cfe114c4f3
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
443 lines
12 KiB
C
443 lines
12 KiB
C
/* vi: set sw=4 ts=4: */
|
|
/*
|
|
* Compute MD5 checksum of strings according to the
|
|
* definition of MD5 in RFC 1321 from April 1992.
|
|
*
|
|
* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
|
|
*
|
|
* Copyright (C) 1995-1999 Free Software Foundation, Inc.
|
|
* Copyright (C) 2001 Manuel Novoa III
|
|
* Copyright (C) 2003 Glenn L. McGrath
|
|
* Copyright (C) 2003 Erik Andersen
|
|
*
|
|
* Licensed under GPLv2 or later, see file LICENSE in this source tree.
|
|
*/
|
|
|
|
#include "libbb.h"
|
|
|
|
/* 0: fastest, 3: smallest */
|
|
#if CONFIG_MD5_SIZE_VS_SPEED < 0
|
|
# define MD5_SIZE_VS_SPEED 0
|
|
#elif CONFIG_MD5_SIZE_VS_SPEED > 3
|
|
# define MD5_SIZE_VS_SPEED 3
|
|
#else
|
|
# define MD5_SIZE_VS_SPEED CONFIG_MD5_SIZE_VS_SPEED
|
|
#endif
|
|
|
|
/* Initialize structure containing state of computation.
|
|
* (RFC 1321, 3.3: Step 3)
|
|
*/
|
|
void FAST_FUNC md5_begin(md5_ctx_t *ctx)
|
|
{
|
|
ctx->A = 0x67452301;
|
|
ctx->B = 0xefcdab89;
|
|
ctx->C = 0x98badcfe;
|
|
ctx->D = 0x10325476;
|
|
ctx->total64 = 0;
|
|
}
|
|
|
|
/* These are the four functions used in the four steps of the MD5 algorithm
|
|
* and defined in the RFC 1321. The first function is a little bit optimized
|
|
* (as found in Colin Plumbs public domain implementation).
|
|
* #define FF(b, c, d) ((b & c) | (~b & d))
|
|
*/
|
|
#define FF(b, c, d) (d ^ (b & (c ^ d)))
|
|
#define FG(b, c, d) FF(d, b, c)
|
|
#define FH(b, c, d) (b ^ c ^ d)
|
|
#define FI(b, c, d) (c ^ (b | ~d))
|
|
|
|
#define rotl32(w, s) (((w) << (s)) | ((w) >> (32 - (s))))
|
|
|
|
/* Hash a single block, 64 bytes long and 4-byte aligned */
|
|
static void md5_process_block64(md5_ctx_t *ctx)
|
|
{
|
|
#if MD5_SIZE_VS_SPEED > 0
|
|
/* Before we start, one word to the strange constants.
|
|
They are defined in RFC 1321 as
|
|
T[i] = (int)(4294967296.0 * fabs(sin(i))), i=1..64
|
|
*/
|
|
static const uint32_t C_array[] = {
|
|
/* round 1 */
|
|
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
|
|
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
|
|
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
|
|
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
|
|
/* round 2 */
|
|
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
|
|
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
|
|
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
|
|
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
|
|
/* round 3 */
|
|
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
|
|
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
|
|
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
|
|
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
|
|
/* round 4 */
|
|
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
|
|
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
|
|
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
|
|
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
|
|
};
|
|
static const char P_array[] ALIGN1 = {
|
|
# if MD5_SIZE_VS_SPEED > 1
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
|
|
# endif
|
|
1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
|
|
5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
|
|
0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */
|
|
};
|
|
#endif
|
|
const uint32_t *words = (const void*) ctx->wbuffer;
|
|
uint32_t A = ctx->A;
|
|
uint32_t B = ctx->B;
|
|
uint32_t C = ctx->C;
|
|
uint32_t D = ctx->D;
|
|
|
|
#if MD5_SIZE_VS_SPEED >= 2 /* 2 or 3 */
|
|
|
|
static const char S_array[] ALIGN1 = {
|
|
7, 12, 17, 22,
|
|
5, 9, 14, 20,
|
|
4, 11, 16, 23,
|
|
6, 10, 15, 21
|
|
};
|
|
const uint32_t *pc;
|
|
const char *pp;
|
|
const char *ps;
|
|
int i;
|
|
uint32_t temp;
|
|
|
|
# if BB_BIG_ENDIAN
|
|
for (i = 0; i < 16; i++)
|
|
words[i] = SWAP_LE32(words[i]);
|
|
# endif
|
|
|
|
# if MD5_SIZE_VS_SPEED == 3
|
|
pc = C_array;
|
|
pp = P_array;
|
|
ps = S_array - 4;
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
if ((i & 0x0f) == 0)
|
|
ps += 4;
|
|
temp = A;
|
|
switch (i >> 4) {
|
|
case 0:
|
|
temp += FF(B, C, D);
|
|
break;
|
|
case 1:
|
|
temp += FG(B, C, D);
|
|
break;
|
|
case 2:
|
|
temp += FH(B, C, D);
|
|
break;
|
|
case 3:
|
|
temp += FI(B, C, D);
|
|
}
|
|
temp += words[(int) (*pp++)] + *pc++;
|
|
temp = rotl32(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
# else /* MD5_SIZE_VS_SPEED == 2 */
|
|
pc = C_array;
|
|
pp = P_array;
|
|
ps = S_array;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
temp = A + FF(B, C, D) + words[(int) (*pp++)] + *pc++;
|
|
temp = rotl32(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
ps += 4;
|
|
for (i = 0; i < 16; i++) {
|
|
temp = A + FG(B, C, D) + words[(int) (*pp++)] + *pc++;
|
|
temp = rotl32(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
ps += 4;
|
|
for (i = 0; i < 16; i++) {
|
|
temp = A + FH(B, C, D) + words[(int) (*pp++)] + *pc++;
|
|
temp = rotl32(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
ps += 4;
|
|
for (i = 0; i < 16; i++) {
|
|
temp = A + FI(B, C, D) + words[(int) (*pp++)] + *pc++;
|
|
temp = rotl32(temp, ps[i & 3]);
|
|
temp += B;
|
|
A = D;
|
|
D = C;
|
|
C = B;
|
|
B = temp;
|
|
}
|
|
# endif
|
|
/* Add checksum to the starting values */
|
|
ctx->A += A;
|
|
ctx->B += B;
|
|
ctx->C += C;
|
|
ctx->D += D;
|
|
|
|
#else /* MD5_SIZE_VS_SPEED == 0 or 1 */
|
|
|
|
uint32_t A_save = A;
|
|
uint32_t B_save = B;
|
|
uint32_t C_save = C;
|
|
uint32_t D_save = D;
|
|
# if MD5_SIZE_VS_SPEED == 1
|
|
const uint32_t *pc;
|
|
const char *pp;
|
|
int i;
|
|
# endif
|
|
|
|
/* First round: using the given function, the context and a constant
|
|
the next context is computed. Because the algorithm's processing
|
|
unit is a 32-bit word and it is determined to work on words in
|
|
little endian byte order we perhaps have to change the byte order
|
|
before the computation. To reduce the work for the next steps
|
|
we save swapped words in WORDS array. */
|
|
# undef OP
|
|
# define OP(a, b, c, d, s, T) \
|
|
do { \
|
|
a += FF(b, c, d) + (*words IF_BIG_ENDIAN(= SWAP_LE32(*words))) + T; \
|
|
words++; \
|
|
a = rotl32(a, s); \
|
|
a += b; \
|
|
} while (0)
|
|
|
|
/* Round 1 */
|
|
# if MD5_SIZE_VS_SPEED == 1
|
|
pc = C_array;
|
|
for (i = 0; i < 4; i++) {
|
|
OP(A, B, C, D, 7, *pc++);
|
|
OP(D, A, B, C, 12, *pc++);
|
|
OP(C, D, A, B, 17, *pc++);
|
|
OP(B, C, D, A, 22, *pc++);
|
|
}
|
|
# else
|
|
OP(A, B, C, D, 7, 0xd76aa478);
|
|
OP(D, A, B, C, 12, 0xe8c7b756);
|
|
OP(C, D, A, B, 17, 0x242070db);
|
|
OP(B, C, D, A, 22, 0xc1bdceee);
|
|
OP(A, B, C, D, 7, 0xf57c0faf);
|
|
OP(D, A, B, C, 12, 0x4787c62a);
|
|
OP(C, D, A, B, 17, 0xa8304613);
|
|
OP(B, C, D, A, 22, 0xfd469501);
|
|
OP(A, B, C, D, 7, 0x698098d8);
|
|
OP(D, A, B, C, 12, 0x8b44f7af);
|
|
OP(C, D, A, B, 17, 0xffff5bb1);
|
|
OP(B, C, D, A, 22, 0x895cd7be);
|
|
OP(A, B, C, D, 7, 0x6b901122);
|
|
OP(D, A, B, C, 12, 0xfd987193);
|
|
OP(C, D, A, B, 17, 0xa679438e);
|
|
OP(B, C, D, A, 22, 0x49b40821);
|
|
# endif
|
|
words -= 16;
|
|
|
|
/* For the second to fourth round we have the possibly swapped words
|
|
in WORDS. Redefine the macro to take an additional first
|
|
argument specifying the function to use. */
|
|
# undef OP
|
|
# define OP(f, a, b, c, d, k, s, T) \
|
|
do { \
|
|
a += f(b, c, d) + words[k] + T; \
|
|
a = rotl32(a, s); \
|
|
a += b; \
|
|
} while (0)
|
|
|
|
/* Round 2 */
|
|
# if MD5_SIZE_VS_SPEED == 1
|
|
pp = P_array;
|
|
for (i = 0; i < 4; i++) {
|
|
OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
|
|
OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
|
|
OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
|
|
OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
|
|
}
|
|
# else
|
|
OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
|
|
OP(FG, D, A, B, C, 6, 9, 0xc040b340);
|
|
OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
|
|
OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
|
|
OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
|
|
OP(FG, D, A, B, C, 10, 9, 0x02441453);
|
|
OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
|
|
OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
|
|
OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
|
|
OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
|
|
OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
|
|
OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
|
|
OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
|
|
OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
|
|
OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
|
|
OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
|
|
# endif
|
|
|
|
/* Round 3 */
|
|
# if MD5_SIZE_VS_SPEED == 1
|
|
for (i = 0; i < 4; i++) {
|
|
OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
|
|
OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
|
|
OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
|
|
OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
|
|
}
|
|
# else
|
|
OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
|
|
OP(FH, D, A, B, C, 8, 11, 0x8771f681);
|
|
OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
|
|
OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
|
|
OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
|
|
OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
|
|
OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
|
|
OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
|
|
OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
|
|
OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
|
|
OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
|
|
OP(FH, B, C, D, A, 6, 23, 0x04881d05);
|
|
OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
|
|
OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
|
|
OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
|
|
OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
|
|
# endif
|
|
|
|
/* Round 4 */
|
|
# if MD5_SIZE_VS_SPEED == 1
|
|
for (i = 0; i < 4; i++) {
|
|
OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
|
|
OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
|
|
OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
|
|
OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
|
|
}
|
|
# else
|
|
OP(FI, A, B, C, D, 0, 6, 0xf4292244);
|
|
OP(FI, D, A, B, C, 7, 10, 0x432aff97);
|
|
OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
|
|
OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
|
|
OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
|
|
OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
|
|
OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
|
|
OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
|
|
OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
|
|
OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
|
|
OP(FI, C, D, A, B, 6, 15, 0xa3014314);
|
|
OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
|
|
OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
|
|
OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
|
|
OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
|
|
OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
|
|
# endif
|
|
/* Add checksum to the starting values */
|
|
ctx->A = A_save + A;
|
|
ctx->B = B_save + B;
|
|
ctx->C = C_save + C;
|
|
ctx->D = D_save + D;
|
|
#endif
|
|
}
|
|
|
|
/* Feed data through a temporary buffer to call md5_hash_aligned_block()
|
|
* with chunks of data that are 4-byte aligned and a multiple of 64 bytes.
|
|
* This function's internal buffer remembers previous data until it has 64
|
|
* bytes worth to pass on. Call md5_end() to flush this buffer. */
|
|
void FAST_FUNC md5_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
|
|
{
|
|
unsigned bufpos = ctx->total64 & 63;
|
|
unsigned remaining;
|
|
|
|
/* RFC 1321 specifies the possible length of the file up to 2^64 bits.
|
|
* Here we only track the number of bytes. */
|
|
ctx->total64 += len;
|
|
#if 0
|
|
remaining = 64 - bufpos;
|
|
|
|
/* Hash whole blocks */
|
|
while (len >= remaining) {
|
|
memcpy(ctx->wbuffer + bufpos, buffer, remaining);
|
|
buffer = (const char *)buffer + remaining;
|
|
len -= remaining;
|
|
remaining = 64;
|
|
bufpos = 0;
|
|
md5_process_block64(ctx);
|
|
}
|
|
|
|
/* Save last, partial blosk */
|
|
memcpy(ctx->wbuffer + bufpos, buffer, len);
|
|
#else
|
|
/* Tiny bit smaller code */
|
|
while (1) {
|
|
remaining = 64 - bufpos;
|
|
if (remaining > len)
|
|
remaining = len;
|
|
/* Copy data into aligned buffer */
|
|
memcpy(ctx->wbuffer + bufpos, buffer, remaining);
|
|
len -= remaining;
|
|
buffer = (const char *)buffer + remaining;
|
|
bufpos += remaining;
|
|
/* clever way to do "if (bufpos != 64) break; ... ; bufpos = 0;" */
|
|
bufpos -= 64;
|
|
if (bufpos != 0)
|
|
break;
|
|
/* Buffer is filled up, process it */
|
|
md5_process_block64(ctx);
|
|
/*bufpos = 0; - already is */
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Process the remaining bytes in the buffer and put result from CTX
|
|
* in first 16 bytes following RESBUF. The result is always in little
|
|
* endian byte order, so that a byte-wise output yields to the wanted
|
|
* ASCII representation of the message digest.
|
|
*/
|
|
void FAST_FUNC md5_end(md5_ctx_t *ctx, void *resbuf)
|
|
{
|
|
unsigned bufpos = ctx->total64 & 63;
|
|
/* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */
|
|
ctx->wbuffer[bufpos++] = 0x80;
|
|
|
|
/* This loop iterates either once or twice, no more, no less */
|
|
while (1) {
|
|
unsigned remaining = 64 - bufpos;
|
|
memset(ctx->wbuffer + bufpos, 0, remaining);
|
|
/* Do we have enough space for the length count? */
|
|
if (remaining >= 8) {
|
|
/* Store the 64-bit counter of bits in the buffer in BE format */
|
|
uint64_t t = ctx->total64 << 3;
|
|
unsigned i;
|
|
for (i = 0; i < 8; i++) {
|
|
ctx->wbuffer[56 + i] = t;
|
|
t >>= 8;
|
|
}
|
|
}
|
|
md5_process_block64(ctx);
|
|
if (remaining >= 8)
|
|
break;
|
|
bufpos = 0;
|
|
}
|
|
|
|
/* The MD5 result is in little endian byte order.
|
|
* We (ab)use the fact that A-D are consecutive in memory.
|
|
*/
|
|
#if BB_BIG_ENDIAN
|
|
ctx->A = SWAP_LE32(ctx->A);
|
|
ctx->B = SWAP_LE32(ctx->B);
|
|
ctx->C = SWAP_LE32(ctx->C);
|
|
ctx->D = SWAP_LE32(ctx->D);
|
|
#endif
|
|
memcpy(resbuf, &ctx->A, sizeof(ctx->A) * 4);
|
|
}
|