function old new delta sha512_hash 262 281 +19 sha512_end 204 221 +17 sha1_hash 128 113 -15 static.mask 16 - -16 static.bits 16 - -16 sha1_end 160 136 -24 ------------------------------------------------------------------------------ (add/remove: 0/2 grow/shrink: 2/2 up/down: 36/-71) Total: -35 bytes
		
			
				
	
	
		
			287 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			287 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SHA256 and SHA512-based Unix crypt implementation.
 | |
|  * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
 | |
|  */
 | |
| 
 | |
| /* Prefix for optional rounds specification.  */
 | |
| static const char str_rounds[] = "rounds=%u$";
 | |
| 
 | |
| /* Maximum salt string length.  */
 | |
| #define SALT_LEN_MAX 16
 | |
| /* Default number of rounds if not explicitly specified.  */
 | |
| #define ROUNDS_DEFAULT 5000
 | |
| /* Minimum number of rounds.  */
 | |
| #define ROUNDS_MIN 1000
 | |
| /* Maximum number of rounds.  */
 | |
| #define ROUNDS_MAX 999999999
 | |
| 
 | |
| static char *
 | |
| NOINLINE
 | |
| sha_crypt(/*const*/ char *key_data, /*const*/ char *salt_data)
 | |
| {
 | |
| 	void (*sha_begin)(void *ctx) FAST_FUNC;
 | |
| 	void (*sha_hash)(const void *buffer, size_t len, void *ctx) FAST_FUNC;
 | |
| 	void (*sha_end)(void *resbuf, void *ctx) FAST_FUNC;
 | |
| 	int _32or64;
 | |
| 
 | |
| 	char *result, *resptr;
 | |
| 
 | |
| 	/* btw, sha256 needs [32] and uint32_t only */
 | |
| 	struct {
 | |
| 		unsigned char alt_result[64];
 | |
| 		unsigned char temp_result[64];
 | |
| 		union {
 | |
| 			sha256_ctx_t x;
 | |
| 			sha512_ctx_t y;
 | |
| 		} ctx;
 | |
| 		union {
 | |
| 			sha256_ctx_t x;
 | |
| 			sha512_ctx_t y;
 | |
| 		} alt_ctx;
 | |
| 	} L __attribute__((__aligned__(__alignof__(uint64_t))));
 | |
| #define alt_result  (L.alt_result )
 | |
| #define temp_result (L.temp_result)
 | |
| #define ctx         (L.ctx        )
 | |
| #define alt_ctx     (L.alt_ctx    )
 | |
| 	unsigned salt_len;
 | |
| 	unsigned key_len;
 | |
| 	unsigned cnt;
 | |
| 	unsigned rounds;
 | |
| 	char *cp;
 | |
| 	char is_sha512;
 | |
| 
 | |
| 	/* Analyze salt, construct already known part of result */
 | |
| 	cnt = strlen(salt_data) + 1 + 43 + 1;
 | |
| 	is_sha512 = salt_data[1];
 | |
| 	if (is_sha512 == '6')
 | |
| 		cnt += 43;
 | |
| 	result = resptr = xzalloc(cnt); /* will provide NUL terminator */
 | |
| 	*resptr++ = '$';
 | |
| 	*resptr++ = is_sha512;
 | |
| 	*resptr++ = '$';
 | |
| 	rounds = ROUNDS_DEFAULT;
 | |
| 	salt_data += 3;
 | |
| 	if (strncmp(salt_data, str_rounds, 7) == 0) {
 | |
| 		/* 7 == strlen("rounds=") */
 | |
| 		char *endp;
 | |
| 		cnt = bb_strtou(salt_data + 7, &endp, 10);
 | |
| 		if (*endp == '$') {
 | |
| 			salt_data = endp + 1;
 | |
| 			rounds = cnt;
 | |
| 			if (rounds < ROUNDS_MIN)
 | |
| 				rounds = ROUNDS_MIN;
 | |
| 			if (rounds > ROUNDS_MAX)
 | |
| 				rounds = ROUNDS_MAX;
 | |
| 			/* add "rounds=NNNNN$" to result */
 | |
| 			resptr += sprintf(resptr, str_rounds, rounds);
 | |
| 		}
 | |
| 	}
 | |
| 	salt_len = strchrnul(salt_data, '$') - salt_data;
 | |
| 	if (salt_len > SALT_LEN_MAX)
 | |
| 		salt_len = SALT_LEN_MAX;
 | |
| 	/* xstrdup assures suitable alignment; also we will use it
 | |
| 	   as a scratch space later. */
 | |
| 	salt_data = xstrndup(salt_data, salt_len);
 | |
| 	/* add "salt$" to result */
 | |
| 	strcpy(resptr, salt_data);
 | |
| 	resptr += salt_len;
 | |
| 	*resptr++ = '$';
 | |
| 	/* key data doesn't need much processing */
 | |
| 	key_len = strlen(key_data);
 | |
| 	key_data = xstrdup(key_data);
 | |
| 
 | |
| 	/* Which flavor of SHAnnn ops to use? */
 | |
| 	sha_begin = (void*)sha256_begin;
 | |
| 	sha_hash = (void*)sha256_hash;
 | |
| 	sha_end = (void*)sha256_end;
 | |
| 	_32or64 = 32;
 | |
| 	if (is_sha512 == '6') {
 | |
| 		sha_begin = (void*)sha512_begin;
 | |
| 		sha_hash = (void*)sha512_hash;
 | |
| 		sha_end = (void*)sha512_end;
 | |
| 		_32or64 = 64;
 | |
| 	}
 | |
| 
 | |
| 	/* Add KEY, SALT.  */
 | |
| 	sha_begin(&ctx);
 | |
| 	sha_hash(key_data, key_len, &ctx);
 | |
| 	sha_hash(salt_data, salt_len, &ctx);
 | |
| 
 | |
| 	/* Compute alternate SHA sum with input KEY, SALT, and KEY.
 | |
| 	   The final result will be added to the first context.  */
 | |
| 	sha_begin(&alt_ctx);
 | |
| 	sha_hash(key_data, key_len, &alt_ctx);
 | |
| 	sha_hash(salt_data, salt_len, &alt_ctx);
 | |
| 	sha_hash(key_data, key_len, &alt_ctx);
 | |
| 	sha_end(alt_result, &alt_ctx);
 | |
| 
 | |
| 	/* Add result of this to the other context.  */
 | |
| 	/* Add for any character in the key one byte of the alternate sum.  */
 | |
| 	for (cnt = key_len; cnt > _32or64; cnt -= _32or64)
 | |
| 		sha_hash(alt_result, _32or64, &ctx);
 | |
| 	sha_hash(alt_result, cnt, &ctx);
 | |
| 
 | |
| 	/* Take the binary representation of the length of the key and for every
 | |
| 	   1 add the alternate sum, for every 0 the key.  */
 | |
| 	for (cnt = key_len; cnt != 0; cnt >>= 1)
 | |
| 		if ((cnt & 1) != 0)
 | |
| 			sha_hash(alt_result, _32or64, &ctx);
 | |
| 		else
 | |
| 			sha_hash(key_data, key_len, &ctx);
 | |
| 
 | |
| 	/* Create intermediate result.  */
 | |
| 	sha_end(alt_result, &ctx);
 | |
| 
 | |
| 	/* Start computation of P byte sequence.  */
 | |
| 	/* For every character in the password add the entire password.  */
 | |
| 	sha_begin(&alt_ctx);
 | |
| 	for (cnt = 0; cnt < key_len; ++cnt)
 | |
| 		sha_hash(key_data, key_len, &alt_ctx);
 | |
| 	sha_end(temp_result, &alt_ctx);
 | |
| 
 | |
| 	/* NB: past this point, raw key_data is not used anymore */
 | |
| 
 | |
| 	/* Create byte sequence P.  */
 | |
| #define p_bytes key_data /* reuse the buffer as it is of the key_len size */
 | |
| 	cp = p_bytes; /* was: ... = alloca(key_len); */
 | |
| 	for (cnt = key_len; cnt >= _32or64; cnt -= _32or64) {
 | |
| 		cp = memcpy(cp, temp_result, _32or64);
 | |
| 		cp += _32or64;
 | |
| 	}
 | |
| 	memcpy(cp, temp_result, cnt);
 | |
| 
 | |
| 	/* Start computation of S byte sequence.  */
 | |
| 	/* For every character in the password add the entire password.  */
 | |
| 	sha_begin(&alt_ctx);
 | |
| 	for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
 | |
| 		sha_hash(salt_data, salt_len, &alt_ctx);
 | |
| 	sha_end(temp_result, &alt_ctx);
 | |
| 
 | |
| 	/* NB: past this point, raw salt_data is not used anymore */
 | |
| 
 | |
| 	/* Create byte sequence S.  */
 | |
| #define s_bytes salt_data /* reuse the buffer as it is of the salt_len size */
 | |
| 	cp = s_bytes; /* was: ... = alloca(salt_len); */
 | |
| 	for (cnt = salt_len; cnt >= _32or64; cnt -= _32or64) {
 | |
| 		cp = memcpy(cp, temp_result, _32or64);
 | |
| 		cp += _32or64;
 | |
| 	}
 | |
| 	memcpy(cp, temp_result, cnt);
 | |
| 
 | |
| 	/* Repeatedly run the collected hash value through SHA to burn
 | |
| 	   CPU cycles.  */
 | |
| 	for (cnt = 0; cnt < rounds; ++cnt) {
 | |
| 		sha_begin(&ctx);
 | |
| 
 | |
| 		/* Add key or last result.  */
 | |
| 		if ((cnt & 1) != 0)
 | |
| 			sha_hash(p_bytes, key_len, &ctx);
 | |
| 		else
 | |
| 			sha_hash(alt_result, _32or64, &ctx);
 | |
| 		/* Add salt for numbers not divisible by 3.  */
 | |
| 		if (cnt % 3 != 0)
 | |
| 			sha_hash(s_bytes, salt_len, &ctx);
 | |
| 		/* Add key for numbers not divisible by 7.  */
 | |
| 		if (cnt % 7 != 0)
 | |
| 			sha_hash(p_bytes, key_len, &ctx);
 | |
| 		/* Add key or last result.  */
 | |
| 		if ((cnt & 1) != 0)
 | |
| 			sha_hash(alt_result, _32or64, &ctx);
 | |
| 		else
 | |
| 			sha_hash(p_bytes, key_len, &ctx);
 | |
| 
 | |
| 		sha_end(alt_result, &ctx);
 | |
| 	}
 | |
| 
 | |
| 	/* Append encrypted password to result buffer */
 | |
| //TODO: replace with something like
 | |
| //	bb_uuencode(cp, src, length, bb_uuenc_tbl_XXXbase64);
 | |
| #define b64_from_24bit(B2, B1, B0, N) \
 | |
| do {							\
 | |
| 	unsigned w = ((B2) << 16) | ((B1) << 8) | (B0);	\
 | |
| 	resptr = to64(resptr, w, N);			\
 | |
| } while (0)
 | |
| 	if (is_sha512 == '5') {
 | |
| 		unsigned i = 0;
 | |
| 		while (1) {
 | |
| 			unsigned j = i + 10;
 | |
| 			unsigned k = i + 20;
 | |
| 			if (j >= 30) j -= 30;
 | |
| 			if (k >= 30) k -= 30;
 | |
| 			b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
 | |
| 			if (k == 29)
 | |
| 				break;
 | |
| 			i = k + 1;
 | |
| 		}
 | |
| 		b64_from_24bit(0, alt_result[31], alt_result[30], 3);
 | |
| 		/* was:
 | |
| 		b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4);
 | |
| 		b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4);
 | |
| 		b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4);
 | |
| 		b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4);
 | |
| 		b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4);
 | |
| 		b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4);
 | |
| 		b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4);
 | |
| 		b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4);
 | |
| 		b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4);
 | |
| 		b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4);
 | |
| 		b64_from_24bit(0, alt_result[31], alt_result[30], 3);
 | |
| 		*/
 | |
| 	} else {
 | |
| 		unsigned i = 0;
 | |
| 		while (1) {
 | |
| 			unsigned j = i + 21;
 | |
| 			unsigned k = i + 42;
 | |
| 			if (j >= 63) j -= 63;
 | |
| 			if (k >= 63) k -= 63;
 | |
| 			b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
 | |
| 			if (j == 20)
 | |
| 				break;
 | |
| 			i = j + 1;
 | |
| 		}
 | |
| 		b64_from_24bit(0, 0, alt_result[63], 2);
 | |
| 		/* was:
 | |
| 		b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4);
 | |
| 		b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4);
 | |
| 		b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4);
 | |
| 		b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4);
 | |
| 		b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4);
 | |
| 		b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4);
 | |
| 		b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4);
 | |
| 		b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4);
 | |
| 		b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4);
 | |
| 		b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4);
 | |
| 		b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4);
 | |
| 		b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4);
 | |
| 		b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4);
 | |
| 		b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4);
 | |
| 		b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4);
 | |
| 		b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4);
 | |
| 		b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4);
 | |
| 		b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4);
 | |
| 		b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4);
 | |
| 		b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4);
 | |
| 		b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4);
 | |
| 		b64_from_24bit(0, 0, alt_result[63], 2);
 | |
| 		*/
 | |
| 	}
 | |
| 	/* *resptr = '\0'; - xzalloc did it */
 | |
| #undef b64_from_24bit
 | |
| 
 | |
| 	/* Clear the buffer for the intermediate result so that people
 | |
| 	   attaching to processes or reading core dumps cannot get any
 | |
| 	   information.  */
 | |
| 	memset(&L, 0, sizeof(L)); /* [alt]_ctx and XXX_result buffers */
 | |
| 	memset(key_data, 0, key_len); /* also p_bytes */
 | |
| 	memset(salt_data, 0, salt_len); /* also s_bytes */
 | |
| 	free(key_data);
 | |
| 	free(salt_data);
 | |
| #undef p_bytes
 | |
| #undef s_bytes
 | |
| 
 | |
| 	return result;
 | |
| #undef alt_result
 | |
| #undef temp_result
 | |
| #undef ctx
 | |
| #undef alt_ctx
 | |
| }
 |