Signed-off-by: Ludwig Nussel <ludwig.nussel@suse.de> Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
		
			
				
	
	
		
			479 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Bash
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			479 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Bash
		
	
	
		
			Executable File
		
	
	
	
	
| #!/bin/sh
 | |
| 
 | |
| # We don't regenerate it on every "make" invocation - only by hand.
 | |
| # The reason is that the changes to generated code are difficult
 | |
| # to visualize by looking only at this script, it helps when the commit
 | |
| # also contains the diff of the generated file.
 | |
| exec >hash_md5_sha_x86-64.S
 | |
| 
 | |
| # Based on http://arctic.org/~dean/crypto/sha1.html.
 | |
| # ("This SHA1 implementation is public domain.")
 | |
| #
 | |
| # x86-64 has at least SSE2 vector insns always available.
 | |
| # We can use them without any CPUID checks (and without a need
 | |
| # for a fallback code if needed insns are not available).
 | |
| # This code uses them to calculate W[] ahead of time.
 | |
| #
 | |
| # Unfortunately, results are passed from vector unit to
 | |
| # integer ALUs on the stack. MOVD/Q insns to move them directly
 | |
| # from vector to integer registers are slower than store-to-load
 | |
| # forwarding in LSU (on Skylake at least).
 | |
| #
 | |
| # The win against a purely integer code is small on Skylake,
 | |
| # only about 7-8%. We offload about 1/3 of our operations to the vector unit.
 | |
| # It can do 4 ops at once in one 128-bit register,
 | |
| # but we have to use x2 of them because of W[0] complication,
 | |
| # SSE2 has no "rotate each word by N bits" insns,
 | |
| # moving data to/from vector unit is clunky, and Skylake
 | |
| # has four integer ALUs unified with three vector ALUs,
 | |
| # which makes pure integer code rather fast, and makes
 | |
| # vector ops compete with integer ones.
 | |
| #
 | |
| # Zen3, with its separate vector ALUs, wins more, about 12%.
 | |
| 
 | |
| xmmT1="%xmm4"
 | |
| xmmT2="%xmm5"
 | |
| xmmRCONST="%xmm6"
 | |
| xmmALLRCONST="%xmm7"
 | |
| T=`printf '\t'`
 | |
| 
 | |
| # SSE instructions are longer than 4 bytes on average.
 | |
| # Intel CPUs (up to Tiger Lake at least) can't decode
 | |
| # more than 16 bytes of code in one cycle.
 | |
| # By interleaving SSE code and integer code
 | |
| # we mostly achieve a situation where 16-byte decode fetch window
 | |
| # contains 4 (or more) insns.
 | |
| #
 | |
| # However. On Skylake, there was no observed difference,
 | |
| # but on Zen3, non-interleaved code is ~3% faster
 | |
| # (822 Mb/s versus 795 Mb/s hashing speed).
 | |
| # Off for now:
 | |
| interleave=false
 | |
| 
 | |
| INTERLEAVE() {
 | |
| 	$interleave || \
 | |
| 	{
 | |
| 		# Generate non-interleaved code
 | |
| 		# (it should work correctly too)
 | |
| 		echo "$1"
 | |
| 		echo "$2"
 | |
| 		return
 | |
| 	}
 | |
| 	(
 | |
| 	echo "$1" | grep -v '^$' >"$0.temp1"
 | |
| 	echo "$2" | grep -v '^$' >"$0.temp2"
 | |
| 	exec 3<"$0.temp1"
 | |
| 	exec 4<"$0.temp2"
 | |
| 	IFS=''
 | |
| 	while :; do
 | |
| 		line1=''
 | |
| 		line2=''
 | |
| 		while :; do
 | |
| 			read -r line1 <&3
 | |
| 			if test "${line1:0:1}" != "#" && test "${line1:0:2}" != "$T#"; then
 | |
| 				break
 | |
| 			fi
 | |
| 			echo "$line1"
 | |
| 		done
 | |
| 		while :; do
 | |
| 			read -r line2 <&4
 | |
| 			if test "${line2:0:4}" = "${T}lea"; then
 | |
| 				# We use 7-8 byte long forms of LEA.
 | |
| 				# Do not interleave them with SSE insns
 | |
| 				# which are also long.
 | |
| 				echo "$line2"
 | |
| 				read -r line2 <&4
 | |
| 				echo "$line2"
 | |
| 				continue
 | |
| 			fi
 | |
| 			if test "${line2:0:1}" != "#" && test "${line2:0:2}" != "$T#"; then
 | |
| 				break
 | |
| 			fi
 | |
| 			echo "$line2"
 | |
| 		done
 | |
| 		test "$line1$line2" || break
 | |
| 		echo "$line1"
 | |
| 		echo "$line2"
 | |
| 	done
 | |
| 	rm "$0.temp1" "$0.temp2"
 | |
| 	)
 | |
| }
 | |
| 
 | |
| #	movaps	bswap32_mask(%rip), $xmmT1
 | |
| # Load W[] to xmm0..3, byteswapping on the fly.
 | |
| # For iterations 0..15, we pass RCONST+W[] in rsi,r8..r14
 | |
| # for use in RD1As instead of spilling them to stack.
 | |
| # (We use rsi instead of rN because this makes two
 | |
| # ADDs in two first RD1As shorter by one byte).
 | |
| #	movups	16*0(%rdi), %xmm0
 | |
| #	pshufb	$xmmT1, %xmm0		#SSSE3 insn
 | |
| #	movaps	%xmm0, $xmmT2
 | |
| #	paddd	$xmmRCONST, $xmmT2
 | |
| #	movq	$xmmT2, %rsi
 | |
| #	#pextrq	\$1, $xmmT2, %r8	#SSE4.1 insn
 | |
| #	#movhpd	$xmmT2, %r8		#can only move to mem, not to reg
 | |
| #	shufps	\$0x0e, $xmmT2, $xmmT2	# have to use two-insn sequence
 | |
| #	movq	$xmmT2, %r8		# instead
 | |
| #	...
 | |
| #	<repeat for xmm1,2,3>
 | |
| #	...
 | |
| #-	leal	$RCONST(%r$e,%rsi), %e$e	# e += RCONST + W[n]
 | |
| #+	addl	%esi, %e$e			# e += RCONST + W[n]
 | |
| # ^^^^^^^^^^^^^^^^^^^^^^^^
 | |
| # The above is -97 bytes of code...
 | |
| # ...but pshufb is a SSSE3 insn. Can't use it.
 | |
| 
 | |
| echo \
 | |
| "### Generated by hash_md5_sha_x86-64.S.sh ###
 | |
| 
 | |
| #if CONFIG_SHA1_SMALL == 0 && defined(__GNUC__) && defined(__x86_64__)
 | |
| #ifdef __linux__
 | |
| 	.section	.note.GNU-stack, \"\", @progbits
 | |
| #endif
 | |
| 	.section	.text.sha1_process_block64, \"ax\", @progbits
 | |
| 	.globl	sha1_process_block64
 | |
| 	.hidden	sha1_process_block64
 | |
| 	.type	sha1_process_block64, @function
 | |
| 
 | |
| 	.balign	8	# allow decoders to fetch at least 5 first insns
 | |
| sha1_process_block64:
 | |
| 	pushq	%rbp	# 1 byte insn
 | |
| 	pushq	%rbx	# 1 byte insn
 | |
| #	pushq	%r15	# 2 byte insn
 | |
| 	pushq	%r14	# 2 byte insn
 | |
| 	pushq	%r13	# 2 byte insn
 | |
| 	pushq	%r12	# 2 byte insn
 | |
| 	pushq	%rdi	# we need ctx at the end
 | |
| 
 | |
| #Register and stack use:
 | |
| # eax..edx: a..d
 | |
| # ebp: e
 | |
| # esi,edi,r8..r14: temps
 | |
| # r15: unused
 | |
| # xmm0..xmm3: W[]
 | |
| # xmm4,xmm5: temps
 | |
| # xmm6: current round constant
 | |
| # xmm7: all round constants
 | |
| # -64(%rsp): area for passing RCONST + W[] from vector to integer units
 | |
| 
 | |
| 	movl	80(%rdi), %eax		# a = ctx->hash[0]
 | |
| 	movl	84(%rdi), %ebx		# b = ctx->hash[1]
 | |
| 	movl	88(%rdi), %ecx		# c = ctx->hash[2]
 | |
| 	movl	92(%rdi), %edx		# d = ctx->hash[3]
 | |
| 	movl	96(%rdi), %ebp		# e = ctx->hash[4]
 | |
| 
 | |
| 	movaps	sha1const(%rip), $xmmALLRCONST
 | |
| 	pshufd	\$0x00, $xmmALLRCONST, $xmmRCONST
 | |
| 
 | |
| 	# Load W[] to xmm0..3, byteswapping on the fly.
 | |
| 	#
 | |
| 	# For iterations 0..15, we pass W[] in rsi,r8..r14
 | |
| 	# for use in RD1As instead of spilling them to stack.
 | |
| 	# We lose parallelized addition of RCONST, but LEA
 | |
| 	# can do two additions at once, so it is probably a wash.
 | |
| 	# (We use rsi instead of rN because this makes two
 | |
| 	# LEAs in two first RD1As shorter by one byte).
 | |
| 	movq	4*0(%rdi), %rsi
 | |
| 	movq	4*2(%rdi), %r8
 | |
| 	bswapq	%rsi
 | |
| 	bswapq	%r8
 | |
| 	rolq	\$32, %rsi		# rsi = W[1]:W[0]
 | |
| 	rolq	\$32, %r8		# r8  = W[3]:W[2]
 | |
| 	movq	%rsi, %xmm0
 | |
| 	movq	%r8, $xmmT1
 | |
| 	punpcklqdq $xmmT1, %xmm0	# xmm0 = r8:rsi = (W[0],W[1],W[2],W[3])
 | |
| #	movaps	%xmm0, $xmmT1		# add RCONST, spill to stack
 | |
| #	paddd	$xmmRCONST, $xmmT1
 | |
| #	movups	$xmmT1, -64+16*0(%rsp)
 | |
| 
 | |
| 	movq	4*4(%rdi), %r9
 | |
| 	movq	4*6(%rdi), %r10
 | |
| 	bswapq	%r9
 | |
| 	bswapq	%r10
 | |
| 	rolq	\$32, %r9		# r9  = W[5]:W[4]
 | |
| 	rolq	\$32, %r10		# r10 = W[7]:W[6]
 | |
| 	movq	%r9, %xmm1
 | |
| 	movq	%r10, $xmmT1
 | |
| 	punpcklqdq $xmmT1, %xmm1	# xmm1 = r10:r9 = (W[4],W[5],W[6],W[7])
 | |
| 
 | |
| 	movq	4*8(%rdi), %r11
 | |
| 	movq	4*10(%rdi), %r12
 | |
| 	bswapq	%r11
 | |
| 	bswapq	%r12
 | |
| 	rolq	\$32, %r11		# r11 = W[9]:W[8]
 | |
| 	rolq	\$32, %r12		# r12 = W[11]:W[10]
 | |
| 	movq	%r11, %xmm2
 | |
| 	movq	%r12, $xmmT1
 | |
| 	punpcklqdq $xmmT1, %xmm2	# xmm2 = r12:r11 = (W[8],W[9],W[10],W[11])
 | |
| 
 | |
| 	movq	4*12(%rdi), %r13
 | |
| 	movq	4*14(%rdi), %r14
 | |
| 	bswapq	%r13
 | |
| 	bswapq	%r14
 | |
| 	rolq	\$32, %r13		# r13 = W[13]:W[12]
 | |
| 	rolq	\$32, %r14		# r14 = W[15]:W[14]
 | |
| 	movq	%r13, %xmm3
 | |
| 	movq	%r14, $xmmT1
 | |
| 	punpcklqdq $xmmT1, %xmm3	# xmm3 = r14:r13 = (W[12],W[13],W[14],W[15])
 | |
| "
 | |
| 
 | |
| PREP() {
 | |
| local xmmW0=$1
 | |
| local xmmW4=$2
 | |
| local xmmW8=$3
 | |
| local xmmW12=$4
 | |
| # the above must be %xmm0..3 in some permutation
 | |
| local dstmem=$5
 | |
| #W[0] = rol(W[13] ^ W[8]  ^ W[2] ^ W[0], 1);
 | |
| #W[1] = rol(W[14] ^ W[9]  ^ W[3] ^ W[1], 1);
 | |
| #W[2] = rol(W[15] ^ W[10] ^ W[4] ^ W[2], 1);
 | |
| #W[3] = rol(  0   ^ W[11] ^ W[5] ^ W[3], 1);
 | |
| #W[3] ^= rol(W[0], 1);
 | |
| echo "# PREP $@
 | |
| 	movaps	$xmmW12, $xmmT1
 | |
| 	psrldq	\$4, $xmmT1	# rshift by 4 bytes: T1 = ([13],[14],[15],0)
 | |
| 
 | |
| #	pshufd	\$0x4e, $xmmW0, $xmmT2	# 01001110=2,3,0,1 shuffle, ([2],[3],x,x)
 | |
| #	punpcklqdq $xmmW4, $xmmT2	# T2 = W4[0..63]:T2[0..63] = ([2],[3],[4],[5])
 | |
| # same result as above, but shorter and faster:
 | |
| # pshufd/shufps are subtly different: pshufd takes all dwords from source operand,
 | |
| # shufps takes dwords 0,1 from *2nd* operand, and dwords 2,3 from 1st one!
 | |
| 	movaps	$xmmW0, $xmmT2
 | |
| 	shufps	\$0x4e, $xmmW4, $xmmT2	# 01001110=(T2.dw[2], T2.dw[3], W4.dw[0], W4.dw[1]) = ([2],[3],[4],[5])
 | |
| 
 | |
| 	xorps	$xmmW8, $xmmW0	# ([8],[9],[10],[11]) ^ ([0],[1],[2],[3])
 | |
| 	xorps	$xmmT1, $xmmT2	# ([13],[14],[15],0) ^ ([2],[3],[4],[5])
 | |
| 	xorps	$xmmT2, $xmmW0	# ^
 | |
| 	# W0 = unrotated (W[0]..W[3]), still needs W[3] fixup
 | |
| 	movaps	$xmmW0, $xmmT2
 | |
| 
 | |
| 	xorps	$xmmT1, $xmmT1	# rol(W0,1):
 | |
| 	pcmpgtd	$xmmW0, $xmmT1	#  ffffffff for elements <0 (ones with msb bit 1)
 | |
| 	paddd	$xmmW0, $xmmW0	#  shift left by 1
 | |
| 	psubd	$xmmT1, $xmmW0	#  add 1 to those who had msb bit 1
 | |
| 	# W0 = rotated (W[0]..W[3]), still needs W[3] fixup
 | |
| 
 | |
| 	pslldq	\$12, $xmmT2	# lshift by 12 bytes: T2 = (0,0,0,unrotW[0])
 | |
| 	movaps	$xmmT2, $xmmT1
 | |
| 	pslld	\$2, $xmmT2
 | |
| 	psrld	\$30, $xmmT1
 | |
| #	xorps	$xmmT1, $xmmT2	# rol((0,0,0,unrotW[0]),2)
 | |
| 	xorps	$xmmT1, $xmmW0	# same result, but does not depend on/does not modify T2
 | |
| 
 | |
| 	xorps	$xmmT2, $xmmW0	# W0 = rol(W[0]..W[3],1) ^ (0,0,0,rol(unrotW[0],2))
 | |
| "
 | |
| #	movq	$xmmW0, %r8	# high latency (~6 cycles)
 | |
| #	movaps	$xmmW0, $xmmT1
 | |
| #	psrldq	\$8, $xmmT1	# rshift by 8 bytes: move upper 64 bits to lower
 | |
| #	movq	$xmmT1, %r10	# high latency
 | |
| #	movq	%r8, %r9
 | |
| #	movq	%r10, %r11
 | |
| #	shrq	\$32, %r9
 | |
| #	shrq	\$32, %r11
 | |
| # ^^^ slower than passing the results on stack (!!!)
 | |
| echo "
 | |
| 	movaps	$xmmW0, $xmmT2
 | |
| 	paddd	$xmmRCONST, $xmmT2
 | |
| 	movups	$xmmT2, $dstmem
 | |
| "
 | |
| }
 | |
| 
 | |
| # It's possible to interleave integer insns in rounds to mostly eliminate
 | |
| # dependency chains, but this likely to only help old Pentium-based
 | |
| # CPUs (ones without OOO, which can only simultaneously execute a pair
 | |
| # of _adjacent_ insns).
 | |
| # Testing on old-ish Silvermont CPU (which has OOO window of only
 | |
| # about ~8 insns) shows very small (~1%) speedup.
 | |
| 
 | |
| RD1A() {
 | |
| local a=$1;local b=$2;local c=$3;local d=$4;local e=$5
 | |
| local n=$(($6))
 | |
| local n0=$(((n+0) & 15))
 | |
| local rN=$((7+n0/2))
 | |
| echo "
 | |
| # $n
 | |
| ";test $n0 = 0 && echo "
 | |
| 	leal	$RCONST(%r$e,%rsi), %e$e # e += RCONST + W[n]
 | |
| 	shrq	\$32, %rsi
 | |
| ";test $n0 = 1 && echo "
 | |
| 	leal	$RCONST(%r$e,%rsi), %e$e # e += RCONST + W[n]
 | |
| ";test $n0 -ge 2 && test $((n0 & 1)) = 0 && echo "
 | |
| 	leal	$RCONST(%r$e,%r$rN), %e$e # e += RCONST + W[n]
 | |
| 	shrq	\$32, %r$rN
 | |
| ";test $n0 -ge 2 && test $((n0 & 1)) = 1 && echo "
 | |
| 	leal	$RCONST(%r$e,%r$rN), %e$e # e += RCONST + W[n]
 | |
| ";echo "
 | |
| 	movl	%e$c, %edi		# c
 | |
| 	xorl	%e$d, %edi		# ^d
 | |
| 	andl	%e$b, %edi		# &b
 | |
| 	xorl	%e$d, %edi		# (((c ^ d) & b) ^ d)
 | |
| 	addl	%edi, %e$e		# e += (((c ^ d) & b) ^ d)
 | |
| 	movl	%e$a, %edi		#
 | |
| 	roll	\$5, %edi		# rotl32(a,5)
 | |
| 	addl	%edi, %e$e		# e += rotl32(a,5)
 | |
| 	rorl	\$2, %e$b		# b = rotl32(b,30)
 | |
| "
 | |
| }
 | |
| RD1B() {
 | |
| local a=$1;local b=$2;local c=$3;local d=$4;local e=$5
 | |
| local n=$(($6))
 | |
| local n13=$(((n+13) & 15))
 | |
| local n8=$(((n+8) & 15))
 | |
| local n2=$(((n+2) & 15))
 | |
| local n0=$(((n+0) & 15))
 | |
| echo "
 | |
| # $n
 | |
| 	movl	%e$c, %edi		# c
 | |
| 	xorl	%e$d, %edi		# ^d
 | |
| 	andl	%e$b, %edi		# &b
 | |
| 	xorl	%e$d, %edi		# (((c ^ d) & b) ^ d)
 | |
| 	addl	-64+4*$n0(%rsp), %e$e	# e += RCONST + W[n & 15]
 | |
| 	addl	%edi, %e$e		# e += (((c ^ d) & b) ^ d)
 | |
| 	movl	%e$a, %esi		#
 | |
| 	roll	\$5, %esi		# rotl32(a,5)
 | |
| 	addl	%esi, %e$e		# e += rotl32(a,5)
 | |
| 	rorl	\$2, %e$b		# b = rotl32(b,30)
 | |
| "
 | |
| }
 | |
| 
 | |
| RD2() {
 | |
| local a=$1;local b=$2;local c=$3;local d=$4;local e=$5
 | |
| local n=$(($6))
 | |
| local n13=$(((n+13) & 15))
 | |
| local n8=$(((n+8) & 15))
 | |
| local n2=$(((n+2) & 15))
 | |
| local n0=$(((n+0) & 15))
 | |
| echo "
 | |
| # $n
 | |
| 	movl	%e$c, %edi		# c
 | |
| 	xorl	%e$d, %edi		# ^d
 | |
| 	xorl	%e$b, %edi		# ^b
 | |
| 	addl	-64+4*$n0(%rsp), %e$e	# e += RCONST + W[n & 15]
 | |
| 	addl	%edi, %e$e		# e += (c ^ d ^ b)
 | |
| 	movl	%e$a, %esi		#
 | |
| 	roll	\$5, %esi		# rotl32(a,5)
 | |
| 	addl	%esi, %e$e		# e += rotl32(a,5)
 | |
| 	rorl	\$2, %e$b		# b = rotl32(b,30)
 | |
| "
 | |
| }
 | |
| 
 | |
| RD3() {
 | |
| local a=$1;local b=$2;local c=$3;local d=$4;local e=$5
 | |
| local n=$(($6))
 | |
| local n13=$(((n+13) & 15))
 | |
| local n8=$(((n+8) & 15))
 | |
| local n2=$(((n+2) & 15))
 | |
| local n0=$(((n+0) & 15))
 | |
| echo "
 | |
| # $n
 | |
| 	movl	%e$b, %edi		# di: b
 | |
| 	movl	%e$b, %esi		# si: b
 | |
| 	orl	%e$c, %edi		# di: b | c
 | |
| 	andl	%e$c, %esi		# si: b & c
 | |
| 	andl	%e$d, %edi		# di: (b | c) & d
 | |
| 	orl	%esi, %edi		# ((b | c) & d) | (b & c)
 | |
| 	addl	%edi, %e$e		# += ((b | c) & d) | (b & c)
 | |
| 	addl	-64+4*$n0(%rsp), %e$e	# e += RCONST + W[n & 15]
 | |
| 	movl	%e$a, %esi		#
 | |
| 	roll	\$5, %esi		# rotl32(a,5)
 | |
| 	addl	%esi, %e$e		# e += rotl32(a,5)
 | |
| 	rorl	\$2, %e$b		# b = rotl32(b,30)
 | |
| "
 | |
| }
 | |
| 
 | |
| {
 | |
| # Round 1
 | |
| RCONST=0x5A827999
 | |
| RD1A ax bx cx dx bp  0; RD1A bp ax bx cx dx  1; RD1A dx bp ax bx cx  2; RD1A cx dx bp ax bx  3;
 | |
| RD1A bx cx dx bp ax  4; RD1A ax bx cx dx bp  5; RD1A bp ax bx cx dx  6; RD1A dx bp ax bx cx  7;
 | |
| a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"`
 | |
| b=`RD1A cx dx bp ax bx  8; RD1A bx cx dx bp ax  9; RD1A ax bx cx dx bp 10; RD1A bp ax bx cx dx 11;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| a=`echo "	pshufd	\\$0x55, $xmmALLRCONST, $xmmRCONST"
 | |
|    PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"`
 | |
| b=`RD1A dx bp ax bx cx 12; RD1A cx dx bp ax bx 13; RD1A bx cx dx bp ax 14; RD1A ax bx cx dx bp 15;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"`
 | |
| b=`RD1B bp ax bx cx dx 16; RD1B dx bp ax bx cx 17; RD1B cx dx bp ax bx 18; RD1B bx cx dx bp ax 19;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| 
 | |
| # Round 2
 | |
| RCONST=0x6ED9EBA1
 | |
| a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"`
 | |
| b=`RD2 ax bx cx dx bp 20; RD2 bp ax bx cx dx 21; RD2 dx bp ax bx cx 22; RD2 cx dx bp ax bx 23;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"`
 | |
| b=`RD2 bx cx dx bp ax 24; RD2 ax bx cx dx bp 25; RD2 bp ax bx cx dx 26; RD2 dx bp ax bx cx 27;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"`
 | |
| b=`RD2 cx dx bp ax bx 28; RD2 bx cx dx bp ax 29; RD2 ax bx cx dx bp 30; RD2 bp ax bx cx dx 31;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| a=`echo "	pshufd	\\$0xaa, $xmmALLRCONST, $xmmRCONST"
 | |
|    PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"`
 | |
| b=`RD2 dx bp ax bx cx 32; RD2 cx dx bp ax bx 33; RD2 bx cx dx bp ax 34; RD2 ax bx cx dx bp 35;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"`
 | |
| b=`RD2 bp ax bx cx dx 36; RD2 dx bp ax bx cx 37; RD2 cx dx bp ax bx 38; RD2 bx cx dx bp ax 39;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| 
 | |
| # Round 3
 | |
| RCONST=0x8F1BBCDC
 | |
| a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"`
 | |
| b=`RD3 ax bx cx dx bp 40; RD3 bp ax bx cx dx 41; RD3 dx bp ax bx cx 42; RD3 cx dx bp ax bx 43;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"`
 | |
| b=`RD3 bx cx dx bp ax 44; RD3 ax bx cx dx bp 45; RD3 bp ax bx cx dx 46; RD3 dx bp ax bx cx 47;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"`
 | |
| b=`RD3 cx dx bp ax bx 48; RD3 bx cx dx bp ax 49; RD3 ax bx cx dx bp 50; RD3 bp ax bx cx dx 51;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| a=`echo "	pshufd	\\$0xff, $xmmALLRCONST, $xmmRCONST"
 | |
|    PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"`
 | |
| b=`RD3 dx bp ax bx cx 52; RD3 cx dx bp ax bx 53; RD3 bx cx dx bp ax 54; RD3 ax bx cx dx bp 55;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"`
 | |
| b=`RD3 bp ax bx cx dx 56; RD3 dx bp ax bx cx 57; RD3 cx dx bp ax bx 58; RD3 bx cx dx bp ax 59;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| 
 | |
| # Round 4 has the same logic as round 2, only n and RCONST are different
 | |
| RCONST=0xCA62C1D6
 | |
| a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"`
 | |
| b=`RD2 ax bx cx dx bp 60; RD2 bp ax bx cx dx 61; RD2 dx bp ax bx cx 62; RD2 cx dx bp ax bx 63;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"`
 | |
| b=`RD2 bx cx dx bp ax 64; RD2 ax bx cx dx bp 65; RD2 bp ax bx cx dx 66; RD2 dx bp ax bx cx 67;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"`
 | |
| b=`RD2 cx dx bp ax bx 68; RD2 bx cx dx bp ax 69; RD2 ax bx cx dx bp 70; RD2 bp ax bx cx dx 71;`
 | |
| INTERLEAVE "$a" "$b"
 | |
| RD2 dx bp ax bx cx 72; RD2 cx dx bp ax bx 73; RD2 bx cx dx bp ax 74; RD2 ax bx cx dx bp 75;
 | |
| RD2 bp ax bx cx dx 76; RD2 dx bp ax bx cx 77; RD2 cx dx bp ax bx 78; RD2 bx cx dx bp ax 79;
 | |
| } | grep -v '^$'
 | |
| 
 | |
| echo "
 | |
| 	popq	%rdi		#
 | |
| 	popq	%r12		#
 | |
| 	addl	%eax, 80(%rdi)	# ctx->hash[0] += a
 | |
| 	popq	%r13		#
 | |
| 	addl	%ebx, 84(%rdi)	# ctx->hash[1] += b
 | |
| 	popq	%r14		#
 | |
| 	addl	%ecx, 88(%rdi)	# ctx->hash[2] += c
 | |
| #	popq	%r15		#
 | |
| 	addl	%edx, 92(%rdi)	# ctx->hash[3] += d
 | |
| 	popq	%rbx		#
 | |
| 	addl	%ebp, 96(%rdi)	# ctx->hash[4] += e
 | |
| 	popq	%rbp		#
 | |
| 
 | |
| 	ret
 | |
| 	.size	sha1_process_block64, .-sha1_process_block64
 | |
| 
 | |
| 	.section	.rodata.cst16.sha1const, \"aM\", @progbits, 16
 | |
| 	.balign	16
 | |
| sha1const:
 | |
| 	.long	0x5A827999
 | |
| 	.long	0x6ED9EBA1
 | |
| 	.long	0x8F1BBCDC
 | |
| 	.long	0xCA62C1D6
 | |
| 
 | |
| #endif"
 |