8154146be4
function old new delta sha1_process_block64 3481 3384 -97 Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
449 lines
14 KiB
Bash
Executable File
449 lines
14 KiB
Bash
Executable File
#!/bin/sh
|
|
|
|
# We don't regenerate it on every "make" invocation - only by hand.
|
|
# The reason is that the changes to generated code are difficult
|
|
# to visualize by looking only at this script, it helps when the commit
|
|
# also contains the diff of the generated file.
|
|
exec >hash_md5_sha_x86-64.S
|
|
|
|
# Based on http://arctic.org/~dean/crypto/sha1.html.
|
|
# ("This SHA1 implementation is public domain.")
|
|
#
|
|
# x86-64 has at least SSE2 vector insns always available.
|
|
# We can use them without any CPUID checks (and without a need
|
|
# for a fallback code if needed insns are not available).
|
|
# This code uses them to calculate W[] ahead of time.
|
|
#
|
|
# Unfortunately, results are passed from vector unit to
|
|
# integer ALUs on the stack. MOVD/Q insns to move them directly
|
|
# from vector to integer registers are slower than store-to-load
|
|
# forwarding in LSU (on Skylake at least).
|
|
#
|
|
# The win against a purely integer code is small on Skylake,
|
|
# only about 7-8%. We offload about 1/3 of our operations to the vector unit.
|
|
# It can do 4 ops at once in one 128-bit register,
|
|
# but we have to use x2 of them because of W[0] complication,
|
|
# SSE2 has no "rotate each word by N bits" insns,
|
|
# moving data to/from vector unit is clunky, and Skylake
|
|
# has four integer ALUs unified with three vector ALUs,
|
|
# which makes pure integer code rather fast, and makes
|
|
# vector ops compete with integer ones.
|
|
#
|
|
# Zen3, with its separate vector ALUs, wins more, about 12%.
|
|
|
|
xmmT1="%xmm4"
|
|
xmmT2="%xmm5"
|
|
xmmRCONST="%xmm6"
|
|
xmmALLRCONST="%xmm7"
|
|
T=`printf '\t'`
|
|
|
|
# SSE instructions are longer than 4 bytes on average.
|
|
# Intel CPUs (up to Tiger Lake at least) can't decode
|
|
# more than 16 bytes of code in one cycle.
|
|
# By interleaving SSE code and integer code
|
|
# we mostly achieve a situation where 16-byte decode fetch window
|
|
# contains 4 (or more) insns.
|
|
#
|
|
# However. On Skylake, there was no observed difference,
|
|
# but on Zen3, non-interleaved code is ~3% faster
|
|
# (822 Mb/s versus 795 Mb/s hashing speed).
|
|
# Off for now:
|
|
interleave=false
|
|
|
|
INTERLEAVE() {
|
|
$interleave || \
|
|
{
|
|
# Generate non-interleaved code
|
|
# (it should work correctly too)
|
|
echo "$1"
|
|
echo "$2"
|
|
return
|
|
}
|
|
(
|
|
echo "$1" | grep -v '^$' >"$0.temp1"
|
|
echo "$2" | grep -v '^$' >"$0.temp2"
|
|
exec 3<"$0.temp1"
|
|
exec 4<"$0.temp2"
|
|
IFS=''
|
|
while :; do
|
|
line1=''
|
|
line2=''
|
|
while :; do
|
|
read -r line1 <&3
|
|
if test "${line1:0:1}" != "#" && test "${line1:0:2}" != "$T#"; then
|
|
break
|
|
fi
|
|
echo "$line1"
|
|
done
|
|
while :; do
|
|
read -r line2 <&4
|
|
if test "${line2:0:4}" = "${T}lea"; then
|
|
# We use 7-8 byte long forms of LEA.
|
|
# Do not interleave them with SSE insns
|
|
# which are also long.
|
|
echo "$line2"
|
|
read -r line2 <&4
|
|
echo "$line2"
|
|
continue
|
|
fi
|
|
if test "${line2:0:1}" != "#" && test "${line2:0:2}" != "$T#"; then
|
|
break
|
|
fi
|
|
echo "$line2"
|
|
done
|
|
test "$line1$line2" || break
|
|
echo "$line1"
|
|
echo "$line2"
|
|
done
|
|
rm "$0.temp1" "$0.temp2"
|
|
)
|
|
}
|
|
|
|
echo \
|
|
"### Generated by hash_md5_sha_x86-64.S.sh ###
|
|
|
|
#if CONFIG_SHA1_SMALL == 0 && defined(__GNUC__) && defined(__x86_64__)
|
|
.section .text.sha1_process_block64, \"ax\", @progbits
|
|
.globl sha1_process_block64
|
|
.hidden sha1_process_block64
|
|
.type sha1_process_block64, @function
|
|
|
|
.balign 8 # allow decoders to fetch at least 5 first insns
|
|
sha1_process_block64:
|
|
pushq %rbp # 1 byte insn
|
|
pushq %rbx # 1 byte insn
|
|
# pushq %r15 # 2 byte insn
|
|
pushq %r14 # 2 byte insn
|
|
pushq %r13 # 2 byte insn
|
|
pushq %r12 # 2 byte insn
|
|
pushq %rdi # we need ctx at the end
|
|
|
|
#Register and stack use:
|
|
# eax..edx: a..d
|
|
# ebp: e
|
|
# esi,edi,r8..r14: temps
|
|
# r15: unused
|
|
# xmm0..xmm3: W[]
|
|
# xmm4,xmm5: temps
|
|
# xmm6: current round constant
|
|
# xmm7: all round constants
|
|
# -64(%rsp): area for passing RCONST + W[] from vector to integer units
|
|
|
|
movaps sha1const(%rip), $xmmALLRCONST
|
|
movaps bswap32_mask(%rip), $xmmT1
|
|
pshufd \$0x00, $xmmALLRCONST, $xmmRCONST
|
|
|
|
# Load W[] to xmm0..3, byteswapping on the fly.
|
|
#
|
|
# For iterations 0..15, we pass RCONST+W[] in rsi,r8..r14
|
|
# for use in RD1As instead of spilling them to stack.
|
|
# (We use rsi instead of rN because this makes two
|
|
# ADDs in two first RD1As shorter by one byte).
|
|
movups 16*0(%rdi), %xmm0
|
|
pshufb $xmmT1, %xmm0
|
|
movaps %xmm0, $xmmT2
|
|
paddd $xmmRCONST, $xmmT2
|
|
movq $xmmT2, %rsi
|
|
# pextrq \$1, $xmmT2, %r8 #SSE4.1 insn
|
|
# movhpd $xmmT2, %r8 #can only move to mem, not to reg
|
|
shufps \$0x0e, $xmmT2, $xmmT2
|
|
movq $xmmT2, %r8
|
|
|
|
movups 16*1(%rdi), %xmm1
|
|
pshufb $xmmT1, %xmm1
|
|
movaps %xmm1, $xmmT2
|
|
paddd $xmmRCONST, $xmmT2
|
|
movq $xmmT2, %r9
|
|
shufps \$0x0e, $xmmT2, $xmmT2
|
|
movq $xmmT2, %r10
|
|
|
|
movups 16*2(%rdi), %xmm2
|
|
pshufb $xmmT1, %xmm2
|
|
movaps %xmm2, $xmmT2
|
|
paddd $xmmRCONST, $xmmT2
|
|
movq $xmmT2, %r11
|
|
shufps \$0x0e, $xmmT2, $xmmT2
|
|
movq $xmmT2, %r12
|
|
|
|
movups 16*3(%rdi), %xmm3
|
|
pshufb $xmmT1, %xmm3
|
|
movaps %xmm3, $xmmT2
|
|
paddd $xmmRCONST, $xmmT2
|
|
movq $xmmT2, %r13
|
|
shufps \$0x0e, $xmmT2, $xmmT2
|
|
movq $xmmT2, %r14
|
|
|
|
# MOVQs to GPRs (above) have somewhat high latency.
|
|
# Load hash[] while they are completing:
|
|
movl 80(%rdi), %eax # a = ctx->hash[0]
|
|
movl 84(%rdi), %ebx # b = ctx->hash[1]
|
|
movl 88(%rdi), %ecx # c = ctx->hash[2]
|
|
movl 92(%rdi), %edx # d = ctx->hash[3]
|
|
movl 96(%rdi), %ebp # e = ctx->hash[4]
|
|
"
|
|
|
|
PREP() {
|
|
local xmmW0=$1
|
|
local xmmW4=$2
|
|
local xmmW8=$3
|
|
local xmmW12=$4
|
|
# the above must be %xmm0..3 in some permutation
|
|
local dstmem=$5
|
|
#W[0] = rol(W[13] ^ W[8] ^ W[2] ^ W[0], 1);
|
|
#W[1] = rol(W[14] ^ W[9] ^ W[3] ^ W[1], 1);
|
|
#W[2] = rol(W[15] ^ W[10] ^ W[4] ^ W[2], 1);
|
|
#W[3] = rol( 0 ^ W[11] ^ W[5] ^ W[3], 1);
|
|
#W[3] ^= rol(W[0], 1);
|
|
echo "# PREP $@
|
|
movaps $xmmW12, $xmmT1
|
|
psrldq \$4, $xmmT1 # rshift by 4 bytes: T1 = ([13],[14],[15],0)
|
|
|
|
# pshufd \$0x4e, $xmmW0, $xmmT2 # 01001110=2,3,0,1 shuffle, ([2],[3],x,x)
|
|
# punpcklqdq $xmmW4, $xmmT2 # T2 = W4[0..63]:T2[0..63] = ([2],[3],[4],[5])
|
|
# same result as above, but shorter and faster:
|
|
# pshufd/shufps are subtly different: pshufd takes all dwords from source operand,
|
|
# shufps takes dwords 0,1 from *2nd* operand, and dwords 2,3 from 1st one!
|
|
movaps $xmmW0, $xmmT2
|
|
shufps \$0x4e, $xmmW4, $xmmT2 # 01001110=(T2.dw[2], T2.dw[3], W4.dw[0], W4.dw[1]) = ([2],[3],[4],[5])
|
|
|
|
xorps $xmmW8, $xmmW0 # ([8],[9],[10],[11]) ^ ([0],[1],[2],[3])
|
|
xorps $xmmT1, $xmmT2 # ([13],[14],[15],0) ^ ([2],[3],[4],[5])
|
|
xorps $xmmT2, $xmmW0 # ^
|
|
# W0 = unrotated (W[0]..W[3]), still needs W[3] fixup
|
|
movaps $xmmW0, $xmmT2
|
|
|
|
xorps $xmmT1, $xmmT1 # rol(W0,1):
|
|
pcmpgtd $xmmW0, $xmmT1 # ffffffff for elements <0 (ones with msb bit 1)
|
|
paddd $xmmW0, $xmmW0 # shift left by 1
|
|
psubd $xmmT1, $xmmW0 # add 1 to those who had msb bit 1
|
|
# W0 = rotated (W[0]..W[3]), still needs W[3] fixup
|
|
|
|
pslldq \$12, $xmmT2 # lshift by 12 bytes: T2 = (0,0,0,unrotW[0])
|
|
movaps $xmmT2, $xmmT1
|
|
pslld \$2, $xmmT2
|
|
psrld \$30, $xmmT1
|
|
# xorps $xmmT1, $xmmT2 # rol((0,0,0,unrotW[0]),2)
|
|
xorps $xmmT1, $xmmW0 # same result, but does not depend on/does not modify T2
|
|
|
|
xorps $xmmT2, $xmmW0 # W0 = rol(W[0]..W[3],1) ^ (0,0,0,rol(unrotW[0],2))
|
|
"
|
|
# movq $xmmW0, %r8 # high latency (~6 cycles)
|
|
# movaps $xmmW0, $xmmT1
|
|
# psrldq \$8, $xmmT1 # rshift by 8 bytes: move upper 64 bits to lower
|
|
# movq $xmmT1, %r10 # high latency
|
|
# movq %r8, %r9
|
|
# movq %r10, %r11
|
|
# shrq \$32, %r9
|
|
# shrq \$32, %r11
|
|
# ^^^ slower than passing the results on stack (!!!)
|
|
echo "
|
|
movaps $xmmW0, $xmmT2
|
|
paddd $xmmRCONST, $xmmT2
|
|
movups $xmmT2, $dstmem
|
|
"
|
|
}
|
|
|
|
# It's possible to interleave integer insns in rounds to mostly eliminate
|
|
# dependency chains, but this likely to only help old Pentium-based
|
|
# CPUs (ones without OOO, which can only simultaneously execute a pair
|
|
# of _adjacent_ insns).
|
|
# Testing on old-ish Silvermont CPU (which has OOO window of only
|
|
# about ~8 insns) shows very small (~1%) speedup.
|
|
|
|
RD1A() {
|
|
local a=$1;local b=$2;local c=$3;local d=$4;local e=$5
|
|
local n=$(($6))
|
|
local n0=$(((n+0) & 15))
|
|
local rN=$((7+n0/2))
|
|
echo "
|
|
# $n
|
|
";test $n0 = 0 && echo "
|
|
addl %esi, %e$e # e += RCONST + W[n]
|
|
shrq \$32, %rsi
|
|
";test $n0 = 1 && echo "
|
|
addl %esi, %e$e # e += RCONST + W[n]
|
|
";test $n0 -ge 2 && test $((n0 & 1)) = 0 && echo "
|
|
addl %r${rN}d, %e$e # e += RCONST + W[n]
|
|
shrq \$32, %r$rN
|
|
";test $n0 -ge 2 && test $((n0 & 1)) = 1 && echo "
|
|
addl %r${rN}d, %e$e # e += RCONST + W[n]
|
|
";echo "
|
|
movl %e$c, %edi # c
|
|
xorl %e$d, %edi # ^d
|
|
andl %e$b, %edi # &b
|
|
xorl %e$d, %edi # (((c ^ d) & b) ^ d)
|
|
addl %edi, %e$e # e += (((c ^ d) & b) ^ d)
|
|
movl %e$a, %edi #
|
|
roll \$5, %edi # rotl32(a,5)
|
|
addl %edi, %e$e # e += rotl32(a,5)
|
|
rorl \$2, %e$b # b = rotl32(b,30)
|
|
"
|
|
}
|
|
RD1B() {
|
|
local a=$1;local b=$2;local c=$3;local d=$4;local e=$5
|
|
local n=$(($6))
|
|
local n13=$(((n+13) & 15))
|
|
local n8=$(((n+8) & 15))
|
|
local n2=$(((n+2) & 15))
|
|
local n0=$(((n+0) & 15))
|
|
echo "
|
|
# $n
|
|
movl %e$c, %edi # c
|
|
xorl %e$d, %edi # ^d
|
|
andl %e$b, %edi # &b
|
|
xorl %e$d, %edi # (((c ^ d) & b) ^ d)
|
|
addl -64+4*$n0(%rsp), %e$e # e += RCONST + W[n & 15]
|
|
addl %edi, %e$e # e += (((c ^ d) & b) ^ d)
|
|
movl %e$a, %esi #
|
|
roll \$5, %esi # rotl32(a,5)
|
|
addl %esi, %e$e # e += rotl32(a,5)
|
|
rorl \$2, %e$b # b = rotl32(b,30)
|
|
"
|
|
}
|
|
|
|
RD2() {
|
|
local a=$1;local b=$2;local c=$3;local d=$4;local e=$5
|
|
local n=$(($6))
|
|
local n13=$(((n+13) & 15))
|
|
local n8=$(((n+8) & 15))
|
|
local n2=$(((n+2) & 15))
|
|
local n0=$(((n+0) & 15))
|
|
echo "
|
|
# $n
|
|
movl %e$c, %edi # c
|
|
xorl %e$d, %edi # ^d
|
|
xorl %e$b, %edi # ^b
|
|
addl -64+4*$n0(%rsp), %e$e # e += RCONST + W[n & 15]
|
|
addl %edi, %e$e # e += (c ^ d ^ b)
|
|
movl %e$a, %esi #
|
|
roll \$5, %esi # rotl32(a,5)
|
|
addl %esi, %e$e # e += rotl32(a,5)
|
|
rorl \$2, %e$b # b = rotl32(b,30)
|
|
"
|
|
}
|
|
|
|
RD3() {
|
|
local a=$1;local b=$2;local c=$3;local d=$4;local e=$5
|
|
local n=$(($6))
|
|
local n13=$(((n+13) & 15))
|
|
local n8=$(((n+8) & 15))
|
|
local n2=$(((n+2) & 15))
|
|
local n0=$(((n+0) & 15))
|
|
echo "
|
|
# $n
|
|
movl %e$b, %edi # di: b
|
|
movl %e$b, %esi # si: b
|
|
orl %e$c, %edi # di: b | c
|
|
andl %e$c, %esi # si: b & c
|
|
andl %e$d, %edi # di: (b | c) & d
|
|
orl %esi, %edi # ((b | c) & d) | (b & c)
|
|
addl %edi, %e$e # += ((b | c) & d) | (b & c)
|
|
addl -64+4*$n0(%rsp), %e$e # e += RCONST + W[n & 15]
|
|
movl %e$a, %esi #
|
|
roll \$5, %esi # rotl32(a,5)
|
|
addl %esi, %e$e # e += rotl32(a,5)
|
|
rorl \$2, %e$b # b = rotl32(b,30)
|
|
"
|
|
}
|
|
|
|
{
|
|
# Round 1
|
|
RCONST=0x5A827999
|
|
RD1A ax bx cx dx bp 0; RD1A bp ax bx cx dx 1; RD1A dx bp ax bx cx 2; RD1A cx dx bp ax bx 3;
|
|
RD1A bx cx dx bp ax 4; RD1A ax bx cx dx bp 5; RD1A bp ax bx cx dx 6; RD1A dx bp ax bx cx 7;
|
|
a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"`
|
|
b=`RD1A cx dx bp ax bx 8; RD1A bx cx dx bp ax 9; RD1A ax bx cx dx bp 10; RD1A bp ax bx cx dx 11;`
|
|
INTERLEAVE "$a" "$b"
|
|
a=`echo " pshufd \\$0x55, $xmmALLRCONST, $xmmRCONST"
|
|
PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"`
|
|
b=`RD1A dx bp ax bx cx 12; RD1A cx dx bp ax bx 13; RD1A bx cx dx bp ax 14; RD1A ax bx cx dx bp 15;`
|
|
INTERLEAVE "$a" "$b"
|
|
a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"`
|
|
b=`RD1B bp ax bx cx dx 16; RD1B dx bp ax bx cx 17; RD1B cx dx bp ax bx 18; RD1B bx cx dx bp ax 19;`
|
|
INTERLEAVE "$a" "$b"
|
|
|
|
# Round 2
|
|
RCONST=0x6ED9EBA1
|
|
a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"`
|
|
b=`RD2 ax bx cx dx bp 20; RD2 bp ax bx cx dx 21; RD2 dx bp ax bx cx 22; RD2 cx dx bp ax bx 23;`
|
|
INTERLEAVE "$a" "$b"
|
|
a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"`
|
|
b=`RD2 bx cx dx bp ax 24; RD2 ax bx cx dx bp 25; RD2 bp ax bx cx dx 26; RD2 dx bp ax bx cx 27;`
|
|
INTERLEAVE "$a" "$b"
|
|
a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"`
|
|
b=`RD2 cx dx bp ax bx 28; RD2 bx cx dx bp ax 29; RD2 ax bx cx dx bp 30; RD2 bp ax bx cx dx 31;`
|
|
INTERLEAVE "$a" "$b"
|
|
a=`echo " pshufd \\$0xaa, $xmmALLRCONST, $xmmRCONST"
|
|
PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"`
|
|
b=`RD2 dx bp ax bx cx 32; RD2 cx dx bp ax bx 33; RD2 bx cx dx bp ax 34; RD2 ax bx cx dx bp 35;`
|
|
INTERLEAVE "$a" "$b"
|
|
a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"`
|
|
b=`RD2 bp ax bx cx dx 36; RD2 dx bp ax bx cx 37; RD2 cx dx bp ax bx 38; RD2 bx cx dx bp ax 39;`
|
|
INTERLEAVE "$a" "$b"
|
|
|
|
# Round 3
|
|
RCONST=0x8F1BBCDC
|
|
a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"`
|
|
b=`RD3 ax bx cx dx bp 40; RD3 bp ax bx cx dx 41; RD3 dx bp ax bx cx 42; RD3 cx dx bp ax bx 43;`
|
|
INTERLEAVE "$a" "$b"
|
|
a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"`
|
|
b=`RD3 bx cx dx bp ax 44; RD3 ax bx cx dx bp 45; RD3 bp ax bx cx dx 46; RD3 dx bp ax bx cx 47;`
|
|
INTERLEAVE "$a" "$b"
|
|
a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"`
|
|
b=`RD3 cx dx bp ax bx 48; RD3 bx cx dx bp ax 49; RD3 ax bx cx dx bp 50; RD3 bp ax bx cx dx 51;`
|
|
INTERLEAVE "$a" "$b"
|
|
a=`echo " pshufd \\$0xff, $xmmALLRCONST, $xmmRCONST"
|
|
PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"`
|
|
b=`RD3 dx bp ax bx cx 52; RD3 cx dx bp ax bx 53; RD3 bx cx dx bp ax 54; RD3 ax bx cx dx bp 55;`
|
|
INTERLEAVE "$a" "$b"
|
|
a=`PREP %xmm0 %xmm1 %xmm2 %xmm3 "-64+16*0(%rsp)"`
|
|
b=`RD3 bp ax bx cx dx 56; RD3 dx bp ax bx cx 57; RD3 cx dx bp ax bx 58; RD3 bx cx dx bp ax 59;`
|
|
INTERLEAVE "$a" "$b"
|
|
|
|
# Round 4 has the same logic as round 2, only n and RCONST are different
|
|
RCONST=0xCA62C1D6
|
|
a=`PREP %xmm1 %xmm2 %xmm3 %xmm0 "-64+16*1(%rsp)"`
|
|
b=`RD2 ax bx cx dx bp 60; RD2 bp ax bx cx dx 61; RD2 dx bp ax bx cx 62; RD2 cx dx bp ax bx 63;`
|
|
INTERLEAVE "$a" "$b"
|
|
a=`PREP %xmm2 %xmm3 %xmm0 %xmm1 "-64+16*2(%rsp)"`
|
|
b=`RD2 bx cx dx bp ax 64; RD2 ax bx cx dx bp 65; RD2 bp ax bx cx dx 66; RD2 dx bp ax bx cx 67;`
|
|
INTERLEAVE "$a" "$b"
|
|
a=`PREP %xmm3 %xmm0 %xmm1 %xmm2 "-64+16*3(%rsp)"`
|
|
b=`RD2 cx dx bp ax bx 68; RD2 bx cx dx bp ax 69; RD2 ax bx cx dx bp 70; RD2 bp ax bx cx dx 71;`
|
|
INTERLEAVE "$a" "$b"
|
|
RD2 dx bp ax bx cx 72; RD2 cx dx bp ax bx 73; RD2 bx cx dx bp ax 74; RD2 ax bx cx dx bp 75;
|
|
RD2 bp ax bx cx dx 76; RD2 dx bp ax bx cx 77; RD2 cx dx bp ax bx 78; RD2 bx cx dx bp ax 79;
|
|
} | grep -v '^$'
|
|
|
|
echo "
|
|
popq %rdi #
|
|
popq %r12 #
|
|
addl %eax, 80(%rdi) # ctx->hash[0] += a
|
|
popq %r13 #
|
|
addl %ebx, 84(%rdi) # ctx->hash[1] += b
|
|
popq %r14 #
|
|
addl %ecx, 88(%rdi) # ctx->hash[2] += c
|
|
# popq %r15 #
|
|
addl %edx, 92(%rdi) # ctx->hash[3] += d
|
|
popq %rbx #
|
|
addl %ebp, 96(%rdi) # ctx->hash[4] += e
|
|
popq %rbp #
|
|
|
|
ret
|
|
.size sha1_process_block64, .-sha1_process_block64
|
|
|
|
.section .rodata.cst16.bswap32_mask, \"aM\", @progbits, 16
|
|
.balign 16
|
|
bswap32_mask:
|
|
.octa 0x0c0d0e0f08090a0b0405060700010203
|
|
|
|
.section .rodata.cst16.sha1const, \"aM\", @progbits, 16
|
|
.balign 16
|
|
sha1const:
|
|
.long 0x5A827999
|
|
.long 0x6ED9EBA1
|
|
.long 0x8F1BBCDC
|
|
.long 0xCA62C1D6
|
|
|
|
#endif"
|