(tls->inbuf + 5, tls->inbuf + 5 + AES_BLOCKSIZE, sz);
}
}
/* RFC 5246 is not saying it explicitly, but sha256 hash
* in our FINISHED record must include data of incoming packets too!
*/
if (tls->inbuf[0] == RECORD_TYPE_HANDSHAKE) {
sha256_hash_dbg("<< sha256:%s", &tls->handshake_sha256_ctx, tls->inbuf + 5, sz);
}
dbg("got block len:%u\n", sz);
return sz;
}
/*
* DER parsing routines
*/
static unsigned get_der_len(uint8_t **bodyp, uint8_t *der, uint8_t *end)
{
unsigned len, len1;
if (end - der < 2)
xfunc_die();
// if ((der[0] & 0x1f) == 0x1f) /* not single-byte item code? */
// xfunc_die();
len = der[1]; /* maybe it's short len */
if (len >= 0x80) {
/* no, it's long */
if (len == 0x80 || end - der < (int)(len - 0x7e)) {
/* 0x80 is "0 bytes of len", invalid DER: must use short len if can */
/* need 3 or 4 bytes for 81, 82 */
xfunc_die();
}
len1 = der[2]; /* if (len == 0x81) it's "ii 81 xx", fetch xx */
if (len > 0x82) {
/* >0x82 is "3+ bytes of len", should not happen realistically */
xfunc_die();
}
if (len == 0x82) { /* it's "ii 82 xx yy" */
len1 = 0x100*len1 + der[3];
der += 1; /* skip [yy] */
}
der += 1; /* skip [xx] */
len = len1;
// if (len < 0x80)
// xfunc_die(); /* invalid DER: must use short len if can */
}
der += 2; /* skip [code]+[1byte] */
if (end - der < (int)len)
xfunc_die();
*bodyp = der;
return len;
}
static uint8_t *enter_der_item(uint8_t *der, uint8_t **endp)
{
uint8_t *new_der;
unsigned len = get_der_len(&new_der, der, *endp);
dbg_der("entered der @%p:0x%02x len:%u inner_byte @%p:0x%02x\n", der, der[0], len, new_der, new_der[0]);
/* Move "end" position to cover only this item */
*endp = new_der + len;
return new_der;
}
static uint8_t *skip_der_item(uint8_t *der, uint8_t *end)
{
uint8_t *new_der;
unsigned len = get_der_len(&new_der, der, end);
/* Skip body */
new_der += len;
dbg_der("skipped der 0x%02x, next byte 0x%02x\n", der[0], new_der[0]);
return new_der;
}
static void der_binary_to_pstm(pstm_int *pstm_n, uint8_t *der, uint8_t *end)
{
uint8_t *bin_ptr;
unsigned len = get_der_len(&bin_ptr, der, end);
dbg_der("binary bytes:%u, first:0x%02x\n", len, bin_ptr[0]);
pstm_init_for_read_unsigned_bin(/*pool:*/ NULL, pstm_n, len);
pstm_read_unsigned_bin(pstm_n, bin_ptr, len);
//return bin + len;
}
static void find_key_in_der_cert(tls_state_t *tls, uint8_t *der, int len)
{
/* Certificate is a DER-encoded data structure. Each DER element has a length,
* which makes it easy to skip over large compound elements of any complexity
* without parsing them. Example: partial decode of kernel.org certificate:
* SEQ 0x05ac/1452 bytes (Certificate): 308205ac
* SEQ 0x0494/1172 bytes (tbsCertificate): 30820494
* [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0] 3 bytes: a003
* INTEGER (version): 0201 02
* INTEGER 0x11 bytes (serialNumber): 0211 00 9f85bf664b0cddafca508679501b2be4
* //^^^^^^note: matrixSSL also allows [ASN_CONTEXT_SPECIFIC | ASN_PRIMITIVE | 2] = 0x82 type
* SEQ 0x0d bytes (signatureAlgo): 300d
* OID 9 bytes: 0609 2a864886f70d01010b (OID_SHA256_RSA_SIG 42.134.72.134.247.13.1.1.11)
* NULL: 0500
* SEQ 0x5f bytes (issuer): 305f
* SET 11 bytes: 310b
* SEQ 9 bytes: 3009
* OID 3 bytes: 0603 550406
* Printable string "FR": 1302 4652
* SET 14 bytes: 310e
* SEQ 12 bytes: 300c
* OID 3 bytes: 0603 550408
* Printable string "Paris": 1305 5061726973
* SET 14 bytes: 310e
* SEQ 12 bytes: 300c
* OID 3 bytes: 0603 550407
* Printable string "Paris": 1305 5061726973
* SET 14 bytes: 310e
* SEQ 12 bytes: 300c
* OID 3 bytes: 0603 55040a
* Printable string "Gandi": 1305 47616e6469
* SET 32 bytes: 3120
* SEQ 30 bytes: 301e
* OID 3 bytes: 0603 550403
* Printable string "Gandi Standard SSL CA 2": 1317 47616e6469205374616e646172642053534c2043412032
* SEQ 30 bytes (validity): 301e
* TIME "161011000000Z": 170d 3136313031313030303030305a
* TIME "191011235959Z": 170d 3139313031313233353935395a
* SEQ 0x5b/91 bytes (subject): 305b //I did not decode this
* 3121301f060355040b1318446f6d61696e20436f
* 6e74726f6c2056616c6964617465643121301f06
* 0355040b1318506f73697469766553534c204d75
* 6c74692d446f6d61696e31133011060355040313
* 0a6b65726e656c2e6f7267
* SEQ 0x01a2/418 bytes (subjectPublicKeyInfo): 308201a2
* SEQ 13 bytes (algorithm): 300d
* OID 9 bytes: 0609 2a864886f70d010101 (OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1)
* NULL: 0500
* BITSTRING 0x018f/399 bytes (publicKey): 0382018f
* ????: 00
* //after the zero byte, it appears key itself uses DER encoding:
* SEQ 0x018a/394 bytes: 3082018a
* INTEGER 0x0181/385 bytes (modulus): 02820181
* 00b1ab2fc727a3bef76780c9349bf3
* ...24 more blocks of 15 bytes each...
* 90e895291c6bc8693b65
* INTEGER 3 bytes (exponent): 0203 010001
* [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0x3] 0x01e5 bytes (X509v3 extensions): a38201e5
* SEQ 0x01e1 bytes: 308201e1
* ...
* Certificate is a sequence of three elements:
* tbsCertificate (SEQ)
* signatureAlgorithm (AlgorithmIdentifier)
* signatureValue (BIT STRING)
*
* In turn, tbsCertificate is a sequence of:
* version
* serialNumber
* signatureAlgo (AlgorithmIdentifier)
* issuer (Name, has complex structure)
* validity (Validity, SEQ of two Times)
* subject (Name)
* subjectPublicKeyInfo (SEQ)
* ...
*
* subjectPublicKeyInfo is a sequence of:
* algorithm (AlgorithmIdentifier)
* publicKey (BIT STRING)
*
* We need Certificate.tbsCertificate.subjectPublicKeyInfo.publicKey
*/
uint8_t *end = der + len;
/* enter "Certificate" item: [der, end) will be only Cert */
der = enter_der_item(der, &end);
/* enter "tbsCertificate" item: [der, end) will be only tbsCert */
der = enter_der_item(der, &end);
/* skip up to subjectPublicKeyInfo */
der = skip_der_item(der, end); /* version */
der = skip_der_item(der, end); /* serialNumber */
der = skip_der_item(der, end); /* signatureAlgo */
der = skip_der_item(der, end); /* issuer */
der = skip_der_item(der, end); /* validity */
der = skip_der_item(der, end); /* subject */
/* enter subjectPublicKeyInfo */
der = enter_der_item(der, &end);
{ /* check subjectPublicKeyInfo.algorithm */
static const uint8_t expected[] = {
0x30,0x0d, // SEQ 13 bytes
0x06,0x09, 0x2a,0x86,0x48,0x86,0xf7,0x0d,0x01,0x01,0x01, // OID RSA_KEY_ALG 42.134.72.134.247.13.1.1.1
//0x05,0x00, // NULL
};
if (memcmp(der, expected, sizeof(expected)) != 0)
bb_error_msg_and_die("not RSA key");
}
/* skip subjectPublicKeyInfo.algorithm */
der = skip_der_item(der, end);
/* enter subjectPublicKeyInfo.publicKey */
// die_if_not_this_der_type(der, end, 0x03); /* must be BITSTRING */
der = enter_der_item(der, &end);
/* parse RSA key: */
//based on getAsnRsaPubKey(), pkcs1ParsePrivBin() is also of note
dbg("key bytes:%u, first:0x%02x\n", (int)(end - der), der[0]);
if (end - der < 14) xfunc_die();
/* example format:
* ignore bits: 00
* SEQ 0x018a/394 bytes: 3082018a
* INTEGER 0x0181/385 bytes (modulus): 02820181 XX...XXX
* INTEGER 3 bytes (exponent): 0203 010001
*/
if (*der != 0) /* "ignore bits", should be 0 */
xfunc_die();
der++;
der = enter_der_item(der, &end); /* enter SEQ */
/* memset(tls->server_rsa_pub_key, 0, sizeof(tls->server_rsa_pub_key)); - already is */
der_binary_to_pstm(&tls->server_rsa_pub_key.N, der, end); /* modulus */
der = skip_der_item(der, end);
der_binary_to_pstm(&tls->server_rsa_pub_key.e, der, end); /* exponent */
tls->server_rsa_pub_key.size = pstm_unsigned_bin_size(&tls->server_rsa_pub_key.N);
dbg("server_rsa_pub_key.size:%d\n", tls->server_rsa_pub_key.size);
}
/*
* TLS Handshake routines
*/
static int xread_tls_handshake_block(tls_state_t *tls, int min_len)
{
struct record_hdr *xhdr;
int len = xread_tls_block(tls);
xhdr = (void*)tls->inbuf;
if (len < min_len
|| xhdr->type != RECORD_TYPE_HANDSHAKE
|| xhdr->proto_maj != TLS_MAJ
|| xhdr->proto_min != TLS_MIN
) {
tls_error_die(tls);
}
dbg("got HANDSHAKE\n");
return len;
}
static void fill_handshake_record_hdr(struct record_hdr *xhdr, unsigned len)
{
struct handshake_hdr {
struct record_hdr xhdr;
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
} *h = (void*)xhdr;
h->xhdr.type = RECORD_TYPE_HANDSHAKE;
h->xhdr.proto_maj = TLS_MAJ;
h->xhdr.proto_min = TLS_MIN;
len -= 5;
h->xhdr.len16_hi = len >> 8;
// can be optimized to do one store instead of four:
// uint32_t v = htonl(0x100*(RECORD_TYPE_HANDSHAKE + 0x100*(TLS_MAJ + 0x100*(TLS_MIN))))
// | ((len >> 8) << 24); // little-endian specific, don't use in this form
// *(uint32_t *)xhdr = v;
h->xhdr.len16_lo = len & 0xff;
len -= 4;
h->len24_hi = len >> 16;
h->len24_mid = len >> 8;
h->len24_lo = len & 0xff;
memset(h + 1, 0, len);
}
//TODO: implement RFC 5746 (Renegotiation Indication Extension) - some servers will refuse to work with us otherwise
static void send_client_hello(tls_state_t *tls)
{
struct client_hello {
struct record_hdr xhdr;
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
uint8_t proto_maj, proto_min;
uint8_t rand32[32];
uint8_t session_id_len;
/* uint8_t session_id[]; */
uint8_t cipherid_len16_hi, cipherid_len16_lo;
uint8_t cipherid[2 * 1]; /* actually variable */
uint8_t comprtypes_len;
uint8_t comprtypes[1]; /* actually variable */
};
struct client_hello record;
fill_handshake_record_hdr(&record.xhdr, sizeof(record));
record.type = HANDSHAKE_CLIENT_HELLO;
record.proto_maj = TLS_MAJ; /* the "requested" version of the protocol, */
record.proto_min = TLS_MIN; /* can be higher than one in record headers */
tls_get_random(record.rand32, sizeof(record.rand32));
/* record.session_id_len = 0; - already is */
/* record.cipherid_len16_hi = 0; */
record.cipherid_len16_lo = 2 * 1;
record.cipherid[0] = CIPHER_ID >> 8;
record.cipherid[1] = CIPHER_ID & 0xff;
record.comprtypes_len = 1;
/* record.comprtypes[0] = 0; */
//dbg (make it repeatable): memset(record.rand32, 0x11, sizeof(record.rand32));
dbg(">> CLIENT_HELLO\n");
xwrite_and_hash(tls, &record, sizeof(record));
memcpy(tls->client_and_server_rand32, record.rand32, sizeof(record.rand32));
}
static void get_server_hello(tls_state_t *tls)
{
struct server_hello {
struct record_hdr xhdr;
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
uint8_t proto_maj, proto_min;
uint8_t rand32[32]; /* first 4 bytes are unix time in BE format */
uint8_t session_id_len;
uint8_t session_id[32];
uint8_t cipherid_hi, cipherid_lo;
uint8_t comprtype;
/* extensions may follow, but only those which client offered in its Hello */
};
struct server_hello *hp;
uint8_t *cipherid;
xread_tls_handshake_block(tls, 74);
hp = (void*)tls->inbuf;
// 74 bytes:
// 02 000046 03|03 58|78|cf|c1 50|a5|49|ee|7e|29|48|71|fe|97|fa|e8|2d|19|87|72|90|84|9d|37|a3|f0|cb|6f|5f|e3|3c|2f |20 |d8|1a|78|96|52|d6|91|01|24|b3|d6|5b|b7|d0|6c|b3|e1|78|4e|3c|95|de|74|a0|ba|eb|a7|3a|ff|bd|a2|bf |00|9c |00|
//SvHl len=70 maj.min unixtime^^^ 28randbytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^ slen sid32bytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ cipSel comprSel
if (hp->type != HANDSHAKE_SERVER_HELLO
|| hp->len24_hi != 0
|| hp->len24_mid != 0
/* hp->len24_lo checked later */
|| hp->proto_maj != TLS_MAJ
|| hp->proto_min != TLS_MIN
) {
tls_error_die(tls);
}
cipherid = &hp->cipherid_hi;
if (hp->session_id_len != 32) {
if (hp->session_id_len != 0)
tls_error_die(tls);
// session_id_len == 0: no session id
// "The server
// may return an empty session_id to indicate that the session will
// not be cached and therefore cannot be resumed."
cipherid -= 32;
hp->len24_lo += 32; /* what len would be if session id would be present */
}
if (hp->len24_lo < 70
|| cipherid[0] != (CIPHER_ID >> 8)
|| cipherid[1] != (CIPHER_ID & 0xff)
|| cipherid[2] != 0 /* comprtype */
) {
tls_error_die(tls);
}
dbg("<< SERVER_HELLO\n");
memcpy(tls->client_and_server_rand32 + 32, hp->rand32, sizeof(hp->rand32));
}
static void get_server_cert(tls_state_t *tls)
{
struct record_hdr *xhdr;
uint8_t *certbuf;
int len, len1;
len = xread_tls_handshake_block(tls, 10);
xhdr = (void*)tls->inbuf;
certbuf = (void*)(xhdr + 1);
if (certbuf[0] != HANDSHAKE_CERTIFICATE)
tls_error_die(tls);
dbg("<< CERTIFICATE\n");
// 4392 bytes:
// 0b 00|11|24 00|11|21 00|05|b0 30|82|05|ac|30|82|04|94|a0|03|02|01|02|02|11|00|9f|85|bf|66|4b|0c|dd|af|ca|50|86|79|50|1b|2b|e4|30|0d...
//Cert len=4388 ChainLen CertLen^ DER encoded X509 starts here. openssl x509 -in FILE -inform DER -noout -text
len1 = get24be(certbuf + 1);
if (len1 > len - 4) tls_error_die(tls);
len = len1;
len1 = get24be(certbuf + 4);
if (len1 > len - 3) tls_error_die(tls);
len = len1;
len1 = get24be(certbuf + 7);
if (len1 > len - 3) tls_error_die(tls);
len = len1;
if (len)
find_key_in_der_cert(tls, certbuf + 10, len);
}
static void send_client_key_exchange(tls_state_t *tls)
{
struct client_key_exchange {
struct record_hdr xhdr;
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
/* keylen16 exists for RSA (in TLS, not in SSL), but not for some other key types */
uint8_t keylen16_hi, keylen16_lo;
uint8_t key[4 * 1024]; // size??
};
struct client_key_exchange record;
uint8_t rsa_premaster[SSL_HS_RSA_PREMASTER_SIZE];
int len;
fill_handshake_record_hdr(&record.xhdr, sizeof(record) - sizeof(record.key));
record.type = HANDSHAKE_CLIENT_KEY_EXCHANGE;
tls_get_random(rsa_premaster, sizeof(rsa_premaster));
// RFC 5246
// "Note: The version number in the PreMasterSecret is the version
// offered by the client in the ClientHello.client_version, not the
// version negotiated for the connection."
rsa_premaster[0] = TLS_MAJ;
rsa_premaster[1] = TLS_MIN;
len = psRsaEncryptPub(/*pool:*/ NULL,
/* psRsaKey_t* */ &tls->server_rsa_pub_key,
rsa_premaster, /*inlen:*/ sizeof(rsa_premaster),
record.key, sizeof(record.key),
data_param_ignored
);
/* length fields need fixing */
record.keylen16_hi = len >> 8;
record.keylen16_lo = len & 0xff;
len += 2;
/* record.len24_hi = 0; - already is */
record.len24_mid = len >> 8;
record.len24_lo = len & 0xff;
len += 4;
record.xhdr.len16_hi = len >> 8;
record.xhdr.len16_lo = len & 0xff;
dbg(">> CLIENT_KEY_EXCHANGE\n");
xwrite_and_hash(tls, &record, sizeof(record.xhdr) + len);
// RFC 5246
// For all key exchange methods, the same algorithm is used to convert
// the pre_master_secret into the master_secret. The pre_master_secret
// should be deleted from memory once the master_secret has been
// computed.
// master_secret = PRF(pre_master_secret, "master secret",
// ClientHello.random + ServerHello.random)
// [0..47];
// The master secret is always exactly 48 bytes in length. The length
// of the premaster secret will vary depending on key exchange method.
prf_hmac_sha256(
tls->master_secret, sizeof(tls->master_secret),
rsa_premaster, sizeof(rsa_premaster),
"master secret",
tls->client_and_server_rand32, sizeof(tls->client_and_server_rand32)
);
dump_hex("master secret:%s\n", tls->master_secret, sizeof(tls->master_secret));
// RFC 5246
// 6.3. Key Calculation
//
// The Record Protocol requires an algorithm to generate keys required
// by the current connection state (see Appendix A.6) from the security
// parameters provided by the handshake protocol.
//
// The master secret is expanded into a sequence of secure bytes, which
// is then split to a client write MAC key, a server write MAC key, a
// client write encryption key, and a server write encryption key. Each
// of these is generated from the byte sequence in that order. Unused
// values are empty. Some AEAD ciphers may additionally require a
// client write IV and a server write IV (see Section 6.2.3.3).
//
// When keys and MAC keys are generated, the master secret is used as an
// entropy source.
//
// To generate the key material, compute
//
// key_block = PRF(SecurityParameters.master_secret,
// "key expansion",
// SecurityParameters.server_random +
// SecurityParameters.client_random);
//
// until enough output has been generated. Then, the key_block is
// partitioned as follows:
//
// client_write_MAC_key[SecurityParameters.mac_key_length]
// server_write_MAC_key[SecurityParameters.mac_key_length]
// client_write_key[SecurityParameters.enc_key_length]
// server_write_key[SecurityParameters.enc_key_length]
// client_write_IV[SecurityParameters.fixed_iv_length]
// server_write_IV[SecurityParameters.fixed_iv_length]
{
uint8_t tmp64[64];
/* make "server_rand32 + client_rand32" */
memcpy(&tmp64[0] , &tls->client_and_server_rand32[32], 32);
memcpy(&tmp64[32], &tls->client_and_server_rand32[0] , 32);
prf_hmac_sha256(
tls->client_write_MAC_key, 2 * (SHA256_OUTSIZE + AES256_KEYSIZE),
// also fills:
// server_write_MAC_key[SHA256_OUTSIZE]
// client_write_key[AES256_KEYSIZE]
// server_write_key[AES256_KEYSIZE]
tls->master_secret, sizeof(tls->master_secret),
"key expansion",
tmp64, 64
);
dump_hex("client_write_MAC_key:%s\n",
tls->client_write_MAC_key, sizeof(tls->client_write_MAC_key)
);
dump_hex("client_write_key:%s\n",
tls->client_write_key, sizeof(tls->client_write_key)
);
}
}
static const uint8_t rec_CHANGE_CIPHER_SPEC[] = {
RECORD_TYPE_CHANGE_CIPHER_SPEC, TLS_MAJ, TLS_MIN, 00, 01,
01
};
static void send_change_cipher_spec(tls_state_t *tls)
{
/* Not "xwrite_and_hash": this is not a handshake message */
dbg(">> CHANGE_CIPHER_SPEC\n");
xwrite(tls->fd, rec_CHANGE_CIPHER_SPEC, sizeof(rec_CHANGE_CIPHER_SPEC));
}
// 7.4.9. Finished
// A Finished message is always sent immediately after a change
// cipher spec message to verify that the key exchange and
// authentication processes were successful. It is essential that a
// change cipher spec message be received between the other handshake
// messages and the Finished message.
//...
// The Finished message is the first one protected with the just
// negotiated algorithms, keys, and secrets. Recipients of Finished
// messages MUST verify that the contents are correct. Once a side
// has sent its Finished message and received and validated the
// Finished message from its peer, it may begin to send and receive
// application data over the connection.
//...
// struct {
// opaque verify_data[verify_data_length];
// } Finished;
//
// verify_data
// PRF(master_secret, finished_label, Hash(handshake_messages))
// [0..verify_data_length-1];
//
// finished_label
// For Finished messages sent by the client, the string
// "client finished". For Finished messages sent by the server,
// the string "server finished".
//
// Hash denotes a Hash of the handshake messages. For the PRF
// defined in Section 5, the Hash MUST be the Hash used as the basis
// for the PRF. Any cipher suite which defines a different PRF MUST
// also define the Hash to use in the Finished computation.
//
// In previous versions of TLS, the verify_data was always 12 octets
// long. In the current version of TLS, it depends on the cipher
// suite. Any cipher suite which does not explicitly specify
// verify_data_length has a verify_data_length equal to 12. This
// includes all existing cipher suites.
static void send_client_finished(tls_state_t *tls)
{
struct finished {
struct record_hdr xhdr;
uint8_t type;
uint8_t len24_hi, len24_mid, len24_lo;
uint8_t prf_result[12];
};
struct finished record;
uint8_t handshake_hash[SHA256_OUTSIZE];
fill_handshake_record_hdr(&record.xhdr, sizeof(record));
record.type = HANDSHAKE_FINISHED;
sha256_peek(&tls->handshake_sha256_ctx, handshake_hash);
prf_hmac_sha256(record.prf_result, sizeof(record.prf_result),
tls->master_secret, sizeof(tls->master_secret),
"client finished",
handshake_hash, sizeof(handshake_hash)
);
dump_hex("from secret: %s\n", tls->master_secret, sizeof(tls->master_secret));
dump_hex("from labelSeed: %s", "client finished", sizeof("client finished")-1);
dump_hex("%s\n", handshake_hash, sizeof(handshake_hash));
dump_hex("=> digest: %s\n", record.prf_result, sizeof(record.prf_result));
//(1) TODO: well, this should be encrypted on send, really.
//(2) do we really need to also hash it?
dbg(">> FINISHED\n");
xwrite_and_hash(tls, &record, sizeof(record));
}
static void tls_handshake(tls_state_t *tls)
{
// Client RFC 5246 Server
// (*) - optional messages, not always sent
//
// ClientHello ------->
// ServerHello
// Certificate*
// ServerKeyExchange*
// CertificateRequest*
// <------- ServerHelloDone
// Certificate*
// ClientKeyExchange
// CertificateVerify*
// [ChangeCipherSpec]
// Finished ------->
// [ChangeCipherSpec]
// <------- Finished
// Application Data <------> Application Data
int len;
send_client_hello(tls);
get_server_hello(tls);
//RFC 5246
// The server MUST send a Certificate message whenever the agreed-
// upon key exchange method uses certificates for authentication
// (this includes all key exchange methods defined in this document
// except DH_anon). This message will always immediately follow the
// ServerHello message.
//
// IOW: in practice, Certificate *always* follows.
// (for example, kernel.org does not even accept DH_anon cipher id)
get_server_cert(tls);
len = xread_tls_handshake_block(tls, 4);
if (tls->inbuf[5] == HANDSHAKE_SERVER_KEY_EXCHANGE) {
// 459 bytes:
// 0c 00|01|c7 03|00|17|41|04|87|94|2e|2f|68|d0|c9|f4|97|a8|2d|ef|ed|67|ea|c6|f3|b3|56|47|5d|27|b6|bd|ee|70|25|30|5e|b0|8e|f6|21|5a...
//SvKey len=455^
// with TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: 461 bytes:
// 0c 00|01|c9 03|00|17|41|04|cd|9b|b4|29|1f|f6|b0|c2|84|82|7f|29|6a|47|4e|ec|87|0b|c1|9c|69|e1|f8|c6|d0|53|e9|27|90|a5|c8|02|15|75...
dbg("<< SERVER_KEY_EXCHANGE len:%u\n", len);
//probably need to save it
xread_tls_handshake_block(tls, 4);
}
// if (tls->inbuf[5] == HANDSHAKE_CERTIFICATE_REQUEST) {
// dbg("<< CERTIFICATE_REQUEST\n");
//RFC 5246: (in response to this,) "If no suitable certificate is available,
// the client MUST send a certificate message containing no
// certificates. That is, the certificate_list structure has a
// length of zero. ...
// Client certificates are sent using the Certificate structure
// defined in Section 7.4.2."
// (i.e. the same format as server certs)
// xread_tls_handshake_block(tls, 4);
// }
if (tls->inbuf[5] != HANDSHAKE_SERVER_HELLO_DONE)
tls_error_die(tls);
// 0e 000000 (len:0)
dbg("<< SERVER_HELLO_DONE\n");
send_client_key_exchange(tls);
send_change_cipher_spec(tls);
/* from now on we should send encrypted */
/* tls->write_seq64_be = 0; - already is */
tls->encrypt_on_write = 1;
send_client_finished(tls);
/* Get CHANGE_CIPHER_SPEC */
len = xread_tls_block(tls);
if (len != 1 || memcmp(tls->inbuf, rec_CHANGE_CIPHER_SPEC, 6) != 0)
tls_error_die(tls);
dbg("<< CHANGE_CIPHER_SPEC\n");
/* all incoming packets now should be encrypted and have IV + MAC + padding */
tls->min_encrypted_len_on_read = AES_BLOCKSIZE + SHA256_OUTSIZE + AES_BLOCKSIZE;
/* Get (encrypted) FINISHED from the server */
len = xread_tls_block(tls);
if (len < 4 || tls->inbuf[5] != HANDSHAKE_FINISHED)
tls_error_die(tls);
dbg("<< FINISHED\n");
/* application data can be sent/received */
}
// To run a test server using openssl:
// openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
// openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -no_tls1 -no_tls1_1
//
// Unencryped SHA256 example:
// openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
// openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher NULL
// openssl s_client -connect 127.0.0.1:4433 -debug -tls1_2 -no_tls1 -no_tls1_1 -cipher NULL-SHA256
int tls_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
int tls_main(int argc UNUSED_PARAM, char **argv)
{
tls_state_t *tls;
len_and_sockaddr *lsa;
int fd;
// INIT_G();
// getopt32(argv, "myopts")
if (!argv[1])
bb_show_usage();
lsa = xhost2sockaddr(argv[1], 443);
fd = xconnect_stream(lsa);
tls = new_tls_state();
tls->fd = fd;
tls_handshake(tls);
return EXIT_SUCCESS;
}
/* Unencryped SHA256 example:
* s_client says:
write to 0x1d750b0 [0x1e6f153] (99 bytes => 99 (0x63))
0000 - 16 03 01 005e 01 00005a 0303 [4d ef 5c 82 3e ....^...Z..M.\.> >> ClHello
0010 - bf a6 ee f1 1e 04 d1 5c-99 20 86 13 e9 0a cf 58 .......\. .....X
0020 - 75 b1 bd 7a e6 d6 44 f3-d3 a1 52] 00 0004 003b u..z..D...R....; 003b = TLS_RSA_WITH_NULL_SHA256
0030 - 00ff TLS_EMPTY_RENEGOTIATION_INFO_SCSV
0100 compr=none
002d, 0023 0000, 000d 0020 [00 1e .....-.#..... .. extlen, SessionTicketTLS 0 bytes, SignatureAlgorithms 32 bytes
0040 - 06 01 06 02 06 03 05 01-05 02 05 03 04 01 04 02 ................
0050 - 04 03 03 01 03 02 03 03-02 01 02 02 02 03] 000f ................ Heart Beat 1 byte
0060 - 0001 01 ...
read from 0x1d750b0 [0x1e6ac03] (5 bytes => 5 (0x5))
0000 - 16 03 03 00 3a ....:
read from 0x1d750b0 [0x1e6ac08] (58 bytes => 58 (0x3A))
0000 - 02 000036 0303 [f2 61-ae c8 58 e3 51 42 32 93 ...6...a..X.QB2. << SvHello
0010 - c5 62 e4 f5 06 93 81 65-aa f7 df 74 af 7c 98 b4 .b.....e...t.|..
0020 - 3e a7 35 c3 25 69] 00,003b,00.................. >.5.%i..;....... - no session id! "The server
may return an empty session_id to indicate that the session will
not be cached and therefore cannot be resumed."
003b = TLS_RSA_WITH_NULL_SHA256 accepted, 00 - no compr
000e ff01 0001 extlen, 0xff01=RenegotiationInfo 1 byte
0030 - 00, 0023 0000, SessionTicketTLS 0 bytes
000f 0001 01 ..#....... Heart Beat 1 byte
read from 0x1d750b0 [0x1e6ac03] (5 bytes => 5 (0x5))
0000 - 16 03 03 04 0b .....
read from 0x1d750b0 [0x1e6ac08] (1035 bytes => 1035 (0x40B))
0000 - 0b 00 04 07 00 04 04 00-04 01 30 82 03 fd 30 82 ..........0...0. << Cert
0010 - 02 65 a0 03 02 01 02 02-09 00 d9 d9 8d b8 94 ad .e..............
0020 - 2e 2b 30 0d 06 09 2a 86-48 86 f7 0d 01 01 0b 05 .+0...*.H.......
0030 - 00 30 14 31 12 30 10 06-03 55 04 03 0c 09 6c 6f .0.1.0...U....lo
0040 - 63 61 6c 68 6f 73 74 30-20 17 0d 31 37 30 31 31 calhost0 ..17011
...".......".......".......".......".......".......".......".......".....
03f0 - 11 8a cd c5 a3 0a 22 43-d5 13 f9 a5 8a 06 f9 00 ......"C........
0400 - 3c f7 86 4e e8 a5 d8 5b-92 37 f5 <..N...[.7.
depth=0 CN = localhost
verify error:num=18:self signed certificate
verify return:1
depth=0 CN = localhost
verify return:1
read from 0x1d750b0 [0x1e6ac03] (5 bytes => 5 (0x5))
0000 - 16 03 03 00 04 .....
read from 0x1d750b0 [0x1e6ac08] (4 bytes => 4 (0x4)) << SvDone
0000 - 0e .
0004 - <SPACES/NULS>
write to 0x1d750b0 [0x1e74620] (395 bytes => 395 (0x18B)) >> ClDone
0000 - 16 03 03 01 86 10 00 01-82 01 80 88 f0 87 5d b0 ..............].
0010 - ea df 3b 4d e2 35 f3 99-e6 d4 29 87 36 86 ea 30 ..;M.5....).6..0
0020 - 38 80 c7 37 66 7f 5b e7-23 38 7e 87 24 66 82 81 8..7f.[.#8~.$f..
0030 - e4 ba 6c 2a 0c 92 a8 b9-39 c1 55 16 32 88 14 cd ..l*....9.U.2...
0040 - 95 8c 82 49 a1 c7 f9 9b-e5 8f f6 5e 7e ee 91 b3 ...I.......^~...
0050 - 2c 92 e7 a3 02 f8 9f 56-04 45 39 df a7 d6 1a 16 ,......V.E9.....
0060 - 67 5c a4 f8 87 8a c4 c8-6c 6f c6 f0 9b c9 b4 87 g\......lo......
0070 - 36 43 c1 67 9f b3 aa 11-34 b0 c2 fc 1f d9 e1 ff 6C.g....4.......
0080 - fb e1 89 db 91 58 ec cc-aa 16 19 9a 91 74 e2 46 .....X.......t.F
0090 - 22 a7 a7 f7 9e 3c 97 82-2c e4 21 b3 fa ef ba 3f "....<..,.!....?
00a0 - 57 48 e4 b2 84 b7 c2 81-92 a9 f1 03 68 f4 e6 0c WH..........h...
00b0 - fd 54 87 f5 e9 a0 5d e6-5f 0e bd 80 86 27 ab 0e .T....]._....'..
00c0 - cf 92 4f bd fc 24 b9 54-72 5f 58 df 6b 2b 1d 97 ..O..$.Tr_X.k+..
00d0 - 00 60 fe 95 b0 aa d6 c7-c1 3a f9 2e 7c 92 a9 6d .`.......:..|..m
00e0 - 28 a3 ef 3e c1 e6 2d 2d-e8 db 81 ea 51 02 3f 64 (..>..--....Q.?d
00f0 - a8 66 14 c1 4b 17 1f 55-c6 5b 3b 38 c3 6a 61 a8 .f..K..U.[;8.ja.
0100 - f7 ad 65 7d cb 14 6d b3-0f 76 19 25 8e ed bd 53 ..e}..m..v.%...S
0110 - 35 a9 a1 34 00 9d 07 81-84 51 35 e0 83 83 e3 a6 5..4.....Q5.....
0120 - c7 77 4c 61 e4 78 9c cb-f5 92 4e d6 dd c4 c2 2b .wLa.x....N....+
0130 - 75 9e 72 a6 7f 81 6a 1c-fc 4a 51 91 81 b4 cc 33 u.r...j..JQ....3
0140 - 1c 8b 0a b6 94 8b 16 1b-86 2f 31 5e 31 e1 57 14 ........./1^1.W.
0150 - 2e b5 09 5d cf 6f ea b2-94 e9 5c cc b9 fc 24 a0 ...].o....\...$.
0160 - b7 f1 f4 9d 95 46 4f 08-5c 45 c6 2f 9f 7d 76 09 .....FO.\E./.}v.
0170 - 6a af 50 2c 89 76 82 5f-e8 34 d8 4b 84 b6 34 18 j.P,.v._.4.K..4.
0180 - 85 95 4a 3f 0f 28 88 3a-71 32 90 ..J?.(.:q2.
write to 0x1d750b0 [0x1e74620] (6 bytes => 6 (0x6))
0000 - 14 03 03 00 01 01 ...... >> CHANGE_CIPHER_SPEC
write to 0x1d750b0 [0x1e74620] (53 bytes => 53 (0x35))
0000 - 16 03 03 0030 14 00000c [ed b9 e1 33 36 0b 76 ....0.......36.v >> FINISHED (0x14) [PRF 12 bytes|SHA256_OUTSIZE 32 bytes]
0010 - c0 d1 d4 0b a3|73 ec a8-fa b5 cb 12 b6 4c 2a b1 .....s.......L*.
0020 - fb 42 7f 73 0d 06 1c 87-56 f0 db df e6 6a 25 aa .B.s....V....j%.
0030 - fc 42 38 cb 0b] .B8..
read from 0x1d750b0 [0x1e6ac03] (5 bytes => 5 (0x5))
0000 - 16 03 03 00 aa .....
read from 0x1d750b0 [0x1e6ac08] (170 bytes => 170 (0xAA))
0000 - 04 00 00 a6 00 00 1c 20-00 a0 dd f4 52 01 54 8d ....... ....R.T. << NEW_SESSION_TICKET
0010 - f8 a6 f9 2d 7d 19 20 5b-14 44 d3 2d 7b f2 ca e8 ...-}. [.D.-{...
0020 - 01 4e 94 7b fe 12 59 3a-00 2e 7e cf 74 43 7a f7 .N.{..Y:..~.tCz.
0030 - 9e cc 70 80 70 7c e3 a5-c6 9d 85 2c 36 19 4c 5c ..p.p|.....,6.L\
0040 - ba 3b c3 e5 69 dc f3 a4-47 38 11 c9 7d 1a b0 6e .;..i...G8..}..n
0050 - d8 49 a0 a8 e4 de 70 a8-d0 6b e4 7a b7 65 25 df .I....p..k.z.e%.
0060 - 1b 5f 64 0f 89 69 02 72-fe eb d3 7a af 51 78 0e ._d..i.r...z.Qx.
0070 - de 17 06 a5 f0 47 9d e0-04 d4 b1 1e be 7e ed bd .....G.......~..
0080 - 27 8f 5d e8 ac f6 45 aa-e0 12 93 41 5f a8 4b b9 '.]...E....A_.K.
0090 - bd 43 8f a1 23 51 af 92-77 8f 38 23 3e 2e c2 f0 .C..#Q..w.8#>...
00a0 - a3 74 fa 83 94 ce 19 8a-5b 5b .t......[[
read from 0x1d750b0 [0x1e6ac03] (5 bytes => 5 (0x5))
0000 - 14 03 03 00 01 ..... << CHANGE_CIPHER_SPEC
read from 0x1d750b0 [0x1e6ac08] (1 bytes => 1 (0x1))
0000 - 01 .
read from 0x1d750b0 [0x1e6ac03] (5 bytes => 5 (0x5))
0000 - 16 03 03 00 30 ....0
read from 0x1d750b0 [0x1e6ac08] (48 bytes => 48 (0x30))
0000 - 14 00000c [06 86 0d 5c-92 0b 63 04 cc b4 f0 00 .......\..c..... << FINISHED (0x14) [PRF 12 bytes|SHA256_OUTSIZE 32 bytes]
0010 -|49 d6 dd 56 73 e3 d2 e8-22 d6 bd 61 b2 b3 af f0 I..Vs..."..a....
0020 - f5 00 8a 80 82 04 33 a7-50 8e ae 3b 4c 8c cf 4a] ......3.P..;L..J
---
Certificate chain
0 s:/CN=localhost
i:/CN=localhost
---
Server certificate
-----BEGIN CERTIFICATE-----
...".......".......".......".......".......".......".......".......".....
-----END CERTIFICATE-----
subject=/CN=localhost
issuer=/CN=localhost
---
No client certificate CA names sent
---
SSL handshake has read 1346 bytes and written 553 bytes
---
New, TLSv1/SSLv3, Cipher is NULL-SHA256
Server public key is 3072 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
Protocol : TLSv1.2
Cipher : NULL-SHA256
Session-ID: 5D62B36950F3DEB571707CD1B815E9E275041B9DB70D7F3E25C4A6535B13B616
Session-ID-ctx:
Master-Key: 4D08108C59417E0A41656636C51BA5B83F4EFFF9F4C860987B47B31250E5D1816D00940DBCCC196C2D99C8462C889DF1
Key-Arg : None
Krb5 Principal: None
PSK identity: None
PSK identity hint: None
TLS session ticket lifetime hint: 7200 (seconds)
TLS session ticket:
0000 - dd f4 52 01 54 8d f8 a6-f9 2d 7d 19 20 5b 14 44 ..R.T....-}. [.D
0010 - d3 2d 7b f2 ca e8 01 4e-94 7b fe 12 59 3a 00 2e .-{....N.{..Y:..
0020 - 7e cf 74 43 7a f7 9e cc-70 80 70 7c e3 a5 c6 9d ~.tCz...p.p|....
0030 - 85 2c 36 19 4c 5c ba 3b-c3 e5 69 dc f3 a4 47 38 .,6.L\.;..i...G8
0040 - 11 c9 7d 1a b0 6e d8 49-a0 a8 e4 de 70 a8 d0 6b ..}..n.I....p..k
0050 - e4 7a b7 65 25 df 1b 5f-64 0f 89 69 02 72 fe eb .z.e%.._d..i.r..
0060 - d3 7a af 51 78 0e de 17-06 a5 f0 47 9d e0 04 d4 .z.Qx......G....
0070 - b1 1e be 7e ed bd 27 8f-5d e8 ac f6 45 aa e0 12 ...~..'.]...E...
0080 - 93 41 5f a8 4b b9 bd 43-8f a1 23 51 af 92 77 8f .A_.K..C..#Q..w.
0090 - 38 23 3e 2e c2 f0 a3 74-fa 83 94 ce 19 8a 5b 5b 8#>....t......[[
Start Time: 1484574330
Timeout : 7200 (sec)
Verify return code: 18 (self signed certificate)
---
read from 0x1d750b0 [0x1e6ac03] (5 bytes => 5 (0x5))
0000 - 17 03 03 00 21 ....!
read from 0x1d750b0 [0x1e6ac08] (33 bytes => 33 (0x21))
0000 - 0a 74 5b 50 02 13 75 a4-27 0a 40 b1 53 74 52 14 .t[P..u.'.@.StR.
0010 - e7 1e 6a 6c c1 60 2e 93-7e a5 d9 43 1d 8e f6 08 ..jl.`..~..C....
0020 - 69 i
read from 0x1d750b0 [0x1e6ac03] (5 bytes => 5 (0x5))
0000 - 17 03 03 00 21 ....!
read from 0x1d750b0 [0x1e6ac08] (33 bytes => 33 (0x21))
0000 - 0a 1b ce 44 98 4f 81 c5-28 7a cc 79 62 db d2 86 ...D.O..(z.yb...
0010 - 6a 55 a4 c7 73 49 ef 3e-bd 03 99 76 df 65 2a a1 jU..sI.>...v.e*.
0020 - b6 .
read from 0x1d750b0 [0x1e6ac03] (5 bytes => 5 (0x5))
0000 - 17 03 03 00 21 ....!
read from 0x1d750b0 [0x1e6ac08] (33 bytes => 33 (0x21))
0000 - 0a 67 66 34 ba 68 36 3c-ad 0a c1 f5 c0 5a 50 fe .gf4.h6<.....ZP.
0010 - 68 cd 04 65 e9 de 6e 98-f9 e2 41 1e 0b 9b 84 06 h..e..n...A.....
0020 - 64 d
*/