remove the requirement for aligned buffer function old new delta sha512_hash 262 297 +35 sha1_end 136 143 +7 passwd_main 1019 1023 +4 sha256_end 135 137 +2 count_lines 72 74 +2 sha256_hash 259 260 +1 popstring 164 158 -6 sha512_begin 88 81 -7 sha256_begin 44 37 -7 parse_expr 832 824 -8 bbunpack 446 438 -8 sha256_process_block64 529 520 -9 md5_end 166 151 -15 evaltreenr 817 802 -15 evaltree 817 802 -15 sha512_end 204 182 -22 sha512_process_block128 1444 1405 -39 ------------------------------------------------------------------------------ (add/remove: 0/0 grow/shrink: 6/11 up/down: 51/-151) Total: -100 bytes
		
			
				
	
	
		
			430 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			430 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* vi: set sw=4 ts=4: */
 | |
| /*
 | |
|  *  md5.c - Compute MD5 checksum of strings according to the
 | |
|  *          definition of MD5 in RFC 1321 from April 1992.
 | |
|  *
 | |
|  *  Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
 | |
|  *
 | |
|  *  Copyright (C) 1995-1999 Free Software Foundation, Inc.
 | |
|  *  Copyright (C) 2001 Manuel Novoa III
 | |
|  *  Copyright (C) 2003 Glenn L. McGrath
 | |
|  *  Copyright (C) 2003 Erik Andersen
 | |
|  *
 | |
|  *  Licensed under the GPL v2 or later, see the file LICENSE in this tarball.
 | |
|  */
 | |
| 
 | |
| #include "libbb.h"
 | |
| 
 | |
| /* 0: fastest, 3: smallest */
 | |
| #if CONFIG_MD5_SIZE_VS_SPEED < 0
 | |
| # define MD5_SIZE_VS_SPEED 0
 | |
| #elif CONFIG_MD5_SIZE_VS_SPEED > 3
 | |
| # define MD5_SIZE_VS_SPEED 3
 | |
| #else
 | |
| # define MD5_SIZE_VS_SPEED CONFIG_MD5_SIZE_VS_SPEED
 | |
| #endif
 | |
| 
 | |
| /* Initialize structure containing state of computation.
 | |
|  * (RFC 1321, 3.3: Step 3)
 | |
|  */
 | |
| void FAST_FUNC md5_begin(md5_ctx_t *ctx)
 | |
| {
 | |
| 	ctx->A = 0x67452301;
 | |
| 	ctx->B = 0xefcdab89;
 | |
| 	ctx->C = 0x98badcfe;
 | |
| 	ctx->D = 0x10325476;
 | |
| 	ctx->total = 0;
 | |
| 	ctx->buflen = 0;
 | |
| }
 | |
| 
 | |
| /* These are the four functions used in the four steps of the MD5 algorithm
 | |
|  * and defined in the RFC 1321.  The first function is a little bit optimized
 | |
|  * (as found in Colin Plumbs public domain implementation).
 | |
|  * #define FF(b, c, d) ((b & c) | (~b & d))
 | |
|  */
 | |
| #define FF(b, c, d) (d ^ (b & (c ^ d)))
 | |
| #define FG(b, c, d) FF(d, b, c)
 | |
| #define FH(b, c, d) (b ^ c ^ d)
 | |
| #define FI(b, c, d) (c ^ (b | ~d))
 | |
| 
 | |
| #define rotl32(w, s) (((w) << (s)) | ((w) >> (32 - (s))))
 | |
| 
 | |
| /* Hash a single block, 64 bytes long and 4-byte aligned. */
 | |
| static void md5_hash_block(const void *buffer, md5_ctx_t *ctx)
 | |
| {
 | |
| 	uint32_t correct_words[16];
 | |
| 	const uint32_t *words = buffer;
 | |
| 
 | |
| #if MD5_SIZE_VS_SPEED > 0
 | |
| 	static const uint32_t C_array[] = {
 | |
| 		/* round 1 */
 | |
| 		0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
 | |
| 		0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
 | |
| 		0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
 | |
| 		0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
 | |
| 		/* round 2 */
 | |
| 		0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
 | |
| 		0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8,
 | |
| 		0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
 | |
| 		0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
 | |
| 		/* round 3 */
 | |
| 		0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
 | |
| 		0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
 | |
| 		0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
 | |
| 		0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
 | |
| 		/* round 4 */
 | |
| 		0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
 | |
| 		0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
 | |
| 		0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
 | |
| 		0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
 | |
| 	};
 | |
| 	static const char P_array[] ALIGN1 = {
 | |
| # if MD5_SIZE_VS_SPEED > 1
 | |
| 		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,	/* 1 */
 | |
| # endif
 | |
| 		1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12,	/* 2 */
 | |
| 		5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2,	/* 3 */
 | |
| 		0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9	/* 4 */
 | |
| 	};
 | |
| # if MD5_SIZE_VS_SPEED > 1
 | |
| 	static const char S_array[] ALIGN1 = {
 | |
| 		7, 12, 17, 22,
 | |
| 		5, 9, 14, 20,
 | |
| 		4, 11, 16, 23,
 | |
| 		6, 10, 15, 21
 | |
| 	};
 | |
| # endif	/* MD5_SIZE_VS_SPEED > 1 */
 | |
| #endif
 | |
| 	uint32_t A = ctx->A;
 | |
| 	uint32_t B = ctx->B;
 | |
| 	uint32_t C = ctx->C;
 | |
| 	uint32_t D = ctx->D;
 | |
| 
 | |
| 	/* Process all bytes in the buffer with 64 bytes in each round of
 | |
| 	   the loop.  */
 | |
| 	uint32_t *cwp = correct_words;
 | |
| 	uint32_t A_save = A;
 | |
| 	uint32_t B_save = B;
 | |
| 	uint32_t C_save = C;
 | |
| 	uint32_t D_save = D;
 | |
| 
 | |
| #if MD5_SIZE_VS_SPEED > 1
 | |
| 	const uint32_t *pc;
 | |
| 	const char *pp;
 | |
| 	const char *ps;
 | |
| 	int i;
 | |
| 	uint32_t temp;
 | |
| 
 | |
| 	for (i = 0; i < 16; i++)
 | |
| 		cwp[i] = SWAP_LE32(words[i]);
 | |
| 	words += 16;
 | |
| 
 | |
| # if MD5_SIZE_VS_SPEED > 2
 | |
| 	pc = C_array;
 | |
| 	pp = P_array;
 | |
| 	ps = S_array - 4;
 | |
| 
 | |
| 	for (i = 0; i < 64; i++) {
 | |
| 		if ((i & 0x0f) == 0)
 | |
| 			ps += 4;
 | |
| 		temp = A;
 | |
| 		switch (i >> 4) {
 | |
| 		case 0:
 | |
| 			temp += FF(B, C, D);
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			temp += FG(B, C, D);
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			temp += FH(B, C, D);
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			temp += FI(B, C, D);
 | |
| 		}
 | |
| 		temp += cwp[(int) (*pp++)] + *pc++;
 | |
| 		temp = rotl32(temp, ps[i & 3]);
 | |
| 		temp += B;
 | |
| 		A = D;
 | |
| 		D = C;
 | |
| 		C = B;
 | |
| 		B = temp;
 | |
| 	}
 | |
| # else
 | |
| 	pc = C_array;
 | |
| 	pp = P_array;
 | |
| 	ps = S_array;
 | |
| 
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		temp = A + FF(B, C, D) + cwp[(int) (*pp++)] + *pc++;
 | |
| 		temp = rotl32(temp, ps[i & 3]);
 | |
| 		temp += B;
 | |
| 		A = D;
 | |
| 		D = C;
 | |
| 		C = B;
 | |
| 		B = temp;
 | |
| 	}
 | |
| 	ps += 4;
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		temp = A + FG(B, C, D) + cwp[(int) (*pp++)] + *pc++;
 | |
| 		temp = rotl32(temp, ps[i & 3]);
 | |
| 		temp += B;
 | |
| 		A = D;
 | |
| 		D = C;
 | |
| 		C = B;
 | |
| 		B = temp;
 | |
| 	}
 | |
| 	ps += 4;
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		temp = A + FH(B, C, D) + cwp[(int) (*pp++)] + *pc++;
 | |
| 		temp = rotl32(temp, ps[i & 3]);
 | |
| 		temp += B;
 | |
| 		A = D;
 | |
| 		D = C;
 | |
| 		C = B;
 | |
| 		B = temp;
 | |
| 	}
 | |
| 	ps += 4;
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		temp = A + FI(B, C, D) + cwp[(int) (*pp++)] + *pc++;
 | |
| 		temp = rotl32(temp, ps[i & 3]);
 | |
| 		temp += B;
 | |
| 		A = D;
 | |
| 		D = C;
 | |
| 		C = B;
 | |
| 		B = temp;
 | |
| 	}
 | |
| 
 | |
| # endif /* MD5_SIZE_VS_SPEED > 2 */
 | |
| #else
 | |
| 	/* First round: using the given function, the context and a constant
 | |
| 	   the next context is computed.  Because the algorithms processing
 | |
| 	   unit is a 32-bit word and it is determined to work on words in
 | |
| 	   little endian byte order we perhaps have to change the byte order
 | |
| 	   before the computation.  To reduce the work for the next steps
 | |
| 	   we store the swapped words in the array CORRECT_WORDS.  */
 | |
| # define OP(a, b, c, d, s, T) \
 | |
| 	do { \
 | |
| 		a += FF(b, c, d) + (*cwp++ = SWAP_LE32(*words)) + T; \
 | |
| 		++words; \
 | |
| 		a = rotl32(a, s); \
 | |
| 		a += b; \
 | |
| 	} while (0)
 | |
| 
 | |
| 	/* Before we start, one word to the strange constants.
 | |
| 	   They are defined in RFC 1321 as
 | |
| 	   T[i] = (int)(4294967296.0 * fabs(sin(i))), i=1..64
 | |
| 	 */
 | |
| 
 | |
| # if MD5_SIZE_VS_SPEED == 1
 | |
| 	const uint32_t *pc;
 | |
| 	const char *pp;
 | |
| 	int i;
 | |
| # endif	/* MD5_SIZE_VS_SPEED */
 | |
| 
 | |
| 	/* Round 1.  */
 | |
| # if MD5_SIZE_VS_SPEED == 1
 | |
| 	pc = C_array;
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		OP(A, B, C, D, 7, *pc++);
 | |
| 		OP(D, A, B, C, 12, *pc++);
 | |
| 		OP(C, D, A, B, 17, *pc++);
 | |
| 		OP(B, C, D, A, 22, *pc++);
 | |
| 	}
 | |
| # else
 | |
| 	OP(A, B, C, D, 7, 0xd76aa478);
 | |
| 	OP(D, A, B, C, 12, 0xe8c7b756);
 | |
| 	OP(C, D, A, B, 17, 0x242070db);
 | |
| 	OP(B, C, D, A, 22, 0xc1bdceee);
 | |
| 	OP(A, B, C, D, 7, 0xf57c0faf);
 | |
| 	OP(D, A, B, C, 12, 0x4787c62a);
 | |
| 	OP(C, D, A, B, 17, 0xa8304613);
 | |
| 	OP(B, C, D, A, 22, 0xfd469501);
 | |
| 	OP(A, B, C, D, 7, 0x698098d8);
 | |
| 	OP(D, A, B, C, 12, 0x8b44f7af);
 | |
| 	OP(C, D, A, B, 17, 0xffff5bb1);
 | |
| 	OP(B, C, D, A, 22, 0x895cd7be);
 | |
| 	OP(A, B, C, D, 7, 0x6b901122);
 | |
| 	OP(D, A, B, C, 12, 0xfd987193);
 | |
| 	OP(C, D, A, B, 17, 0xa679438e);
 | |
| 	OP(B, C, D, A, 22, 0x49b40821);
 | |
| # endif/* MD5_SIZE_VS_SPEED == 1 */
 | |
| 
 | |
| 	/* For the second to fourth round we have the possibly swapped words
 | |
| 	   in CORRECT_WORDS.  Redefine the macro to take an additional first
 | |
| 	   argument specifying the function to use.  */
 | |
| # undef OP
 | |
| # define OP(f, a, b, c, d, k, s, T) \
 | |
| 	do { \
 | |
| 		a += f(b, c, d) + correct_words[k] + T; \
 | |
| 		a = rotl32(a, s); \
 | |
| 		a += b; \
 | |
| 	} while (0)
 | |
| 
 | |
| 	/* Round 2.  */
 | |
| # if MD5_SIZE_VS_SPEED == 1
 | |
| 	pp = P_array;
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
 | |
| 		OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
 | |
| 		OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
 | |
| 		OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
 | |
| 	}
 | |
| # else
 | |
| 	OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
 | |
| 	OP(FG, D, A, B, C, 6, 9, 0xc040b340);
 | |
| 	OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
 | |
| 	OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
 | |
| 	OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
 | |
| 	OP(FG, D, A, B, C, 10, 9, 0x02441453);
 | |
| 	OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
 | |
| 	OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
 | |
| 	OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
 | |
| 	OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
 | |
| 	OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
 | |
| 	OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
 | |
| 	OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
 | |
| 	OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
 | |
| 	OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
 | |
| 	OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
 | |
| # endif/* MD5_SIZE_VS_SPEED == 1 */
 | |
| 
 | |
| 	/* Round 3.  */
 | |
| # if MD5_SIZE_VS_SPEED == 1
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
 | |
| 		OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
 | |
| 		OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
 | |
| 		OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
 | |
| 	}
 | |
| # else
 | |
| 	OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
 | |
| 	OP(FH, D, A, B, C, 8, 11, 0x8771f681);
 | |
| 	OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
 | |
| 	OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
 | |
| 	OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
 | |
| 	OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
 | |
| 	OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
 | |
| 	OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
 | |
| 	OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
 | |
| 	OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
 | |
| 	OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
 | |
| 	OP(FH, B, C, D, A, 6, 23, 0x04881d05);
 | |
| 	OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
 | |
| 	OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
 | |
| 	OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
 | |
| 	OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
 | |
| # endif/* MD5_SIZE_VS_SPEED == 1 */
 | |
| 
 | |
| 	/* Round 4.  */
 | |
| # if MD5_SIZE_VS_SPEED == 1
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
 | |
| 		OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
 | |
| 		OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
 | |
| 		OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
 | |
| 	}
 | |
| # else
 | |
| 	OP(FI, A, B, C, D, 0, 6, 0xf4292244);
 | |
| 	OP(FI, D, A, B, C, 7, 10, 0x432aff97);
 | |
| 	OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
 | |
| 	OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
 | |
| 	OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
 | |
| 	OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
 | |
| 	OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
 | |
| 	OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
 | |
| 	OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
 | |
| 	OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
 | |
| 	OP(FI, C, D, A, B, 6, 15, 0xa3014314);
 | |
| 	OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
 | |
| 	OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
 | |
| 	OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
 | |
| 	OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
 | |
| 	OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
 | |
| # endif	/* MD5_SIZE_VS_SPEED == 1 */
 | |
| #endif	/* MD5_SIZE_VS_SPEED > 1 */
 | |
| 
 | |
| 	/* Add the starting values of the context.  */
 | |
| 	A += A_save;
 | |
| 	B += B_save;
 | |
| 	C += C_save;
 | |
| 	D += D_save;
 | |
| 
 | |
| 	/* Put checksum in context given as argument.  */
 | |
| 	ctx->A = A;
 | |
| 	ctx->B = B;
 | |
| 	ctx->C = C;
 | |
| 	ctx->D = D;
 | |
| }
 | |
| 
 | |
| /* Feed data through a temporary buffer to call md5_hash_aligned_block()
 | |
|  * with chunks of data that are 4-byte aligned and a multiple of 64 bytes.
 | |
|  * This function's internal buffer remembers previous data until it has 64
 | |
|  * bytes worth to pass on.  Call md5_end() to flush this buffer. */
 | |
| void FAST_FUNC md5_hash(const void *buffer, size_t len, md5_ctx_t *ctx)
 | |
| {
 | |
| 	char *buf = (char *)buffer;
 | |
| 
 | |
| 	/* RFC 1321 specifies the possible length of the file up to 2^64 bits,
 | |
| 	 * Here we only track the number of bytes.  */
 | |
| 	ctx->total += len;
 | |
| 
 | |
| 	/* Process all input. */
 | |
| 	while (len) {
 | |
| 		unsigned i = 64 - ctx->buflen;
 | |
| 
 | |
| 		/* Copy data into aligned buffer. */
 | |
| 		if (i > len) i = len;
 | |
| 		memcpy(ctx->buffer + ctx->buflen, buf, i);
 | |
| 		len -= i;
 | |
| 		ctx->buflen += i;
 | |
| 		buf += i;
 | |
| 
 | |
| 		/* When buffer fills up, process it. */
 | |
| 		if (ctx->buflen == 64) {
 | |
| 			md5_hash_block(ctx->buffer, ctx);
 | |
| 			ctx->buflen = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Process the remaining bytes in the buffer and put result from CTX
 | |
|  * in first 16 bytes following RESBUF.  The result is always in little
 | |
|  * endian byte order, so that a byte-wise output yields to the wanted
 | |
|  * ASCII representation of the message digest.
 | |
|  *
 | |
|  * IMPORTANT: On some systems it is required that RESBUF is correctly
 | |
|  * aligned for a 32 bits value.
 | |
|  */
 | |
| void FAST_FUNC md5_end(void *resbuf, md5_ctx_t *ctx)
 | |
| {
 | |
| 	char *buf = ctx->buffer;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Pad data to block size.  */
 | |
| 	buf[ctx->buflen++] = 0x80;
 | |
| 	memset(buf + ctx->buflen, 0, 128 - ctx->buflen);
 | |
| 
 | |
| 	/* Put the 64-bit file length in *bits* at the end of the buffer.  */
 | |
| 	ctx->total <<= 3;
 | |
| 	if (ctx->buflen > 56)
 | |
| 		buf += 64;
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		buf[56 + i] = ctx->total >> (i*8);
 | |
| 
 | |
| 	/* Process last bytes.  */
 | |
| 	if (buf != ctx->buffer)
 | |
| 		md5_hash_block(ctx->buffer, ctx);
 | |
| 	md5_hash_block(buf, ctx);
 | |
| 
 | |
| 	/* The MD5 result is in little endian byte order.
 | |
| 	 * We (ab)use the fact that A-D are consecutive in memory.
 | |
| 	 */
 | |
| #if BB_BIG_ENDIAN
 | |
| 	ctx->A = SWAP_LE32(ctx->A);
 | |
| 	ctx->B = SWAP_LE32(ctx->B);
 | |
| 	ctx->C = SWAP_LE32(ctx->C);
 | |
| 	ctx->D = SWAP_LE32(ctx->D);
 | |
| #endif
 | |
| 	memcpy(resbuf, &ctx->A, sizeof(ctx->A) * 4);
 | |
| }
 |