busybox/archival/libunarchive/decompress_bunzip2.c

1659 lines
38 KiB
C

/*--
This file is a part of bzip2 and/or libbzip2, a program and
library for lossless, block-sorting data compression.
Copyright (C) 1996-2000 Julian R Seward. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
3. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
4. The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Julian Seward, Cambridge, UK.
jseward@acm.org
bzip2/libbzip2 version 1.0 of 21 March 2000
This program is based on (at least) the work of:
Mike Burrows
David Wheeler
Peter Fenwick
Alistair Moffat
Radford Neal
Ian H. Witten
Robert Sedgewick
Jon L. Bentley
For more information on these sources, see the manual.
--*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <getopt.h>
#include <unistd.h>
#include "busybox.h"
#define MTFA_SIZE 4096
#define MTFL_SIZE 16
#define BZ_N_GROUPS 6
#define BZ_G_SIZE 50
#define BZ_MAX_ALPHA_SIZE 258
#define BZ_OK 0
#define BZ_STREAM_END 4
#define BZ_SEQUENCE_ERROR (-1)
#define BZ_DATA_ERROR (-4)
#define BZ_DATA_ERROR_MAGIC (-5)
#define BZ_IO_ERROR (-6)
#define BZ_UNEXPECTED_EOF (-7)
#define BZ_RUNA 0
#define BZ_RUNB 1
#define BZ_MAX_UNUSED 5000
#define FILE_NAME_LEN 1034
/*-- states for decompression. --*/
#define BZ_X_IDLE 1
#define BZ_X_OUTPUT 2
#define BZ_X_MAGIC_1 10
#define BZ_X_MAGIC_2 11
#define BZ_X_MAGIC_3 12
#define BZ_X_MAGIC_4 13
#define BZ_X_BLKHDR_1 14
#define BZ_X_BLKHDR_2 15
#define BZ_X_BLKHDR_3 16
#define BZ_X_BLKHDR_4 17
#define BZ_X_BLKHDR_5 18
#define BZ_X_BLKHDR_6 19
#define BZ_X_BCRC_1 20
#define BZ_X_BCRC_2 21
#define BZ_X_BCRC_3 22
#define BZ_X_BCRC_4 23
#define BZ_X_RANDBIT 24
#define BZ_X_ORIGPTR_1 25
#define BZ_X_ORIGPTR_2 26
#define BZ_X_ORIGPTR_3 27
#define BZ_X_MAPPING_1 28
#define BZ_X_MAPPING_2 29
#define BZ_X_SELECTOR_1 30
#define BZ_X_SELECTOR_2 31
#define BZ_X_SELECTOR_3 32
#define BZ_X_CODING_1 33
#define BZ_X_CODING_2 34
#define BZ_X_CODING_3 35
#define BZ_X_MTF_1 36
#define BZ_X_MTF_2 37
#define BZ_X_MTF_3 38
#define BZ_X_MTF_4 39
#define BZ_X_MTF_5 40
#define BZ_X_MTF_6 41
#define BZ_X_ENDHDR_2 42
#define BZ_X_ENDHDR_3 43
#define BZ_X_ENDHDR_4 44
#define BZ_X_ENDHDR_5 45
#define BZ_X_ENDHDR_6 46
#define BZ_X_CCRC_1 47
#define BZ_X_CCRC_2 48
#define BZ_X_CCRC_3 49
#define BZ_X_CCRC_4 50
#define BZ_MAX_CODE_LEN 23
#define OM_TEST 3
typedef struct {
char *next_in;
unsigned int avail_in;
char *next_out;
unsigned int avail_out;
void *state;
} bz_stream;
#define BZ_MAX_UNUSED 5000
typedef struct {
bz_stream strm;
int fd;
unsigned char initialisedOk;
char buf[BZ_MAX_UNUSED];
int lastErr;
int bufN;
} bzFile;
/*-- Structure holding all the decompression-side stuff. --*/
typedef struct {
/* pointer back to the struct bz_stream */
bz_stream* strm;
/* state indicator for this stream */
int state;
/* for doing the final run-length decoding */
unsigned char state_out_ch;
int state_out_len;
unsigned char blockRandomised;
int rNToGo;
int rTPos;
/* the buffer for bit stream reading */
unsigned int bsBuff;
int bsLive;
/* misc administratium */
int blockSize100k;
int currBlockNo;
/* for undoing the Burrows-Wheeler transform */
int origPtr;
unsigned int tPos;
int k0;
int unzftab[256];
int nblock_used;
int cftab[257];
int cftabCopy[257];
/* for undoing the Burrows-Wheeler transform (FAST) */
unsigned int *tt;
/* stored and calculated CRCs */
unsigned int storedBlockCRC;
unsigned int storedCombinedCRC;
unsigned int calculatedBlockCRC;
unsigned int calculatedCombinedCRC;
/* map of bytes used in block */
int nInUse;
unsigned char inUse[256];
unsigned char inUse16[16];
unsigned char seqToUnseq[256];
/* for decoding the MTF values */
unsigned char mtfa [MTFA_SIZE];
unsigned char selector [2 + (900000 / BZ_G_SIZE)];
unsigned char selectorMtf[2 + (900000 / BZ_G_SIZE)];
unsigned char len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
int mtfbase[256 / MTFL_SIZE];
int limit [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
int base [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
int perm [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
int minLens[BZ_N_GROUPS];
/* save area for scalars in the main decompress code */
int save_i;
int save_j;
int save_t;
int save_alphaSize;
int save_nGroups;
int save_nSelectors;
int save_EOB;
int save_groupNo;
int save_groupPos;
int save_nextSym;
int save_nblockMAX;
int save_nblock;
int save_es;
int save_N;
int save_curr;
int save_zt;
int save_zn;
int save_zvec;
int save_zj;
int save_gSel;
int save_gMinlen;
int *save_gLimit;
int *save_gBase;
int *save_gPerm;
} DState;
static int BZ2_rNums[512];
static bzFile *bzf;
static int bzerr = BZ_OK;
static const unsigned int BZ2_crc32Table[256] = {
/*-- Ugly, innit? --*/
0x00000000L, 0x04c11db7L, 0x09823b6eL, 0x0d4326d9L,
0x130476dcL, 0x17c56b6bL, 0x1a864db2L, 0x1e475005L,
0x2608edb8L, 0x22c9f00fL, 0x2f8ad6d6L, 0x2b4bcb61L,
0x350c9b64L, 0x31cd86d3L, 0x3c8ea00aL, 0x384fbdbdL,
0x4c11db70L, 0x48d0c6c7L, 0x4593e01eL, 0x4152fda9L,
0x5f15adacL, 0x5bd4b01bL, 0x569796c2L, 0x52568b75L,
0x6a1936c8L, 0x6ed82b7fL, 0x639b0da6L, 0x675a1011L,
0x791d4014L, 0x7ddc5da3L, 0x709f7b7aL, 0x745e66cdL,
0x9823b6e0L, 0x9ce2ab57L, 0x91a18d8eL, 0x95609039L,
0x8b27c03cL, 0x8fe6dd8bL, 0x82a5fb52L, 0x8664e6e5L,
0xbe2b5b58L, 0xbaea46efL, 0xb7a96036L, 0xb3687d81L,
0xad2f2d84L, 0xa9ee3033L, 0xa4ad16eaL, 0xa06c0b5dL,
0xd4326d90L, 0xd0f37027L, 0xddb056feL, 0xd9714b49L,
0xc7361b4cL, 0xc3f706fbL, 0xceb42022L, 0xca753d95L,
0xf23a8028L, 0xf6fb9d9fL, 0xfbb8bb46L, 0xff79a6f1L,
0xe13ef6f4L, 0xe5ffeb43L, 0xe8bccd9aL, 0xec7dd02dL,
0x34867077L, 0x30476dc0L, 0x3d044b19L, 0x39c556aeL,
0x278206abL, 0x23431b1cL, 0x2e003dc5L, 0x2ac12072L,
0x128e9dcfL, 0x164f8078L, 0x1b0ca6a1L, 0x1fcdbb16L,
0x018aeb13L, 0x054bf6a4L, 0x0808d07dL, 0x0cc9cdcaL,
0x7897ab07L, 0x7c56b6b0L, 0x71159069L, 0x75d48ddeL,
0x6b93dddbL, 0x6f52c06cL, 0x6211e6b5L, 0x66d0fb02L,
0x5e9f46bfL, 0x5a5e5b08L, 0x571d7dd1L, 0x53dc6066L,
0x4d9b3063L, 0x495a2dd4L, 0x44190b0dL, 0x40d816baL,
0xaca5c697L, 0xa864db20L, 0xa527fdf9L, 0xa1e6e04eL,
0xbfa1b04bL, 0xbb60adfcL, 0xb6238b25L, 0xb2e29692L,
0x8aad2b2fL, 0x8e6c3698L, 0x832f1041L, 0x87ee0df6L,
0x99a95df3L, 0x9d684044L, 0x902b669dL, 0x94ea7b2aL,
0xe0b41de7L, 0xe4750050L, 0xe9362689L, 0xedf73b3eL,
0xf3b06b3bL, 0xf771768cL, 0xfa325055L, 0xfef34de2L,
0xc6bcf05fL, 0xc27dede8L, 0xcf3ecb31L, 0xcbffd686L,
0xd5b88683L, 0xd1799b34L, 0xdc3abdedL, 0xd8fba05aL,
0x690ce0eeL, 0x6dcdfd59L, 0x608edb80L, 0x644fc637L,
0x7a089632L, 0x7ec98b85L, 0x738aad5cL, 0x774bb0ebL,
0x4f040d56L, 0x4bc510e1L, 0x46863638L, 0x42472b8fL,
0x5c007b8aL, 0x58c1663dL, 0x558240e4L, 0x51435d53L,
0x251d3b9eL, 0x21dc2629L, 0x2c9f00f0L, 0x285e1d47L,
0x36194d42L, 0x32d850f5L, 0x3f9b762cL, 0x3b5a6b9bL,
0x0315d626L, 0x07d4cb91L, 0x0a97ed48L, 0x0e56f0ffL,
0x1011a0faL, 0x14d0bd4dL, 0x19939b94L, 0x1d528623L,
0xf12f560eL, 0xf5ee4bb9L, 0xf8ad6d60L, 0xfc6c70d7L,
0xe22b20d2L, 0xe6ea3d65L, 0xeba91bbcL, 0xef68060bL,
0xd727bbb6L, 0xd3e6a601L, 0xdea580d8L, 0xda649d6fL,
0xc423cd6aL, 0xc0e2d0ddL, 0xcda1f604L, 0xc960ebb3L,
0xbd3e8d7eL, 0xb9ff90c9L, 0xb4bcb610L, 0xb07daba7L,
0xae3afba2L, 0xaafbe615L, 0xa7b8c0ccL, 0xa379dd7bL,
0x9b3660c6L, 0x9ff77d71L, 0x92b45ba8L, 0x9675461fL,
0x8832161aL, 0x8cf30badL, 0x81b02d74L, 0x857130c3L,
0x5d8a9099L, 0x594b8d2eL, 0x5408abf7L, 0x50c9b640L,
0x4e8ee645L, 0x4a4ffbf2L, 0x470cdd2bL, 0x43cdc09cL,
0x7b827d21L, 0x7f436096L, 0x7200464fL, 0x76c15bf8L,
0x68860bfdL, 0x6c47164aL, 0x61043093L, 0x65c52d24L,
0x119b4be9L, 0x155a565eL, 0x18197087L, 0x1cd86d30L,
0x029f3d35L, 0x065e2082L, 0x0b1d065bL, 0x0fdc1becL,
0x3793a651L, 0x3352bbe6L, 0x3e119d3fL, 0x3ad08088L,
0x2497d08dL, 0x2056cd3aL, 0x2d15ebe3L, 0x29d4f654L,
0xc5a92679L, 0xc1683bceL, 0xcc2b1d17L, 0xc8ea00a0L,
0xd6ad50a5L, 0xd26c4d12L, 0xdf2f6bcbL, 0xdbee767cL,
0xe3a1cbc1L, 0xe760d676L, 0xea23f0afL, 0xeee2ed18L,
0xf0a5bd1dL, 0xf464a0aaL, 0xf9278673L, 0xfde69bc4L,
0x89b8fd09L, 0x8d79e0beL, 0x803ac667L, 0x84fbdbd0L,
0x9abc8bd5L, 0x9e7d9662L, 0x933eb0bbL, 0x97ffad0cL,
0xafb010b1L, 0xab710d06L, 0xa6322bdfL, 0xa2f33668L,
0xbcb4666dL, 0xb8757bdaL, 0xb5365d03L, 0xb1f740b4L
};
static void bz_rand_udp_mask(DState *s)
{
if (s->rNToGo == 0) {
s->rNToGo = BZ2_rNums[s->rTPos];
s->rTPos++;
if (s->rTPos == 512) {
s->rTPos = 0;
}
}
s->rNToGo--;
}
static void BZ2_hbCreateDecodeTables(int *limit, int *base, int *perm, unsigned char *length, int minLen, int maxLen, int alphaSize )
{
int pp, i, j, vec;
pp = 0;
for (i = minLen; i <= maxLen; i++) {
for (j = 0; j < alphaSize; j++) {
if (length[j] == i) {
perm[pp] = j;
pp++;
}
}
}
for (i = 0; i < BZ_MAX_CODE_LEN; i++) {
base[i] = 0;
}
for (i = 0; i < alphaSize; i++) {
base[length[i]+1]++;
}
for (i = 1; i < BZ_MAX_CODE_LEN; i++) {
base[i] += base[i-1];
}
for (i = 0; i < BZ_MAX_CODE_LEN; i++) {
limit[i] = 0;
}
vec = 0;
for (i = minLen; i <= maxLen; i++) {
vec += (base[i+1] - base[i]);
limit[i] = vec-1;
vec <<= 1;
}
for (i = minLen + 1; i <= maxLen; i++) {
base[i] = ((limit[i-1] + 1) << 1) - base[i];
}
}
static int get_bits(DState *s, int *vvv, char nnn)
{
while (1) {
if (s->bsLive >= nnn) {
*vvv = (s->bsBuff >> (s->bsLive-nnn)) & ((1 << nnn)-1);
s->bsLive -= nnn;
break;
}
if (s->strm->avail_in == 0) {
return(FALSE);
}
s->bsBuff = (s->bsBuff << 8) | ((unsigned int) (*((unsigned char*)(s->strm->next_in))));
s->bsLive += 8;
s->strm->next_in++;
s->strm->avail_in--;
}
return(TRUE);
}
static int bz_get_fast(DState *s)
{
int cccc;
s->tPos = s->tt[s->tPos];
cccc = (unsigned char)(s->tPos & 0xff);
s->tPos >>= 8;
return(cccc);
}
/*---------------------------------------------------*/
static inline int BZ2_decompress(DState *s)
{
int uc = 0;
int retVal;
int minLen, maxLen;
/* stuff that needs to be saved/restored */
int i;
int j;
int t;
int alphaSize;
int nGroups;
int nSelectors;
int EOB;
int groupNo;
int groupPos;
int nextSym;
int nblockMAX;
int nblock;
int es;
int N;
int curr;
int zt;
int zn;
int zvec;
int zj;
int gSel;
int gMinlen;
int *gLimit;
int *gBase;
int *gPerm;
int switch_val;
int get_mtf_val_init(void)
{
if (groupPos == 0) {
groupNo++;
if (groupNo >= nSelectors) {
retVal = BZ_DATA_ERROR;
return(FALSE);
}
groupPos = BZ_G_SIZE;
gSel = s->selector[groupNo];
gMinlen = s->minLens[gSel];
gLimit = &(s->limit[gSel][0]);
gPerm = &(s->perm[gSel][0]);
gBase = &(s->base[gSel][0]);
}
groupPos--;
zn = gMinlen;
return(TRUE);
}
if (s->state == BZ_X_MAGIC_1) {
/*initialise the save area*/
s->save_i = 0;
s->save_j = 0;
s->save_t = 0;
s->save_alphaSize = 0;
s->save_nGroups = 0;
s->save_nSelectors = 0;
s->save_EOB = 0;
s->save_groupNo = 0;
s->save_groupPos = 0;
s->save_nextSym = 0;
s->save_nblockMAX = 0;
s->save_nblock = 0;
s->save_es = 0;
s->save_N = 0;
s->save_curr = 0;
s->save_zt = 0;
s->save_zn = 0;
s->save_zvec = 0;
s->save_zj = 0;
s->save_gSel = 0;
s->save_gMinlen = 0;
s->save_gLimit = NULL;
s->save_gBase = NULL;
s->save_gPerm = NULL;
}
/*restore from the save area*/
i = s->save_i;
j = s->save_j;
t = s->save_t;
alphaSize = s->save_alphaSize;
nGroups = s->save_nGroups;
nSelectors = s->save_nSelectors;
EOB = s->save_EOB;
groupNo = s->save_groupNo;
groupPos = s->save_groupPos;
nextSym = s->save_nextSym;
nblockMAX = s->save_nblockMAX;
nblock = s->save_nblock;
es = s->save_es;
N = s->save_N;
curr = s->save_curr;
zt = s->save_zt;
zn = s->save_zn;
zvec = s->save_zvec;
zj = s->save_zj;
gSel = s->save_gSel;
gMinlen = s->save_gMinlen;
gLimit = s->save_gLimit;
gBase = s->save_gBase;
gPerm = s->save_gPerm;
retVal = BZ_OK;
switch_val = s->state;
switch (switch_val) {
case BZ_X_MAGIC_1:
s->state = BZ_X_MAGIC_1;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 'B') {
retVal = BZ_DATA_ERROR_MAGIC;
goto save_state_and_return;
}
case BZ_X_MAGIC_2:
s->state = BZ_X_MAGIC_2;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 'Z') {
retVal = BZ_DATA_ERROR_MAGIC;
goto save_state_and_return;
}
case BZ_X_MAGIC_3:
s->state = BZ_X_MAGIC_3;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 'h') {
retVal = BZ_DATA_ERROR_MAGIC;
goto save_state_and_return;
}
case BZ_X_MAGIC_4:
s->state = BZ_X_MAGIC_4;
if (! get_bits(s, &s->blockSize100k, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if ((s->blockSize100k < '1') || (s->blockSize100k > '9')) {
retVal = BZ_DATA_ERROR_MAGIC;
goto save_state_and_return;
}
s->blockSize100k -= '0';
s->tt = xmalloc(s->blockSize100k * 100000 * sizeof(int));
case BZ_X_BLKHDR_1:
s->state = BZ_X_BLKHDR_1;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc == 0x17) {
goto endhdr_2;
}
if (uc != 0x31) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_BLKHDR_2:
s->state = BZ_X_BLKHDR_2;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x41) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_BLKHDR_3:
s->state = BZ_X_BLKHDR_3;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x59) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_BLKHDR_4:
s->state = BZ_X_BLKHDR_4;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x26) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_BLKHDR_5:
s->state = BZ_X_BLKHDR_5;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x53) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_BLKHDR_6:
s->state = BZ_X_BLKHDR_6;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x59) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
s->currBlockNo++;
s->storedBlockCRC = 0;
case BZ_X_BCRC_1:
s->state = BZ_X_BCRC_1;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((unsigned int)uc);
case BZ_X_BCRC_2:
s->state = BZ_X_BCRC_2;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((unsigned int)uc);
case BZ_X_BCRC_3:
s->state = BZ_X_BCRC_3;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((unsigned int)uc);
case BZ_X_BCRC_4:
s->state = BZ_X_BCRC_4;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((unsigned int)uc);
case BZ_X_RANDBIT:
s->state = BZ_X_RANDBIT;
{
int tmp = s->blockRandomised;
const int ret = get_bits(s, &tmp, 1);
s->blockRandomised = tmp;
if (! ret) {
retVal = BZ_OK;
goto save_state_and_return;
}
}
s->origPtr = 0;
case BZ_X_ORIGPTR_1:
s->state = BZ_X_ORIGPTR_1;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->origPtr = (s->origPtr << 8) | ((int)uc);
case BZ_X_ORIGPTR_2:
s->state = BZ_X_ORIGPTR_2;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->origPtr = (s->origPtr << 8) | ((int)uc);
case BZ_X_ORIGPTR_3:
s->state = BZ_X_ORIGPTR_3;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->origPtr = (s->origPtr << 8) | ((int)uc);
if (s->origPtr < 0) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
if (s->origPtr > 10 + 100000*s->blockSize100k) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
/*--- Receive the mapping table ---*/
case BZ_X_MAPPING_1:
for (i = 0; i < 16; i++) {
s->state = BZ_X_MAPPING_1;
if (! get_bits(s, &uc, 1)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc == 1) {
s->inUse16[i] = TRUE;
} else {
s->inUse16[i] = FALSE;
}
}
for (i = 0; i < 256; i++) {
s->inUse[i] = FALSE;
}
for (i = 0; i < 16; i++) {
if (s->inUse16[i]) {
for (j = 0; j < 16; j++) {
case BZ_X_MAPPING_2:
s->state = BZ_X_MAPPING_2;
if (! get_bits(s, &uc, 1)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc == 1) {
s->inUse[i * 16 + j] = TRUE;
}
}
}
}
s->nInUse = 0;
for (i = 0; i < 256; i++) {
if (s->inUse[i]) {
s->seqToUnseq[s->nInUse] = i;
s->nInUse++;
}
}
if (s->nInUse == 0) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
alphaSize = s->nInUse+2;
/*--- Now the selectors ---*/
case BZ_X_SELECTOR_1:
s->state = BZ_X_SELECTOR_1;
if (! get_bits(s, &nGroups, 3)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (nGroups < 2 || nGroups > 6) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_SELECTOR_2:
s->state = BZ_X_SELECTOR_2;
if (! get_bits(s, &nSelectors, 15)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (nSelectors < 1) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
for (i = 0; i < nSelectors; i++) {
j = 0;
while (1) {
case BZ_X_SELECTOR_3:
s->state = BZ_X_SELECTOR_3;
if (! get_bits(s, &uc, 1)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc == 0) {
break;
}
j++;
if (j >= nGroups) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
}
s->selectorMtf[i] = j;
}
/*--- Undo the MTF values for the selectors. ---*/
{
unsigned char pos[BZ_N_GROUPS], tmp, v;
for (v = 0; v < nGroups; v++) {
pos[v] = v;
}
for (i = 0; i < nSelectors; i++) {
v = s->selectorMtf[i];
tmp = pos[v];
while (v > 0) {
pos[v] = pos[v-1];
v--;
}
pos[0] = tmp;
s->selector[i] = tmp;
}
}
/*--- Now the coding tables ---*/
for (t = 0; t < nGroups; t++) {
case BZ_X_CODING_1:
s->state = BZ_X_CODING_1;
if (! get_bits(s, &curr, 5)) {
retVal = BZ_OK;
goto save_state_and_return;
}
for (i = 0; i < alphaSize; i++) {
while (TRUE) {
if (curr < 1 || curr > 20) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_CODING_2:
s->state = BZ_X_CODING_2;
if (! get_bits(s, &uc, 1)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc == 0) {
break;
}
case BZ_X_CODING_3:
s->state = BZ_X_CODING_3;
if (! get_bits(s, &uc, 1)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc == 0) {
curr++;
} else {
curr--;
}
}
s->len[t][i] = curr;
}
}
/*--- Create the Huffman decoding tables ---*/
for (t = 0; t < nGroups; t++) {
minLen = 32;
maxLen = 0;
for (i = 0; i < alphaSize; i++) {
if (s->len[t][i] > maxLen) {
maxLen = s->len[t][i];
}
if (s->len[t][i] < minLen) {
minLen = s->len[t][i];
}
}
BZ2_hbCreateDecodeTables (
&(s->limit[t][0]),
&(s->base[t][0]),
&(s->perm[t][0]),
&(s->len[t][0]),
minLen, maxLen, alphaSize
);
s->minLens[t] = minLen;
}
/*--- Now the MTF values ---*/
EOB = s->nInUse+1;
nblockMAX = 100000 * s->blockSize100k;
groupNo = -1;
groupPos = 0;
for (i = 0; i <= 255; i++) {
s->unzftab[i] = 0;
}
/*-- MTF init --*/
{
int ii, jj, kk;
kk = MTFA_SIZE-1;
for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) {
for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
s->mtfa[kk] = (unsigned char)(ii * MTFL_SIZE + jj);
kk--;
}
s->mtfbase[ii] = kk + 1;
}
}
/*-- end MTF init --*/
nblock = 0;
if (! get_mtf_val_init()) {
goto save_state_and_return;
}
case BZ_X_MTF_1:
s->state = BZ_X_MTF_1;
if (! get_bits(s, &zvec, zn)) {
retVal = BZ_OK;
goto save_state_and_return;
}
while (1) {
if (zn > 20 /* the longest code */) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
if (zvec <= gLimit[zn]) {
break;
}
zn++;
case BZ_X_MTF_2:
s->state = BZ_X_MTF_2;
if (! get_bits(s, &zj, 1)) {
retVal = BZ_OK;
goto save_state_and_return;
}
zvec = (zvec << 1) | zj;
}
if (zvec - gBase[zn] < 0 || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
nextSym = gPerm[zvec - gBase[zn]];
while (1) {
if (nextSym == EOB) {
break;
}
if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) {
es = -1;
N = 1;
do {
if (nextSym == BZ_RUNA) {
es = es + (0+1) * N;
} else {
if (nextSym == BZ_RUNB) {
es = es + (1+1) * N;
}
}
N = N * 2;
if (! get_mtf_val_init()) {
goto save_state_and_return;
}
case BZ_X_MTF_3:
s->state = BZ_X_MTF_3;
if (! get_bits(s, &zvec, zn)) {
retVal = BZ_OK;
goto save_state_and_return;
}
while (1) {
if (zn > 20 /* the longest code */) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
if (zvec <= gLimit[zn]) {
break;
}
zn++;
case BZ_X_MTF_4:
s->state = BZ_X_MTF_4;
if (! get_bits(s, &zj, 1)) {
retVal = BZ_OK;
goto save_state_and_return;
}
zvec = (zvec << 1) | zj;
}
if (zvec - gBase[zn] < 0 || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
nextSym = gPerm[zvec - gBase[zn]];
}
while (nextSym == BZ_RUNA || nextSym == BZ_RUNB);
es++;
uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ];
s->unzftab[uc] += es;
while (es > 0) {
if (nblock >= nblockMAX) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
s->tt[nblock] = (unsigned int)uc;
nblock++;
es--;
}
continue;
} else {
if (nblock >= nblockMAX) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
/*-- uc = MTF ( nextSym-1 ) --*/
{
int ii, jj, kk, pp, lno, off;
unsigned int nn;
nn = (unsigned int)(nextSym - 1);
if (nn < MTFL_SIZE) {
/* avoid general-case expense */
pp = s->mtfbase[0];
uc = s->mtfa[pp+nn];
while (nn > 3) {
int z = pp+nn;
s->mtfa[(z) ] = s->mtfa[(z)-1];
s->mtfa[(z)-1] = s->mtfa[(z)-2];
s->mtfa[(z)-2] = s->mtfa[(z)-3];
s->mtfa[(z)-3] = s->mtfa[(z)-4];
nn -= 4;
}
while (nn > 0) {
s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--;
}
s->mtfa[pp] = uc;
} else {
/* general case */
lno = nn / MTFL_SIZE;
off = nn % MTFL_SIZE;
pp = s->mtfbase[lno] + off;
uc = s->mtfa[pp];
while (pp > s->mtfbase[lno]) {
s->mtfa[pp] = s->mtfa[pp-1];
pp--;
}
s->mtfbase[lno]++;
while (lno > 0) {
s->mtfbase[lno]--;
s->mtfa[s->mtfbase[lno]] = s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1];
lno--;
}
s->mtfbase[0]--;
s->mtfa[s->mtfbase[0]] = uc;
if (s->mtfbase[0] == 0) {
kk = MTFA_SIZE-1;
for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) {
for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj];
kk--;
}
s->mtfbase[ii] = kk + 1;
}
}
}
}
/*-- end uc = MTF ( nextSym-1 ) --*/
s->unzftab[s->seqToUnseq[uc]]++;
s->tt[nblock] = (unsigned int)(s->seqToUnseq[uc]);
nblock++;
if (! get_mtf_val_init()) {
goto save_state_and_return;
}
case BZ_X_MTF_5:
s->state = BZ_X_MTF_5;
if (! get_bits(s, &zvec, zn)) {
retVal = BZ_OK;
goto save_state_and_return;
}
while (1) {
if (zn > 20 /* the longest code */) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
if (zvec <= gLimit[zn]) {
break;
}
zn++;
case BZ_X_MTF_6:
s->state = BZ_X_MTF_6;
if (! get_bits(s, &zj, 1)) {
retVal = BZ_OK;
goto save_state_and_return;
}
zvec = (zvec << 1) | zj;
}
if (zvec - gBase[zn] < 0 || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
nextSym = gPerm[zvec - gBase[zn]];
continue;
}
}
/* Now we know what nblock is, we can do a better sanity
check on s->origPtr.
*/
if (s->origPtr < 0 || s->origPtr >= nblock) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
s->state_out_len = 0;
s->state_out_ch = 0;
s->calculatedBlockCRC = 0xffffffffL;
s->state = BZ_X_OUTPUT;
/*-- Set up cftab to facilitate generation of T^(-1) --*/
s->cftab[0] = 0;
for (i = 1; i <= 256; i++) {
s->cftab[i] = s->unzftab[i-1];
}
for (i = 1; i <= 256; i++) {
s->cftab[i] += s->cftab[i-1];
}
/*-- compute the T^(-1) vector --*/
for (i = 0; i < nblock; i++) {
uc = (unsigned char)(s->tt[i] & 0xff);
s->tt[s->cftab[uc]] |= (i << 8);
s->cftab[uc]++;
}
s->tPos = s->tt[s->origPtr] >> 8;
s->nblock_used = 0;
if (s->blockRandomised) {
s->rNToGo = 0;
s->rTPos = 0;
s->k0 = bz_get_fast(s);
s->nblock_used++;
bz_rand_udp_mask(s);
s->k0 ^= ((s->rNToGo == 1) ? 1 : 0);
} else {
s->k0 = bz_get_fast(s);
s->nblock_used++;
}
retVal = BZ_OK;
goto save_state_and_return;
endhdr_2:
case BZ_X_ENDHDR_2:
s->state = BZ_X_ENDHDR_2;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x72) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_ENDHDR_3:
s->state = BZ_X_ENDHDR_3;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x45) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_ENDHDR_4:
s->state = BZ_X_ENDHDR_4;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x38) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_ENDHDR_5:
s->state = BZ_X_ENDHDR_5;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x50) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
case BZ_X_ENDHDR_6:
s->state = BZ_X_ENDHDR_6;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
if (uc != 0x90) {
retVal = BZ_DATA_ERROR;
goto save_state_and_return;
}
s->storedCombinedCRC = 0;
case BZ_X_CCRC_1:
s->state = BZ_X_CCRC_1;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((unsigned int)uc);
case BZ_X_CCRC_2:
s->state = BZ_X_CCRC_2;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((unsigned int)uc);
case BZ_X_CCRC_3:
s->state = BZ_X_CCRC_3;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((unsigned int)uc);
case BZ_X_CCRC_4:
s->state = BZ_X_CCRC_4;
if (! get_bits(s, &uc, 8)) {
retVal = BZ_OK;
goto save_state_and_return;
}
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((unsigned int)uc);
s->state = BZ_X_IDLE;
retVal = BZ_STREAM_END;
goto save_state_and_return;
}
save_state_and_return:
s->save_i = i;
s->save_j = j;
s->save_t = t;
s->save_alphaSize = alphaSize;
s->save_nGroups = nGroups;
s->save_nSelectors = nSelectors;
s->save_EOB = EOB;
s->save_groupNo = groupNo;
s->save_groupPos = groupPos;
s->save_nextSym = nextSym;
s->save_nblockMAX = nblockMAX;
s->save_nblock = nblock;
s->save_es = es;
s->save_N = N;
s->save_curr = curr;
s->save_zt = zt;
s->save_zn = zn;
s->save_zvec = zvec;
s->save_zj = zj;
s->save_gSel = gSel;
s->save_gMinlen = gMinlen;
s->save_gLimit = gLimit;
s->save_gBase = gBase;
s->save_gPerm = gPerm;
return retVal;
}
extern void BZ2_bzReadClose(void)
{
if (bzf->initialisedOk) {
bz_stream *strm = &(bzf->strm);
DState *s;
if (strm == NULL) {
return;
}
s = strm->state;
if ((s == NULL) || (s->strm != strm)) {
return;
}
free(s->tt);
free(strm->state);
strm->state = NULL;
return;
}
free(bzf);
}
static void unRLE_obuf_to_output_FAST(DState *s)
{
unsigned char k1;
if (s->blockRandomised) {
while (1) {
/* try to finish existing run */
while (1) {
if (s->strm->avail_out == 0) {
return;
}
if (s->state_out_len == 0) {
break;
}
*((unsigned char *)(s->strm->next_out)) = s->state_out_ch;
s->calculatedBlockCRC = (s->calculatedBlockCRC << 8) ^
BZ2_crc32Table[(s->calculatedBlockCRC >> 24) ^
((unsigned char)s->state_out_ch)];
s->state_out_len--;
s->strm->next_out++;
s->strm->avail_out--;
}
/* can a new run be started? */
if (s->nblock_used == s->save_nblock+1) {
return;
}
s->state_out_len = 1;
s->state_out_ch = s->k0;
k1 = bz_get_fast(s);
bz_rand_udp_mask(s);
k1 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
if (s->nblock_used == s->save_nblock+1) {
continue;
}
if (k1 != s->k0) {
s->k0 = k1;
continue;
}
s->state_out_len = 2;
k1 = bz_get_fast(s);
bz_rand_udp_mask(s);
k1 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
if (s->nblock_used == s->save_nblock+1) {
continue;
}
if (k1 != s->k0) {
s->k0 = k1;
continue;
}
s->state_out_len = 3;
k1 = bz_get_fast(s);
bz_rand_udp_mask(s);
k1 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
if (s->nblock_used == s->save_nblock+1) {
continue;
}
if (k1 != s->k0) {
s->k0 = k1;
continue;
}
k1 = bz_get_fast(s);
bz_rand_udp_mask(s);
k1 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
s->state_out_len = ((int)k1) + 4;
s->k0 = bz_get_fast(s);
bz_rand_udp_mask(s);
s->k0 ^= ((s->rNToGo == 1) ? 1 : 0);
s->nblock_used++;
}
} else {
/* restore */
unsigned int c_calculatedBlockCRC = s->calculatedBlockCRC;
unsigned char c_state_out_ch = s->state_out_ch;
int c_state_out_len = s->state_out_len;
int c_nblock_used = s->nblock_used;
int c_k0 = s->k0;
unsigned int *c_tt = s->tt;
unsigned int c_tPos = s->tPos;
char *cs_next_out = s->strm->next_out;
unsigned int cs_avail_out = s->strm->avail_out;
/* end restore */
int s_save_nblockPP = s->save_nblock+1;
while (1) {
/* try to finish existing run */
if (c_state_out_len > 0) {
while (TRUE) {
if (cs_avail_out == 0) {
goto return_notr;
}
if (c_state_out_len == 1) {
break;
}
*((unsigned char *)(cs_next_out)) = c_state_out_ch;
c_calculatedBlockCRC = (c_calculatedBlockCRC << 8) ^
BZ2_crc32Table[(c_calculatedBlockCRC >> 24) ^
((unsigned char)c_state_out_ch)];
c_state_out_len--;
cs_next_out++;
cs_avail_out--;
}
s_state_out_len_eq_one:
{
if (cs_avail_out == 0) {
c_state_out_len = 1;
goto return_notr;
}
*((unsigned char *)(cs_next_out)) = c_state_out_ch;
c_calculatedBlockCRC = (c_calculatedBlockCRC << 8) ^
BZ2_crc32Table[(c_calculatedBlockCRC >> 24) ^
((unsigned char)c_state_out_ch)];
cs_next_out++;
cs_avail_out--;
}
}
/* can a new run be started? */
if (c_nblock_used == s_save_nblockPP) {
c_state_out_len = 0; goto return_notr;
}
c_state_out_ch = c_k0;
c_tPos = c_tt[c_tPos];
k1 = (unsigned char)(c_tPos & 0xff);
c_tPos >>= 8;
c_nblock_used++;
if (k1 != c_k0) {
c_k0 = k1;
goto s_state_out_len_eq_one;
}
if (c_nblock_used == s_save_nblockPP) {
goto s_state_out_len_eq_one;
}
c_state_out_len = 2;
c_tPos = c_tt[c_tPos];
k1 = (unsigned char)(c_tPos & 0xff);
c_tPos >>= 8;
c_nblock_used++;
if (c_nblock_used == s_save_nblockPP) {
continue;
}
if (k1 != c_k0) {
c_k0 = k1;
continue;
}
c_state_out_len = 3;
c_tPos = c_tt[c_tPos];
k1 = (unsigned char)(c_tPos & 0xff);
c_tPos >>= 8;
c_nblock_used++;
if (c_nblock_used == s_save_nblockPP) {
continue;
}
if (k1 != c_k0) {
c_k0 = k1;
continue;
}
c_tPos = c_tt[c_tPos];
k1 = (unsigned char)(c_tPos & 0xff);
c_tPos >>= 8;
c_nblock_used++;
c_state_out_len = ((int)k1) + 4;
c_tPos = c_tt[c_tPos];
c_k0 = (unsigned char)(c_tPos & 0xff);
c_tPos >>= 8;
c_nblock_used++;
}
return_notr:
/* save */
s->calculatedBlockCRC = c_calculatedBlockCRC;
s->state_out_ch = c_state_out_ch;
s->state_out_len = c_state_out_len;
s->nblock_used = c_nblock_used;
s->k0 = c_k0;
s->tt = c_tt;
s->tPos = c_tPos;
s->strm->next_out = cs_next_out;
s->strm->avail_out = cs_avail_out;
/* end save */
}
}
static inline
int BZ2_bzDecompress(bz_stream *strm)
{
DState* s;
s = strm->state;
while (1) {
if (s->state == BZ_X_IDLE) {
return BZ_SEQUENCE_ERROR;
}
if (s->state == BZ_X_OUTPUT) {
unRLE_obuf_to_output_FAST(s);
if (s->nblock_used == s->save_nblock+1 && s->state_out_len == 0) {
s->calculatedBlockCRC = ~(s->calculatedBlockCRC);
if (s->calculatedBlockCRC != s->storedBlockCRC) {
return BZ_DATA_ERROR;
}
s->calculatedCombinedCRC = (s->calculatedCombinedCRC << 1) | (s->calculatedCombinedCRC >> 31);
s->calculatedCombinedCRC ^= s->calculatedBlockCRC;
s->state = BZ_X_BLKHDR_1;
} else {
return BZ_OK;
}
}
if (s->state >= BZ_X_MAGIC_1) {
int r = BZ2_decompress(s);
if (r == BZ_STREAM_END) {
if (s->calculatedCombinedCRC != s->storedCombinedCRC) {
return BZ_DATA_ERROR;
}
return r;
}
if (s->state != BZ_X_OUTPUT) {
return r;
}
}
}
return(0); /*NOTREACHED*/
}
extern ssize_t read_bz2(int fd, void *buf, size_t count)
{
int n, ret;
bzerr = BZ_OK;
if (count == 0) {
return(0);
}
bzf->strm.avail_out = count;
bzf->strm.next_out = buf;
while (1) {
if (bzf->strm.avail_in == 0) {
n = xread(bzf->fd, bzf->buf, BZ_MAX_UNUSED);
if (n == 0) {
break;
}
bzf->bufN = n;
bzf->strm.avail_in = bzf->bufN;
bzf->strm.next_in = bzf->buf;
}
ret = BZ2_bzDecompress(&(bzf->strm));
if ((ret != BZ_OK) && (ret != BZ_STREAM_END)) {
error_msg_and_die("Error decompressing");
}
if (ret == BZ_STREAM_END) {
bzerr = BZ_STREAM_END;
return(count - bzf->strm.avail_out);
}
if (bzf->strm.avail_out == 0) {
bzerr = BZ_OK;
return(count);
}
}
return(0);
}
extern void BZ2_bzReadOpen(int fd, void *unused, int nUnused)
{
DState *s;
bzf = xmalloc(sizeof(bzFile));
bzf->initialisedOk = FALSE;
bzf->fd = fd;
bzf->bufN = 0;
s = xmalloc(sizeof(DState));
s->strm = &bzf->strm;
s->state = BZ_X_MAGIC_1;
s->bsLive = 0;
s->bsBuff = 0;
s->calculatedCombinedCRC = 0;
s->tt = NULL;
s->currBlockNo = 0;
bzf->strm.state = s;
while (nUnused > 0) {
bzf->buf[bzf->bufN] = *((unsigned char *)(unused));
bzf->bufN++;
unused = ((void *)( 1 + ((unsigned char *)(unused)) ));
nUnused--;
}
bzf->strm.avail_in = bzf->bufN;
bzf->strm.next_in = bzf->buf;
bzf->initialisedOk = TRUE;
return;
}
extern unsigned char uncompressStream(int src_fd, int dst_fd)
{
unsigned char unused[BZ_MAX_UNUSED];
unsigned char *unusedTmp;
unsigned char obuf[5000];
int nread;
int nUnused;
int streamNo;
int i;
nUnused = 0;
streamNo = 0;
while(1) {
BZ2_bzReadOpen(src_fd, unused, nUnused);
streamNo++;
while (bzerr == BZ_OK) {
nread = read_bz2(src_fd, obuf, 5000);
if (bzerr == BZ_DATA_ERROR_MAGIC) {
error_msg_and_die("invalid magic");
}
if (((bzerr == BZ_OK) || (bzerr == BZ_STREAM_END)) && (nread > 0)) {
if (write(dst_fd, obuf, nread) != nread) {
BZ2_bzReadClose();
perror_msg_and_die("Couldnt write to file");
}
}
}
nUnused = bzf->strm.avail_in;
unusedTmp = bzf->strm.next_in;
for (i = 0; i < nUnused; i++) {
unused[i] = unusedTmp[i];
}
BZ2_bzReadClose();
if (nUnused == 0) {
break;
}
}
close(src_fd);
if (dst_fd != fileno(stdout)) {
close(dst_fd);
}
return TRUE;
}