bc616b3615
Gosh, just because nobody uses some newlib provision I guess, since it is being offered, it ought to actually be tested at some point. Well, that point just arrived and guess what? A surprise: some bugs were discovered. The procps_pids_select function established a for loop wherein readproc is called until the passed 'maxthese' limit. Unfortunately this was incorrect for 2 reasons: 1. For PROCPS_FILL_PID results are limited by what the oldlib finds, having established the pid list at open. Total found already cannot exceed a passed 'maxthese'; 2. With PROCPS_FILL_UID, returned results could exceed a 'maxthese' thus making the for loop incorrect again. [ plus yours truly neglected to forward the required ] [ UIDs total to our old library, another oops biggie ] In summary: the loop should have been forever, exiting only when all those identified procs had been located. So, while addressing those bugs, I've consolidated all the retrieval code (initialize, iterate, summarize) in a single helper function which will now serve both the procps_pids_reap and select functions. And as a result those guys were reduced to quite trivial housekeeping. This patch, hopefully, completes the normalization for reap/select (fill), which began with references shown. Reference(s): commit 0c953eccc5fe7240be9d272e1b6c0ce8769d8ed2 commit 747dfc5987e6e91ea3a8575de307e2892790c598 Signed-off-by: Jim Warner <james.warner@comcast.net>
1496 lines
53 KiB
C
1496 lines
53 KiB
C
/*
|
|
* pids.c - task/thread/process related declarations for libproc
|
|
*
|
|
* Copyright (C) 1998-2005 Albert Cahalan
|
|
* Copyright (C) 2015 Craig Small <csmall@enc.com.au>
|
|
* Copyright (C) 2015 Jim Warner <james.warner@comcast.net>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
//efine _GNU_SOURCE // for qsort_r
|
|
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <limits.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <proc/pids.h>
|
|
#include <proc/sysinfo.h>
|
|
#include <proc/uptime.h>
|
|
#include "procps-private.h"
|
|
|
|
#include "devname.h" // and a few headers for our
|
|
#include "readproc.h" // bridged libprocps support
|
|
#include "wchan.h" // ( maybe just temporary? )
|
|
|
|
//#define UNREF_RPTHASH // report on hashing, at uref time
|
|
//#define FPRINT_STACKS // enable validate_stacks output
|
|
|
|
#define FILL_ID_MAX 255 // upper limit for pid/uid fills
|
|
#define MEMORY_INCR 128 // amt by which allocations grow
|
|
|
|
#define READS_BEGUN (info->read) // a read is in progress
|
|
|
|
enum pids_item PROCPS_PIDS_logical_end = PROCPS_PIDS_noop + 1;
|
|
enum pids_item PROCPS_PIDS_physical_end = PROCPS_PIDS_noop + 2;
|
|
|
|
|
|
struct stacks_extent {
|
|
struct pids_stack **stacks;
|
|
int ext_numitems; // includes 'physical_end' delimiter
|
|
int ext_numstacks;
|
|
struct stacks_extent *next;
|
|
};
|
|
|
|
struct fetch_support {
|
|
struct pids_stack **anchor; // reapable/fillable (consolidated extents)
|
|
int n_alloc; // number of above pointers allocated
|
|
int n_inuse; // number of above pointers occupied
|
|
int n_alloc_save; // last known summary.stacks allocation
|
|
struct pids_reap summary; // counts + stacks for return to caller
|
|
};
|
|
|
|
struct procps_pidsinfo {
|
|
int refcount;
|
|
int maxitems; // includes 'physical_end' delimiter
|
|
int curitems; // includes 'logical_end' delimiter
|
|
enum pids_item *items; // includes 'phy/log_end' delimiters
|
|
struct stacks_extent *extents; // anchor for all resettable extents
|
|
struct stacks_extent *otherexts; // anchor for single stack invariant extents
|
|
struct fetch_support reap; // support for procps_pids_reap
|
|
struct fetch_support select; // support for procps_pids_select
|
|
int history_yes; // need historical data
|
|
struct history_info *hist; // pointer to historical support data
|
|
int dirty_stacks; // extents need dynamic storage clean
|
|
struct stacks_extent *read; // an extent used for active reads
|
|
proc_t*(*read_something)(PROCTAB*, proc_t*); // readproc/readeither via which
|
|
unsigned pgs2k_shift; // to convert some proc vaules
|
|
unsigned flags; // the old library PROC_FILL flagss
|
|
PROCTAB *PT; // the old library essential interface
|
|
unsigned long hertz; // for TIME_ALL & TIME_ELAPSED calculations
|
|
unsigned long long boot_seconds; // for TIME_ELAPSED calculation
|
|
};
|
|
|
|
|
|
// ___ Results 'Set' Support ||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
/* note: the vast majority of these 'set' functions have no need for
|
|
the procps_pidsinfo structure, but it's being passed to all
|
|
because of the CVT_set requirement & for future flexibility */
|
|
|
|
#define setNAME(e) set_results_ ## e
|
|
#define setDECL(e) static void setNAME(e) \
|
|
(struct procps_pidsinfo *I, struct pids_result *R, proc_t *P)
|
|
|
|
// convert pages to kib
|
|
#define CVT_set(e,t,x) setDECL(e) { \
|
|
R->result. t = (unsigned long)(P-> x) << I -> pgs2k_shift; }
|
|
// strdup of a static char array
|
|
#define DUP_set(e,x) setDECL(e) { \
|
|
(void)I; R->result.str = strdup(P-> x); }
|
|
// regular assignment copy
|
|
#define REG_set(e,t,x) setDECL(e) { \
|
|
(void)I; R->result. t = P-> x; }
|
|
// take ownership of a regular char* string
|
|
#define STR_set(e,x) setDECL(e) { \
|
|
(void)I; R->result.str = P-> x; P-> x = NULL; }
|
|
// take ownership of a vectorized single string
|
|
#define STV_set(e,x) setDECL(e) { \
|
|
(void)I; R->result.str = *P-> x; P-> x = NULL; }
|
|
// take ownership of true vectorized strings
|
|
#define VEC_set(e,x) setDECL(e) { \
|
|
(void)I; R->result.strv = P-> x; P-> x = NULL; }
|
|
|
|
REG_set(ADDR_END_CODE, ul_int, end_code)
|
|
REG_set(ADDR_KSTK_EIP, ul_int, kstk_eip)
|
|
REG_set(ADDR_KSTK_ESP, ul_int, kstk_esp)
|
|
REG_set(ADDR_START_CODE, ul_int, start_code)
|
|
REG_set(ADDR_START_STACK, ul_int, start_stack)
|
|
REG_set(ALARM, sl_int, alarm)
|
|
STV_set(CGROUP, cgroup)
|
|
VEC_set(CGROUP_V, cgroup)
|
|
STR_set(CMD, cmd)
|
|
STV_set(CMDLINE, cmdline)
|
|
VEC_set(CMDLINE_V, cmdline)
|
|
STV_set(ENVIRON, environ)
|
|
VEC_set(ENVIRON_V, environ)
|
|
REG_set(EXIT_SIGNAL, s_int, exit_signal)
|
|
REG_set(FLAGS, ul_int, flags)
|
|
REG_set(FLT_MAJ, ul_int, maj_flt)
|
|
REG_set(FLT_MAJ_C, ul_int, cmaj_flt)
|
|
REG_set(FLT_MAJ_DELTA, ul_int, maj_delta)
|
|
REG_set(FLT_MIN, ul_int, min_flt)
|
|
REG_set(FLT_MIN_C, ul_int, cmin_flt)
|
|
REG_set(FLT_MIN_DELTA, ul_int, min_delta)
|
|
REG_set(ID_EGID, u_int, egid)
|
|
REG_set(ID_EGROUP, str, egroup)
|
|
REG_set(ID_EUID, u_int, euid)
|
|
REG_set(ID_EUSER, str, euser)
|
|
REG_set(ID_FGID, u_int, fgid)
|
|
REG_set(ID_FGROUP, str, fgroup)
|
|
REG_set(ID_FUID, u_int, fuid)
|
|
REG_set(ID_FUSER, str, fuser)
|
|
REG_set(ID_PGRP, s_int, pgrp)
|
|
REG_set(ID_PID, s_int, tid)
|
|
REG_set(ID_PPID, s_int, ppid)
|
|
REG_set(ID_RGID, u_int, rgid)
|
|
REG_set(ID_RGROUP, str, rgroup)
|
|
REG_set(ID_RUID, u_int, ruid)
|
|
REG_set(ID_RUSER, str, ruser)
|
|
REG_set(ID_SESSION, s_int, session)
|
|
REG_set(ID_SGID, u_int, sgid)
|
|
REG_set(ID_SGROUP, str, sgroup)
|
|
REG_set(ID_SUID, u_int, suid)
|
|
REG_set(ID_SUSER, str, suser)
|
|
REG_set(ID_TGID, s_int, tgid)
|
|
REG_set(ID_TPGID, s_int, tpgid)
|
|
setDECL(LXCNAME) { (void)I; R->result.str = (char *)P->lxcname; }
|
|
REG_set(MEM_CODE, sl_int, trs)
|
|
CVT_set(MEM_CODE_KIB, ul_int, trs)
|
|
REG_set(MEM_DATA, sl_int, drs)
|
|
CVT_set(MEM_DATA_KIB, ul_int, drs)
|
|
REG_set(MEM_DT, sl_int, dt)
|
|
REG_set(MEM_LRS, sl_int, lrs)
|
|
REG_set(MEM_RES, sl_int, resident)
|
|
CVT_set(MEM_RES_KIB, ul_int, resident)
|
|
REG_set(MEM_SHR, sl_int, share)
|
|
CVT_set(MEM_SHR_KIB, ul_int, share)
|
|
REG_set(MEM_VIRT, sl_int, size)
|
|
CVT_set(MEM_VIRT_KIB, ul_int, size)
|
|
REG_set(NICE, sl_int, nice)
|
|
REG_set(NLWP, s_int, nlwp)
|
|
REG_set(NS_IPC, ul_int, ns.ns[0])
|
|
REG_set(NS_MNT, ul_int, ns.ns[1])
|
|
REG_set(NS_NET, ul_int, ns.ns[2])
|
|
REG_set(NS_PID, ul_int, ns.ns[3])
|
|
REG_set(NS_USER, ul_int, ns.ns[4])
|
|
REG_set(NS_UTS, ul_int, ns.ns[5])
|
|
REG_set(OOM_ADJ, s_int, oom_adj)
|
|
REG_set(OOM_SCORE, s_int, oom_score)
|
|
REG_set(PRIORITY, s_int, priority)
|
|
REG_set(PROCESSOR, u_int, processor)
|
|
REG_set(RSS, sl_int, rss)
|
|
REG_set(RSS_RLIM, ul_int, rss_rlim)
|
|
REG_set(RTPRIO, ul_int, rtprio)
|
|
REG_set(SCHED_CLASS, ul_int, sched)
|
|
STR_set(SD_MACH, sd_mach)
|
|
STR_set(SD_OUID, sd_ouid)
|
|
STR_set(SD_SEAT, sd_seat)
|
|
STR_set(SD_SESS, sd_sess)
|
|
STR_set(SD_SLICE, sd_slice)
|
|
STR_set(SD_UNIT, sd_unit)
|
|
STR_set(SD_UUNIT, sd_uunit)
|
|
DUP_set(SIGBLOCKED, blocked)
|
|
DUP_set(SIGCATCH, sigcatch)
|
|
DUP_set(SIGIGNORE, sigignore)
|
|
DUP_set(SIGNALS, signal)
|
|
DUP_set(SIGPENDING, _sigpnd)
|
|
REG_set(STATE, s_ch, state)
|
|
STR_set(SUPGIDS, supgid)
|
|
STR_set(SUPGROUPS, supgrp)
|
|
setDECL(TICS_ALL) { (void)I; R->result.ull_int = P->utime + P->stime; }
|
|
setDECL(TICS_ALL_C) { (void)I; R->result.ull_int = P->utime + P->stime + P->cutime + P->cstime; }
|
|
REG_set(TICS_DELTA, u_int, pcpu)
|
|
REG_set(TICS_SYSTEM, ull_int, stime)
|
|
REG_set(TICS_SYSTEM_C, ull_int, cstime)
|
|
REG_set(TICS_USER, ull_int, utime)
|
|
REG_set(TICS_USER_C, ull_int, cutime)
|
|
setDECL(TIME_ALL) { R->result.ull_int = (P->utime + P->stime) / I->hertz; }
|
|
setDECL(TIME_ELAPSED) { R->result.ull_int = (I->boot_seconds >= (P->start_time / I->hertz)) ? I->boot_seconds - (P->start_time / I->hertz) : 0; }
|
|
|
|
REG_set(TIME_START, ull_int, start_time)
|
|
REG_set(TTY, s_int, tty)
|
|
setDECL(TTY_NAME) { char buf[64]; (void)I; dev_to_tty(buf, sizeof(buf), P->tty, P->tid, ABBREV_DEV); R->result.str = strdup(buf); }
|
|
setDECL(TTY_NUMBER) { char buf[64]; (void)I; dev_to_tty(buf, sizeof(buf), P->tty, P->tid, ABBREV_DEV|ABBREV_TTY|ABBREV_PTS); R->result.str = strdup(buf); }
|
|
REG_set(VM_DATA, ul_int, vm_data)
|
|
REG_set(VM_EXE, ul_int, vm_exe)
|
|
REG_set(VM_LIB, ul_int, vm_lib)
|
|
REG_set(VM_LOCK, ul_int, vm_lock)
|
|
REG_set(VM_RSS, ul_int, vm_rss)
|
|
REG_set(VM_SIZE, ul_int, vm_size)
|
|
REG_set(VM_STACK, ul_int, vm_stack)
|
|
REG_set(VM_SWAP, ul_int, vm_swap)
|
|
setDECL(VM_USED) { (void)I; R->result.ul_int = P->vm_swap + P->vm_rss; }
|
|
REG_set(VSIZE_PGS, ul_int, vsize)
|
|
REG_set(WCHAN_ADDR, ul_int, wchan)
|
|
setDECL(WCHAN_NAME) { (void)I; R->result.str = strdup(lookup_wchan(P->tid)); }
|
|
setDECL(extra) { (void)I; (void)R; (void)P; return; }
|
|
setDECL(noop) { (void)I; (void)R; (void)P; return; }
|
|
setDECL(logical_end) { (void)I; (void)R; (void)P; return; }
|
|
setDECL(physical_end) { (void)I; (void)R; (void)P; return; }
|
|
|
|
#undef setDECL
|
|
#undef CVT_set
|
|
#undef DUP_set
|
|
#undef REG_set
|
|
#undef STR_set
|
|
#undef STV_set
|
|
#undef VEC_set
|
|
|
|
|
|
// ___ Free Storage Support |||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
#define freNAME(e) free_results_ ## e
|
|
|
|
static void freNAME(str) (struct pids_result *R) {
|
|
if (R->result.str) free(R->result.str);
|
|
}
|
|
|
|
static void freNAME(strv) (struct pids_result *R) {
|
|
if (R->result.str && *R->result.strv) free(*R->result.strv);
|
|
}
|
|
|
|
|
|
// ___ Sorting Support ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
struct sort_parms {
|
|
int offset;
|
|
enum pids_sort_order order;
|
|
};
|
|
|
|
#define srtNAME(e) sort_results_ ## e
|
|
|
|
#define NUM_srt(T) static int srtNAME(T) ( \
|
|
const struct pids_stack **A, const struct pids_stack **B, struct sort_parms *P) { \
|
|
const struct pids_result *a = (*A)->head + P->offset; \
|
|
const struct pids_result *b = (*B)->head + P->offset; \
|
|
return P->order * (a->result. T - b->result. T); }
|
|
|
|
#define REG_srt(T) static int srtNAME(T) ( \
|
|
const struct pids_stack **A, const struct pids_stack **B, struct sort_parms *P) { \
|
|
const struct pids_result *a = (*A)->head + P->offset; \
|
|
const struct pids_result *b = (*B)->head + P->offset; \
|
|
if ( a->result. T > b->result. T ) return P->order > 0 ? 1 : -1; \
|
|
if ( a->result. T < b->result. T ) return P->order > 0 ? -1 : 1; \
|
|
return 0; }
|
|
|
|
NUM_srt(s_ch)
|
|
NUM_srt(s_int)
|
|
NUM_srt(sl_int)
|
|
|
|
REG_srt(u_int)
|
|
REG_srt(ul_int)
|
|
REG_srt(ull_int)
|
|
|
|
static int srtNAME(str) (
|
|
const struct pids_stack **A, const struct pids_stack **B, struct sort_parms *P) {
|
|
const struct pids_result *a = (*A)->head + P->offset;
|
|
const struct pids_result *b = (*B)->head + P->offset;
|
|
return P->order * strcoll(a->result.str, b->result.str);
|
|
}
|
|
|
|
static int srtNAME(strv) (
|
|
const struct pids_stack **A, const struct pids_stack **B, struct sort_parms *P) {
|
|
const struct pids_result *a = (*A)->head + P->offset;
|
|
const struct pids_result *b = (*B)->head + P->offset;
|
|
if (!a->result.strv || !b->result.strv) return 0;
|
|
return P->order * strcoll((*a->result.strv), (*b->result.strv));
|
|
}
|
|
|
|
static int srtNAME(strvers) (
|
|
const struct pids_stack **A, const struct pids_stack **B, struct sort_parms *P) {
|
|
const struct pids_result *a = (*A)->head + P->offset;
|
|
const struct pids_result *b = (*B)->head + P->offset;
|
|
return P->order * strverscmp(a->result.str, b->result.str);
|
|
}
|
|
|
|
static int srtNAME(noop) (
|
|
const struct pids_stack **A, const struct pids_stack **B, enum pids_item *O) {
|
|
(void)A; (void)B; (void)O;
|
|
return 0;
|
|
}
|
|
|
|
#undef NUM_srt
|
|
#undef REG_srt
|
|
|
|
|
|
// ___ Controlling Table ||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
// from either 'stat' or 'status' (preferred)
|
|
#define f_either PROC_SPARE_1
|
|
#define f_grp PROC_FILLGRP
|
|
#define f_lxc PROC_FILL_LXC
|
|
#define f_ns PROC_FILLNS
|
|
#define f_oom PROC_FILLOOM
|
|
#define f_stat PROC_FILLSTAT
|
|
#define f_statm PROC_FILLMEM
|
|
#define f_status PROC_FILLSTATUS
|
|
#define f_systemd PROC_FILLSYSTEMD
|
|
#define f_usr PROC_FILLUSR
|
|
// these next three will yield true verctorized strings
|
|
#define v_arg PROC_FILLARG
|
|
#define v_cgroup PROC_FILLCGROUP
|
|
#define v_env PROC_FILLENV
|
|
// remaining are compound flags, yielding a single string (maybe vectorized)
|
|
#define x_cgroup PROC_EDITCGRPCVT | PROC_FILLCGROUP // just 1 str
|
|
#define x_cmdline PROC_EDITCMDLCVT | PROC_FILLARG // just 1 str
|
|
#define x_environ PROC_EDITENVRCVT | PROC_FILLENV // just 1 str
|
|
#define x_ogroup PROC_FILLSTATUS | PROC_FILLGRP
|
|
#define x_ouser PROC_FILLSTATUS | PROC_FILLUSR
|
|
#define x_supgrp PROC_FILLSTATUS | PROC_FILLSUPGRP
|
|
|
|
typedef void (*SET_t)(struct procps_pidsinfo *, struct pids_result *, proc_t *);
|
|
typedef void (*FRE_t)(struct pids_result *);
|
|
typedef int (*QSR_t)(const void *, const void *, void *);
|
|
|
|
#define RS(e) (SET_t)setNAME(e)
|
|
#define FF(e) (FRE_t)freNAME(e)
|
|
#define QS(t) (QSR_t)srtNAME(t)
|
|
|
|
|
|
/*
|
|
* Need it be said?
|
|
* This table must be kept in the exact same order as
|
|
* those 'enum pids_item' guys ! */
|
|
static struct {
|
|
SET_t setsfunc; // the actual result setting routine
|
|
unsigned oldflags; // PROC_FILLxxxx flags for this item
|
|
FRE_t freefunc; // free function for strings storage
|
|
QSR_t sortfunc; // sort cmp func for a specific type
|
|
int needhist; // a result requires history support
|
|
} Item_table[] = {
|
|
/* setsfunc oldflags freefunc sortfunc needhist
|
|
--------------------- ---------- --------- ------------ -------- */
|
|
{ RS(ADDR_END_CODE), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(ADDR_KSTK_EIP), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(ADDR_KSTK_ESP), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(ADDR_START_CODE), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(ADDR_START_STACK), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(ALARM), f_stat, NULL, QS(sl_int), 0 },
|
|
{ RS(CGROUP), x_cgroup, FF(str), QS(str), 0 },
|
|
{ RS(CGROUP_V), v_cgroup, FF(strv), QS(strv), 0 },
|
|
{ RS(CMD), f_either, FF(str), QS(str), 0 },
|
|
{ RS(CMDLINE), x_cmdline, FF(str), QS(str), 0 },
|
|
{ RS(CMDLINE_V), v_arg, FF(strv), QS(strv), 0 },
|
|
{ RS(ENVIRON), x_environ, FF(str), QS(str), 0 },
|
|
{ RS(ENVIRON_V), v_env, FF(strv), QS(strv), 0 },
|
|
{ RS(EXIT_SIGNAL), f_stat, NULL, QS(s_int), 0 },
|
|
{ RS(FLAGS), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(FLT_MAJ), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(FLT_MAJ_C), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(FLT_MAJ_DELTA), f_stat, NULL, QS(ul_int), +1 },
|
|
{ RS(FLT_MIN), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(FLT_MIN_C), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(FLT_MIN_DELTA), f_stat, NULL, QS(ul_int), +1 },
|
|
{ RS(ID_EGID), 0, NULL, QS(u_int), 0 }, // free w/ simple_read...
|
|
{ RS(ID_EGROUP), f_grp, NULL, QS(str), 0 },
|
|
{ RS(ID_EUID), 0, NULL, QS(u_int), 0 }, // free w/ simple_read...
|
|
{ RS(ID_EUSER), f_usr, NULL, QS(str), 0 },
|
|
{ RS(ID_FGID), f_status, NULL, QS(u_int), 0 },
|
|
{ RS(ID_FGROUP), x_ogroup, NULL, QS(str), 0 },
|
|
{ RS(ID_FUID), f_status, NULL, QS(u_int), 0 },
|
|
{ RS(ID_FUSER), x_ouser, NULL, QS(str), 0 },
|
|
{ RS(ID_PGRP), f_stat, NULL, QS(s_int), 0 },
|
|
{ RS(ID_PID), 0, NULL, QS(s_int), 0 }, // free w/ simple_nextpid
|
|
{ RS(ID_PPID), f_either, NULL, QS(s_int), 0 },
|
|
{ RS(ID_RGID), f_status, NULL, QS(u_int), 0 },
|
|
{ RS(ID_RGROUP), x_ogroup, NULL, QS(str), 0 },
|
|
{ RS(ID_RUID), f_status, NULL, QS(u_int), 0 },
|
|
{ RS(ID_RUSER), x_ouser, NULL, QS(str), 0 },
|
|
{ RS(ID_SESSION), f_stat, NULL, QS(s_int), 0 },
|
|
{ RS(ID_SGID), f_status, NULL, QS(u_int), 0 },
|
|
{ RS(ID_SGROUP), x_ogroup, NULL, QS(str), 0 },
|
|
{ RS(ID_SUID), f_status, NULL, QS(u_int), 0 },
|
|
{ RS(ID_SUSER), x_ouser, NULL, QS(str), 0 },
|
|
{ RS(ID_TGID), 0, NULL, QS(s_int), 0 }, // free w/ simple_nextpid
|
|
{ RS(ID_TPGID), f_stat, NULL, QS(s_int), 0 },
|
|
{ RS(LXCNAME), f_lxc, NULL, QS(str), 0 },
|
|
{ RS(MEM_CODE), f_statm, NULL, QS(sl_int), 0 },
|
|
{ RS(MEM_CODE_KIB), f_statm, NULL, QS(ul_int), 0 },
|
|
{ RS(MEM_DATA), f_statm, NULL, QS(sl_int), 0 },
|
|
{ RS(MEM_DATA_KIB), f_statm, NULL, QS(ul_int), 0 },
|
|
{ RS(MEM_DT), f_statm, NULL, QS(sl_int), 0 },
|
|
{ RS(MEM_LRS), f_statm, NULL, QS(sl_int), 0 },
|
|
{ RS(MEM_RES), f_statm, NULL, QS(sl_int), 0 },
|
|
{ RS(MEM_RES_KIB), f_statm, NULL, QS(ul_int), 0 },
|
|
{ RS(MEM_SHR), f_statm, NULL, QS(sl_int), 0 },
|
|
{ RS(MEM_SHR_KIB), f_statm, NULL, QS(ul_int), 0 },
|
|
{ RS(MEM_VIRT), f_statm, NULL, QS(sl_int), 0 },
|
|
{ RS(MEM_VIRT_KIB), f_statm, NULL, QS(ul_int), 0 },
|
|
{ RS(NICE), f_stat, NULL, QS(sl_int), 0 },
|
|
{ RS(NLWP), f_either, NULL, QS(s_int), 0 },
|
|
{ RS(NS_IPC), f_ns, NULL, QS(ul_int), 0 },
|
|
{ RS(NS_MNT), f_ns, NULL, QS(ul_int), 0 },
|
|
{ RS(NS_NET), f_ns, NULL, QS(ul_int), 0 },
|
|
{ RS(NS_PID), f_ns, NULL, QS(ul_int), 0 },
|
|
{ RS(NS_USER), f_ns, NULL, QS(ul_int), 0 },
|
|
{ RS(NS_UTS), f_ns, NULL, QS(ul_int), 0 },
|
|
{ RS(OOM_ADJ), f_oom, NULL, QS(s_int), 0 },
|
|
{ RS(OOM_SCORE), f_oom, NULL, QS(s_int), 0 },
|
|
{ RS(PRIORITY), f_stat, NULL, QS(s_int), 0 },
|
|
{ RS(PROCESSOR), f_stat, NULL, QS(u_int), 0 },
|
|
{ RS(RSS), f_stat, NULL, QS(sl_int), 0 },
|
|
{ RS(RSS_RLIM), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(RTPRIO), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(SCHED_CLASS), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(SD_MACH), f_systemd, FF(str), QS(str), 0 },
|
|
{ RS(SD_OUID), f_systemd, FF(str), QS(str), 0 },
|
|
{ RS(SD_SEAT), f_systemd, FF(str), QS(str), 0 },
|
|
{ RS(SD_SESS), f_systemd, FF(str), QS(str), 0 },
|
|
{ RS(SD_SLICE), f_systemd, FF(str), QS(str), 0 },
|
|
{ RS(SD_UNIT), f_systemd, FF(str), QS(str), 0 },
|
|
{ RS(SD_UUNIT), f_systemd, FF(str), QS(str), 0 },
|
|
{ RS(SIGBLOCKED), f_status, FF(str), QS(str), 0 },
|
|
{ RS(SIGCATCH), f_status, FF(str), QS(str), 0 },
|
|
{ RS(SIGIGNORE), f_status, FF(str), QS(str), 0 },
|
|
{ RS(SIGNALS), f_status, FF(str), QS(str), 0 },
|
|
{ RS(SIGPENDING), f_status, FF(str), QS(str), 0 },
|
|
{ RS(STATE), f_either, NULL, QS(s_ch), 0 },
|
|
{ RS(SUPGIDS), f_status, FF(str), QS(str), 0 },
|
|
{ RS(SUPGROUPS), x_supgrp, FF(str), QS(str), 0 },
|
|
{ RS(TICS_ALL), f_stat, NULL, QS(ull_int), 0 },
|
|
{ RS(TICS_ALL_C), f_stat, NULL, QS(ull_int), 0 },
|
|
{ RS(TICS_DELTA), f_stat, NULL, QS(u_int), +1 },
|
|
{ RS(TICS_SYSTEM), f_stat, NULL, QS(ull_int), 0 },
|
|
{ RS(TICS_SYSTEM_C), f_stat, NULL, QS(ull_int), 0 },
|
|
{ RS(TICS_USER), f_stat, NULL, QS(ull_int), 0 },
|
|
{ RS(TICS_USER_C), f_stat, NULL, QS(ull_int), 0 },
|
|
{ RS(TIME_ALL), f_stat, NULL, QS(ull_int), 0 },
|
|
{ RS(TIME_ELAPSED), f_stat, NULL, QS(ull_int), 0 },
|
|
{ RS(TIME_START), f_stat, NULL, QS(ull_int), 0 },
|
|
{ RS(TTY), f_stat, NULL, QS(s_int), 0 },
|
|
{ RS(TTY_NAME), f_stat, FF(str), QS(strvers), 0 },
|
|
{ RS(TTY_NUMBER), f_stat, FF(str), QS(strvers), 0 },
|
|
{ RS(VM_DATA), f_status, NULL, QS(ul_int), 0 },
|
|
{ RS(VM_EXE), f_status, NULL, QS(ul_int), 0 },
|
|
{ RS(VM_LIB), f_status, NULL, QS(ul_int), 0 },
|
|
{ RS(VM_LOCK), f_status, NULL, QS(ul_int), 0 },
|
|
{ RS(VM_RSS), f_status, NULL, QS(ul_int), 0 },
|
|
{ RS(VM_SIZE), f_status, NULL, QS(ul_int), 0 },
|
|
{ RS(VM_STACK), f_status, NULL, QS(ul_int), 0 },
|
|
{ RS(VM_SWAP), f_status, NULL, QS(ul_int), 0 },
|
|
{ RS(VM_USED), f_status, NULL, QS(ul_int), 0 },
|
|
{ RS(VSIZE_PGS), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(WCHAN_ADDR), f_stat, NULL, QS(ul_int), 0 },
|
|
{ RS(WCHAN_NAME), 0, FF(str), QS(str), 0 }, // tid already free
|
|
{ RS(extra), 0, NULL, QS(ull_int), 0 },
|
|
{ RS(noop), 0, NULL, QS(noop), 0 },
|
|
{ RS(logical_end), 0, NULL, QS(noop), 0 },
|
|
{ RS(physical_end), 0, NULL, QS(noop), 0 }
|
|
};
|
|
|
|
#undef RS
|
|
#undef FF
|
|
#undef QS
|
|
#undef setNAME
|
|
#undef freNAME
|
|
#undef srtNAME
|
|
|
|
//#undef f_either // needed later
|
|
#undef f_grp
|
|
#undef f_lxc
|
|
#undef f_ns
|
|
#undef f_oom
|
|
//#undef f_stat // needed later
|
|
#undef f_statm
|
|
//#undef f_status // needed later
|
|
#undef f_systemd
|
|
#undef f_usr
|
|
#undef v_arg
|
|
#undef v_cgroup
|
|
#undef v_env
|
|
#undef x_cgroup
|
|
#undef x_cmdline
|
|
#undef x_environ
|
|
#undef x_ogroup
|
|
#undef x_ouser
|
|
#undef x_supgrp
|
|
|
|
|
|
// ___ History Support Private Functions ||||||||||||||||||||||||||||||||||||||
|
|
// ( stolen from top when he wasn't looking ) -------------------------------
|
|
|
|
#define HHASH_SIZE 1024
|
|
#define _HASH_PID_(K) (K & (HHASH_SIZE - 1))
|
|
|
|
#define Hr(x) info->hist->x // 'hist ref', minimize stolen impact
|
|
|
|
typedef unsigned long long TIC_t;
|
|
|
|
typedef struct HST_t {
|
|
TIC_t tics; // last frame's tics count
|
|
unsigned long maj, min; // last frame's maj/min_flt counts
|
|
int pid; // record 'key'
|
|
int lnk; // next on hash chain
|
|
} HST_t;
|
|
|
|
|
|
struct history_info {
|
|
int num_tasks; // used as index (tasks tallied)
|
|
int HHist_siz; // max number of HST_t structs
|
|
HST_t *PHist_sav; // alternating 'old/new' HST_t anchors
|
|
HST_t *PHist_new;
|
|
int HHash_one [HHASH_SIZE]; // the actual hash tables
|
|
int HHash_two [HHASH_SIZE]; // (accessed via PHash_sav/PHash_new)
|
|
int HHash_nul [HHASH_SIZE]; // an 'empty' hash table image
|
|
int *PHash_sav; // alternating 'old/new' hash tables
|
|
int *PHash_new; // (aka. the 'one/two' actual tables)
|
|
};
|
|
|
|
|
|
static void config_history (
|
|
struct procps_pidsinfo *info)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < HHASH_SIZE; i++) // make the 'empty' table image
|
|
Hr(HHash_nul[i]) = -1;
|
|
memcpy(Hr(HHash_one), Hr(HHash_nul), sizeof(Hr(HHash_nul)));
|
|
memcpy(Hr(HHash_two), Hr(HHash_nul), sizeof(Hr(HHash_nul)));
|
|
Hr(PHash_sav) = Hr(HHash_one); // alternating 'old/new' hash tables
|
|
Hr(PHash_new) = Hr(HHash_two);
|
|
} // end: config_history
|
|
|
|
|
|
static inline HST_t *histget (
|
|
struct procps_pidsinfo *info,
|
|
int pid)
|
|
{
|
|
int V = Hr(PHash_sav[_HASH_PID_(pid)]);
|
|
|
|
while (-1 < V) {
|
|
if (Hr(PHist_sav[V].pid) == pid)
|
|
return &Hr(PHist_sav[V]);
|
|
V = Hr(PHist_sav[V].lnk); }
|
|
return NULL;
|
|
} // end: histget
|
|
|
|
|
|
static inline void histput (
|
|
struct procps_pidsinfo *info,
|
|
unsigned this)
|
|
{
|
|
int V = _HASH_PID_(Hr(PHist_new[this].pid));
|
|
|
|
Hr(PHist_new[this].lnk) = Hr(PHash_new[V]);
|
|
Hr(PHash_new[V] = this);
|
|
} // end: histput
|
|
|
|
#undef _HASH_PID_
|
|
|
|
|
|
static int make_hist (
|
|
struct procps_pidsinfo *info,
|
|
proc_t *p)
|
|
{
|
|
#define nSLOT info->hist->num_tasks
|
|
TIC_t tics;
|
|
HST_t *h;
|
|
|
|
if (nSLOT + 1 >= Hr(HHist_siz)) {
|
|
Hr(HHist_siz) += MEMORY_INCR;
|
|
Hr(PHist_sav) = realloc(Hr(PHist_sav), sizeof(HST_t) * Hr(HHist_siz));
|
|
Hr(PHist_new) = realloc(Hr(PHist_new), sizeof(HST_t) * Hr(HHist_siz));
|
|
if (!Hr(PHist_sav) || !Hr(PHist_new))
|
|
return -ENOMEM;
|
|
}
|
|
Hr(PHist_new[nSLOT].pid) = p->tid;
|
|
Hr(PHist_new[nSLOT].tics) = tics = (p->utime + p->stime);
|
|
Hr(PHist_new[nSLOT].maj) = p->maj_flt;
|
|
Hr(PHist_new[nSLOT].min) = p->min_flt;
|
|
|
|
histput(info, nSLOT);
|
|
|
|
if ((h = histget(info, p->tid))) {
|
|
tics -= h->tics;
|
|
p->pcpu = tics;
|
|
p->maj_delta = p->maj_flt - h->maj;
|
|
p->min_delta = p->min_flt - h->min;
|
|
}
|
|
|
|
nSLOT++;
|
|
return 0;
|
|
#undef nSLOT
|
|
} // end: make_hist
|
|
|
|
|
|
static inline void toggle_history (
|
|
struct procps_pidsinfo *info)
|
|
{
|
|
void *v;
|
|
|
|
v = Hr(PHist_sav);
|
|
Hr(PHist_sav) = Hr(PHist_new);
|
|
Hr(PHist_new) = v;
|
|
|
|
v = Hr(PHash_sav);
|
|
Hr(PHash_sav) = Hr(PHash_new);
|
|
Hr(PHash_new) = v;
|
|
memcpy(Hr(PHash_new), Hr(HHash_nul), sizeof(Hr(HHash_nul)));
|
|
|
|
info->hist->num_tasks = 0;
|
|
} // end: toggle_history
|
|
|
|
|
|
#ifdef UNREF_RPTHASH
|
|
static void unref_rpthash (
|
|
struct procps_pidsinfo *info)
|
|
{
|
|
int i, j, pop, total_occupied, maxdepth, maxdepth_sav, numdepth
|
|
, cross_foot, sz = HHASH_SIZE * (int)sizeof(int)
|
|
, hsz = (int)sizeof(HST_t) * Hr(HHist_siz);
|
|
int depths[HHASH_SIZE];
|
|
|
|
for (i = 0, total_occupied = 0, maxdepth = 0; i < HHASH_SIZE; i++) {
|
|
int V = Hr(PHash_new[i]);
|
|
j = 0;
|
|
if (-1 < V) {
|
|
++total_occupied;
|
|
while (-1 < V) {
|
|
V = Hr(PHist_new[V].lnk);
|
|
if (-1 < V) j++;
|
|
}
|
|
}
|
|
depths[i] = j;
|
|
if (maxdepth < j) maxdepth = j;
|
|
}
|
|
maxdepth_sav = maxdepth;
|
|
|
|
fprintf(stderr,
|
|
"\n History Memory Costs:"
|
|
"\n\tHST_t size = %d, total allocated = %d,"
|
|
"\n\tthus PHist_new & PHist_sav consumed %dk (%d) total bytes."
|
|
"\n"
|
|
"\n\tTwo hash tables provide for %d entries each + 1 extra 'empty' image,"
|
|
"\n\tthus %dk (%d) bytes per table for %dk (%d) total bytes."
|
|
"\n"
|
|
"\n\tGrand total = %dk (%d) bytes."
|
|
"\n"
|
|
"\n Hash Results Report:"
|
|
"\n\tTotal hashed = %d"
|
|
"\n\tLevel-0 hash entries = %d (%d%% occupied)"
|
|
"\n\tMax Depth = %d"
|
|
"\n\n"
|
|
, (int)sizeof(HST_t), Hr(HHist_siz)
|
|
, hsz / 1024, hsz
|
|
, HHASH_SIZE
|
|
, sz / 1024, sz, (sz * 3) / 1024, sz * 3
|
|
, (hsz + (sz * 3)) / 1024, hsz + (sz * 3)
|
|
, info->hist->num_tasks
|
|
, total_occupied, (total_occupied * 100) / HHASH_SIZE
|
|
, maxdepth);
|
|
|
|
if (total_occupied) {
|
|
for (pop = total_occupied, cross_foot = 0; maxdepth; maxdepth--) {
|
|
for (i = 0, numdepth = 0; i < HHASH_SIZE; i++)
|
|
if (depths[i] == maxdepth) ++numdepth;
|
|
fprintf(stderr,
|
|
"\t %5d (%3d%%) hash table entries at depth %d\n"
|
|
, numdepth, (numdepth * 100) / total_occupied, maxdepth);
|
|
pop -= numdepth;
|
|
cross_foot += numdepth;
|
|
if (0 == pop && cross_foot == total_occupied) break;
|
|
}
|
|
if (pop) {
|
|
fprintf(stderr, "\t %5d (%3d%%) unchained entries (at depth 0)\n"
|
|
, pop, (pop * 100) / total_occupied);
|
|
cross_foot += pop;
|
|
}
|
|
fprintf(stderr,
|
|
"\t -----\n"
|
|
"\t %5d total entries occupied\n", cross_foot);
|
|
|
|
if (maxdepth_sav > 1) {
|
|
fprintf(stderr, "\n PIDs at max depth: ");
|
|
for (i = 0; i < HHASH_SIZE; i++)
|
|
if (depths[i] == maxdepth_sav) {
|
|
j = Hr(PHash_new[i]);
|
|
fprintf(stderr, "\n\tpos %4d: %05d", i, Hr(PHist_new[j].pid));
|
|
while (-1 < j) {
|
|
j = Hr(PHist_new[j].lnk);
|
|
if (-1 < j) fprintf(stderr, ", %05d", Hr(PHist_new[j].pid));
|
|
}
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
} // end: unref_rpthash
|
|
#endif // UNREF_RPTHASH
|
|
|
|
#undef Hr
|
|
#undef HHASH_SIZE
|
|
|
|
|
|
// ___ Standard Private Functions |||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
static inline void assign_results (
|
|
struct procps_pidsinfo *info,
|
|
struct pids_stack *stack,
|
|
proc_t *p)
|
|
{
|
|
struct pids_result *this = stack->head;
|
|
|
|
for (;;) {
|
|
enum pids_item item = this->item;
|
|
if (item >= PROCPS_PIDS_logical_end)
|
|
break;
|
|
Item_table[item].setsfunc(info, this, p);
|
|
info->dirty_stacks |= Item_table[item].freefunc ? 1 : 0;
|
|
++this;
|
|
}
|
|
return;
|
|
} // end: assign_results
|
|
|
|
|
|
static inline void cleanup_stack (
|
|
struct pids_result *p,
|
|
int depth)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < depth; i++) {
|
|
if (p->item < PROCPS_PIDS_noop) {
|
|
if (Item_table[p->item].freefunc)
|
|
Item_table[p->item].freefunc(p);
|
|
p->result.ull_int = 0;
|
|
}
|
|
++p;
|
|
}
|
|
} // end: cleanup_stack
|
|
|
|
|
|
static inline void cleanup_stacks_all (
|
|
struct procps_pidsinfo *info)
|
|
{
|
|
struct stacks_extent *ext = info->extents;
|
|
int i;
|
|
|
|
while (ext) {
|
|
for (i = 0; ext->stacks[i]; i++)
|
|
cleanup_stack(ext->stacks[i]->head, info->maxitems);
|
|
ext = ext->next;
|
|
};
|
|
info->dirty_stacks = 0;
|
|
} // end: cleanup_stacks_all
|
|
|
|
|
|
/*
|
|
* This routine exists in case we ever want to offer something like
|
|
* 'static' or 'invarient' results stacks. By unsplicing an extent
|
|
* from the info anchor it will be isolated from future reset/free. */
|
|
static struct stacks_extent *extent_cut (
|
|
struct procps_pidsinfo *info,
|
|
struct stacks_extent *ext)
|
|
{
|
|
struct stacks_extent *p = info->extents;
|
|
|
|
if (ext) {
|
|
if (ext == p) {
|
|
info->extents = p->next;
|
|
return ext;
|
|
}
|
|
do {
|
|
if (ext == p->next) {
|
|
p->next = p->next->next;
|
|
return ext;
|
|
}
|
|
p = p->next;
|
|
} while (p);
|
|
}
|
|
return NULL;
|
|
} // end: extent_cut
|
|
|
|
|
|
static int extent_free (
|
|
struct procps_pidsinfo *info,
|
|
struct stacks_extent *ext)
|
|
{
|
|
if (extent_cut(info, ext)) {
|
|
free(ext);
|
|
return 0;
|
|
}
|
|
return -1;
|
|
} // end: extent_free
|
|
|
|
|
|
static inline int items_check_failed (
|
|
int maxitems,
|
|
enum pids_item *items)
|
|
{
|
|
int i;
|
|
|
|
/* if an enum is passed instead of an address of one or more enums, ol' gcc
|
|
* will silently convert it to an address (possibly NULL). only clang will
|
|
* offer any sort of warning like the following:
|
|
*
|
|
* warning: incompatible integer to pointer conversion passing 'int' to parameter of type 'enum pids_item *'
|
|
* if (procps_pids_new(&info, 3, PROCPS_PIDS_noop) < 0)
|
|
* ^~~~~~~~~~~~~~~~
|
|
*/
|
|
if (maxitems < 1
|
|
|| (void *)items < (void *)0x8000) // twice as big as our largest enum
|
|
return -1;
|
|
for (i = 0; i < maxitems; i++) {
|
|
// a pids_item is currently unsigned, but we'll protect our future
|
|
if (items[i] < 0)
|
|
return -1;
|
|
if (items[i] > PROCPS_PIDS_noop) {
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
} // end: items_check_failed
|
|
|
|
|
|
static inline void libflags_set (
|
|
struct procps_pidsinfo *info)
|
|
{
|
|
int i;
|
|
|
|
info->flags = info->history_yes = 0;
|
|
for (i = 0; i < info->curitems; i++) {
|
|
info->flags |= Item_table[info->items[i]].oldflags;
|
|
info->history_yes |= Item_table[info->items[i]].needhist;
|
|
}
|
|
if (info->flags & f_either) {
|
|
if (!(info->flags & f_stat))
|
|
info->flags |= f_status;
|
|
}
|
|
return;
|
|
} // end: libflags_set
|
|
|
|
|
|
static inline void oldproc_close (
|
|
struct procps_pidsinfo *info)
|
|
{
|
|
if (info->PT != NULL) {
|
|
closeproc(info->PT);
|
|
info->PT = NULL;
|
|
}
|
|
return;
|
|
} // end: oldproc_close
|
|
|
|
|
|
static inline int oldproc_open (
|
|
struct procps_pidsinfo *info,
|
|
unsigned supp_flgs,
|
|
...)
|
|
{
|
|
|
|
va_list vl;
|
|
int *ids;
|
|
int num = 0;
|
|
|
|
if (info->PT == NULL) {
|
|
va_start(vl, supp_flgs);
|
|
ids = va_arg(vl, int*);
|
|
if (info->flags | PROC_UID) num = va_arg(vl, int);
|
|
va_end(vl);
|
|
if (NULL == (info->PT = openproc(info->flags | supp_flgs, ids, num)))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
} // end: oldproc_open
|
|
|
|
|
|
static inline struct pids_result *stack_itemize (
|
|
struct pids_result *p,
|
|
int depth,
|
|
enum pids_item *items)
|
|
{
|
|
struct pids_result *p_sav = p;
|
|
int i;
|
|
|
|
for (i = 0; i < depth; i++) {
|
|
p->item = items[i];
|
|
p->result.ull_int = 0;
|
|
++p;
|
|
}
|
|
return p_sav;
|
|
} // end: stack_itemize
|
|
|
|
|
|
static inline int tally_proc (
|
|
struct procps_pidsinfo *info,
|
|
struct pids_counts *counts,
|
|
proc_t *p)
|
|
{
|
|
switch (p->state) {
|
|
case 'R':
|
|
++counts->running;
|
|
break;
|
|
case 'S':
|
|
case 'D':
|
|
++counts->sleeping;
|
|
break;
|
|
case 'T':
|
|
++counts->stopped;
|
|
break;
|
|
case 'Z':
|
|
++counts->zombied;
|
|
break;
|
|
default: // keep gcc happy
|
|
break;
|
|
}
|
|
++counts->total;
|
|
|
|
if (info->history_yes)
|
|
return !make_hist(info, p);
|
|
return 1;
|
|
} // end: tally_proc
|
|
|
|
|
|
#ifdef FPRINT_STACKS
|
|
static void validate_stacks (
|
|
void *stacks,
|
|
const char *who)
|
|
{
|
|
#include <stdio.h>
|
|
static int once = 0;
|
|
struct stacks_extent *ext = stacks;
|
|
int i, t, x, n = 0;
|
|
|
|
fprintf(stderr, " %s: called by '%s'\n", __func__, who);
|
|
fprintf(stderr, " %s: ext_numitems = %d, ext_numstacks = %d, extents = %p, next = %p\n", __func__, ext->ext_numitems, ext->ext_numstacks, ext, ext->next);
|
|
fprintf(stderr, " %s: stacks_extent results excluding the end-of-stack element ...\n", __func__);
|
|
for (x = 0; NULL != ext->stacks[x]; x++) {
|
|
struct pids_stack *h = ext->stacks[x];
|
|
struct pids_result *r = h->head;
|
|
fprintf(stderr, " %s: v[%03d] = %p, h = %p", __func__, x, h, r);
|
|
for (i = 0; r->item < PROCPS_PIDS_logical_end; i++, r++)
|
|
;
|
|
t = i + 1;
|
|
fprintf(stderr, " - found %d elements for stack %d\n", i, n);
|
|
++n;
|
|
}
|
|
if (!once) {
|
|
fprintf(stderr, " %s: found %d total stack(s), each %d bytes (including eos)\n", __func__, x, (int)(sizeof(struct pids_stack) + (sizeof(struct pids_result) * t)));
|
|
fprintf(stderr, " %s: sizeof(struct pids_stack) = %d\n", __func__, (int)sizeof(struct pids_stack));
|
|
fprintf(stderr, " %s: sizeof(struct pids_result) = %d\n", __func__, (int)sizeof(struct pids_result));
|
|
fprintf(stderr, " %s: sizeof(struct stacks_extent) = %d\n", __func__, (int)sizeof(struct stacks_extent));
|
|
once = 1;
|
|
}
|
|
fputc('\n', stderr);
|
|
return;
|
|
} // end: validate_stacks
|
|
#endif
|
|
|
|
|
|
// ___ Special Temporary Section |||||||||||||||||||||||||||||||||||||||||||||
|
|
// [ contains former public functions and other dependent routine(s) while we ]
|
|
// [ resist using forward declarations yet still maintain an alphabetic order ]
|
|
|
|
/*
|
|
* alloc_stacks():
|
|
*
|
|
* Allocate and initialize one or more stacks each of which is anchored in an
|
|
* associated pids_stack structure (which may include extra user space).
|
|
*
|
|
* All such stacks will will have their result structures properly primed with
|
|
* 'items', while the result itself will be zeroed.
|
|
*
|
|
* Returns an array of pointers representing the 'heads' of each new stack.
|
|
*/
|
|
static struct stacks_extent *alloc_stacks (
|
|
struct procps_pidsinfo *info,
|
|
int maxstacks)
|
|
{
|
|
struct stacks_extent *p_blob;
|
|
struct pids_stack **p_vect;
|
|
struct pids_stack *p_head;
|
|
size_t vect_size, head_size, list_size, blob_size;
|
|
void *v_head, *v_list;
|
|
int i;
|
|
|
|
if (info == NULL || info->items == NULL)
|
|
return NULL;
|
|
if (maxstacks < 1)
|
|
return NULL;
|
|
|
|
vect_size = sizeof(void *) * maxstacks; // address vectors themselves
|
|
vect_size += sizeof(void *); // plus NULL delimiter
|
|
head_size = sizeof(struct pids_stack); // a head struct
|
|
list_size = sizeof(struct pids_result) * info->maxitems; // a results stack
|
|
blob_size = sizeof(struct stacks_extent); // the extent anchor itself
|
|
blob_size += vect_size; // all vectors + delim
|
|
blob_size += head_size * maxstacks; // all head structs
|
|
blob_size += list_size * maxstacks; // all results stacks
|
|
|
|
/* note: all memory is allocated in a single blob, facilitating a later free().
|
|
as a minimum, it's important that the result structures themselves always be
|
|
contiguous for any given stack (just as they are when defined statically). */
|
|
if (NULL == (p_blob = calloc(1, blob_size)))
|
|
return NULL;
|
|
|
|
p_blob->next = info->extents;
|
|
info->extents = p_blob;
|
|
p_blob->stacks = (void *)p_blob + sizeof(struct stacks_extent);
|
|
p_vect = p_blob->stacks;
|
|
v_head = (void *)p_vect + vect_size;
|
|
v_list = v_head + (head_size * maxstacks);
|
|
|
|
for (i = 0; i < maxstacks; i++) {
|
|
p_head = (struct pids_stack *)v_head;
|
|
p_head->head = stack_itemize((struct pids_result *)v_list, info->curitems, info->items);
|
|
p_blob->stacks[i] = p_head;
|
|
v_list += list_size;
|
|
v_head += head_size;
|
|
}
|
|
p_blob->ext_numitems = info->maxitems;
|
|
p_blob->ext_numstacks = maxstacks;
|
|
#ifdef FPRINT_STACKS
|
|
validate_stacks(p_blob, __func__);
|
|
#endif
|
|
return p_blob;
|
|
} // end: alloc_stacks
|
|
|
|
|
|
#if 0 // --------------------------- not (currently) needed
|
|
static int dealloc_stacks (
|
|
struct procps_pidsinfo *info,
|
|
struct stacks_extent **these)
|
|
{
|
|
struct stacks_extent *ext;
|
|
int rc;
|
|
|
|
if (info == NULL || these == NULL)
|
|
return -EINVAL;
|
|
if ((*these)->stacks == NULL || (*these)->stacks[0] == NULL)
|
|
return -EINVAL;
|
|
|
|
ext = *these;
|
|
rc = extent_free(info, ext);
|
|
*these = NULL;
|
|
return rc;
|
|
} // end: dealloc_stacks
|
|
#endif // -------------------------- not (currently) needed
|
|
|
|
|
|
static int fetch_helper (
|
|
struct procps_pidsinfo *info,
|
|
struct fetch_support *this)
|
|
{
|
|
#define n_alloc this->n_alloc
|
|
#define n_inuse this->n_inuse
|
|
static proc_t task; // static for initial zeroes + later dynamic free(s)
|
|
struct stacks_extent *ext;
|
|
|
|
if (info == NULL || this == NULL)
|
|
return -1;
|
|
|
|
// initialize stuff -----------------------------------
|
|
if (!this->anchor) {
|
|
if ((!(this->anchor = calloc(sizeof(void *), MEMORY_INCR)))
|
|
|| (!(this->summary.stacks = calloc(sizeof(void *), MEMORY_INCR)))
|
|
|| (!(ext = alloc_stacks(info, MEMORY_INCR))))
|
|
return -1;
|
|
memcpy(this->anchor, ext->stacks, sizeof(void *) * MEMORY_INCR);
|
|
n_alloc = MEMORY_INCR;
|
|
}
|
|
if (info->dirty_stacks)
|
|
cleanup_stacks_all(info);
|
|
toggle_history(info);
|
|
memset(&this->summary.counts, 0, sizeof(struct pids_counts));
|
|
|
|
// iterate stuff --------------------------------------
|
|
n_inuse = 0;
|
|
while (info->read_something(info->PT, &task)) {
|
|
if (!(n_inuse < n_alloc)) {
|
|
n_alloc += MEMORY_INCR;
|
|
if ((!(this->anchor = realloc(this->anchor, sizeof(void *) * n_alloc)))
|
|
|| (!(ext = alloc_stacks(info, MEMORY_INCR))))
|
|
return -1;
|
|
memcpy(this->anchor + n_inuse, ext->stacks, sizeof(void *) * MEMORY_INCR);
|
|
}
|
|
if (!tally_proc(info, &this->summary.counts, &task))
|
|
return -1;
|
|
assign_results(info, this->anchor[n_inuse++], &task);
|
|
}
|
|
|
|
// finalize stuff -------------------------------------
|
|
if (this->n_alloc_save != n_alloc
|
|
&& !(this->summary.stacks = realloc(this->summary.stacks, sizeof(void *) * n_alloc)))
|
|
return -1;
|
|
memcpy(this->summary.stacks, this->anchor, sizeof(void *) * n_alloc);
|
|
this->n_alloc_save = n_alloc;
|
|
return n_inuse; // callers beware, this might be zero !
|
|
#undef n_alloc
|
|
#undef n_inuse
|
|
} // end: fetch_helper
|
|
|
|
|
|
// ___ Public Functions |||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
PROCPS_EXPORT struct pids_stack *fatal_proc_unmounted (
|
|
struct procps_pidsinfo *info,
|
|
int return_self)
|
|
{
|
|
static proc_t self;
|
|
struct stacks_extent *ext;
|
|
|
|
// this is very likely the *only* newlib function where the
|
|
// context (procps_pidsinfo) of NULL will ever be permitted
|
|
look_up_our_self(&self);
|
|
if (!return_self)
|
|
return NULL;
|
|
|
|
if (info == NULL
|
|
|| !(ext = alloc_stacks(info, 1))
|
|
|| !extent_cut(info, ext))
|
|
return NULL;
|
|
|
|
ext->next = info->otherexts;
|
|
info->otherexts = ext;
|
|
assign_results(info, ext->stacks[0], &self);
|
|
|
|
return ext->stacks[0];
|
|
} // end: fatal_proc_unmounted
|
|
|
|
|
|
/*
|
|
* procps_pids_new():
|
|
*
|
|
* @info: location of returned new structure
|
|
*
|
|
* Returns: 0 on success <0 on failure
|
|
*/
|
|
PROCPS_EXPORT int procps_pids_new (
|
|
struct procps_pidsinfo **info,
|
|
int maxitems,
|
|
enum pids_item *items)
|
|
{
|
|
struct procps_pidsinfo *p;
|
|
double uptime_secs;
|
|
int pgsz;
|
|
|
|
if (info == NULL || *info != NULL)
|
|
return -EINVAL;
|
|
if (items_check_failed(maxitems, items))
|
|
return -EINVAL;
|
|
|
|
if (!(p = calloc(1, sizeof(struct procps_pidsinfo))))
|
|
return -ENOMEM;
|
|
// allow for our PROCPS_PIDS_physical_end
|
|
if (!(p->items = calloc((maxitems + 1), sizeof(enum pids_item)))) {
|
|
free(p);
|
|
return -ENOMEM;
|
|
}
|
|
if (!(p->hist = calloc((maxitems + 1), sizeof(struct history_info)))) {
|
|
free(p->items);
|
|
free(p);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(p->items, items, sizeof(enum pids_item) * maxitems);
|
|
p->items[maxitems] = PROCPS_PIDS_physical_end;
|
|
p->curitems = p->maxitems = maxitems + 1;
|
|
libflags_set(p);
|
|
|
|
pgsz = getpagesize();
|
|
while (pgsz > 1024) { pgsz >>= 1; p->pgs2k_shift++; }
|
|
|
|
config_history(p);
|
|
|
|
p->hertz = procps_hertz_get();
|
|
procps_uptime(&uptime_secs, NULL);
|
|
p->boot_seconds = uptime_secs;
|
|
|
|
p->refcount = 1;
|
|
*info = p;
|
|
return 0;
|
|
} // end: procps_pids_new
|
|
|
|
|
|
PROCPS_EXPORT struct pids_stack *procps_pids_read_next (
|
|
struct procps_pidsinfo *info)
|
|
{
|
|
static proc_t task; // static for initial zeroes + later dynamic free(s)
|
|
|
|
if (info == NULL || ! READS_BEGUN)
|
|
return NULL;
|
|
if (info->dirty_stacks) {
|
|
cleanup_stack(info->read->stacks[0]->head, info->maxitems);
|
|
info->dirty_stacks = 0;
|
|
}
|
|
if (NULL == info->read_something(info->PT, &task))
|
|
return NULL;
|
|
assign_results(info, info->read->stacks[0], &task);
|
|
return info->read->stacks[0];
|
|
} // end: procps_pids_read_next
|
|
|
|
|
|
PROCPS_EXPORT int procps_pids_read_open (
|
|
struct procps_pidsinfo *info,
|
|
enum pids_reap_type which)
|
|
{
|
|
if (info == NULL || READS_BEGUN)
|
|
return -EINVAL;
|
|
if (!info->maxitems && !info->curitems)
|
|
return -EINVAL;
|
|
if (which != PROCPS_REAP_TASKS_ONLY && which != PROCPS_REAP_THREADS_TOO)
|
|
return -EINVAL;
|
|
|
|
if (!(info->read = alloc_stacks(info, 1)))
|
|
return -ENOMEM;
|
|
if (!oldproc_open(info, 0))
|
|
return -1;
|
|
info->read_something = which ? readeither : readproc;
|
|
return 0;
|
|
} // end: procps_pids_read_open
|
|
|
|
|
|
PROCPS_EXPORT int procps_pids_read_shut (
|
|
struct procps_pidsinfo *info)
|
|
{
|
|
int rc;
|
|
|
|
if (info == NULL || ! READS_BEGUN)
|
|
return -EINVAL;
|
|
oldproc_close(info);
|
|
rc = extent_free(info, info->read);
|
|
info->read = NULL;
|
|
return rc;
|
|
} // end: procps_pids_read_shut
|
|
|
|
|
|
/* procps_pids_reap():
|
|
*
|
|
* Harvest all the available tasks/threads and provide the result
|
|
* stacks along with a summary of the information gathered.
|
|
*
|
|
* Returns: pointer to a pids_reap struct on success, NULL on error.
|
|
*/
|
|
PROCPS_EXPORT struct pids_reap *procps_pids_reap (
|
|
struct procps_pidsinfo *info,
|
|
enum pids_reap_type which)
|
|
{
|
|
int rc;
|
|
|
|
if (info == NULL || READS_BEGUN)
|
|
return NULL;
|
|
if (!info->maxitems && !info->curitems)
|
|
return NULL;
|
|
if (which != PROCPS_REAP_TASKS_ONLY && which != PROCPS_REAP_THREADS_TOO)
|
|
return NULL;
|
|
|
|
if (!oldproc_open(info, 0))
|
|
return NULL;
|
|
info->read_something = which ? readeither : readproc;
|
|
|
|
rc = fetch_helper(info, &info->reap);
|
|
|
|
oldproc_close(info);
|
|
// we better have found at least 1 pid
|
|
return (rc > 0) ? &info->reap.summary : NULL;
|
|
} // end: procps_pids_reap
|
|
|
|
|
|
PROCPS_EXPORT int procps_pids_ref (
|
|
struct procps_pidsinfo *info)
|
|
{
|
|
if (info == NULL)
|
|
return -EINVAL;
|
|
|
|
info->refcount++;
|
|
return info->refcount;
|
|
} // end: procps_pids_ref
|
|
|
|
|
|
PROCPS_EXPORT int procps_pids_reset (
|
|
struct procps_pidsinfo *info,
|
|
int newmaxitems,
|
|
enum pids_item *newitems)
|
|
{
|
|
struct stacks_extent *ext;
|
|
int i;
|
|
|
|
if (info == NULL)
|
|
return -EINVAL;
|
|
/* disallow (for now?) absolute increases in stacks size
|
|
( users must 'unref' and then 'new' to achieve that ) */
|
|
if (newmaxitems + 1 > info->maxitems)
|
|
return -EINVAL;
|
|
if (items_check_failed(newmaxitems, newitems))
|
|
return -EINVAL;
|
|
|
|
/* shame on this caller, they didn't change anything. and unless they have
|
|
altered the depth of the stacks we're not gonna change anything either! */
|
|
if (info->curitems == newmaxitems + 1
|
|
&& !memcmp(info->items, newitems, sizeof(enum pids_item) * newmaxitems))
|
|
return 0;
|
|
|
|
if (info->dirty_stacks)
|
|
cleanup_stacks_all(info);
|
|
|
|
memcpy(info->items, newitems, sizeof(enum pids_item) * newmaxitems);
|
|
info->items[newmaxitems] = PROCPS_PIDS_logical_end;
|
|
// account for above PROCPS_PIDS_logical_end
|
|
info->curitems = newmaxitems + 1;
|
|
|
|
ext = info->extents;
|
|
while (ext) {
|
|
for (i = 0; ext->stacks[i]; i++)
|
|
stack_itemize(ext->stacks[i]->head, info->curitems, info->items);
|
|
#ifdef FPRINT_STACKS
|
|
validate_stacks(ext, __func__);
|
|
#endif
|
|
ext = ext->next;
|
|
};
|
|
|
|
libflags_set(info);
|
|
return 0;
|
|
} // end: procps_pids_reset
|
|
|
|
|
|
/* procps_pids_select():
|
|
*
|
|
* Harvest any processes matching the specified PID or UID and provide the
|
|
* result stacks along with a summary of the information gathered.
|
|
*
|
|
* Returns: pointer to a pids_reap struct on success, NULL on error.
|
|
*/
|
|
PROCPS_EXPORT struct pids_reap *procps_pids_select (
|
|
struct procps_pidsinfo *info,
|
|
unsigned *these,
|
|
int maxthese,
|
|
enum pids_fill_type which)
|
|
{
|
|
unsigned ids[FILL_ID_MAX + 1];
|
|
int rc;
|
|
|
|
if (info == NULL || these == NULL || READS_BEGUN)
|
|
return NULL;
|
|
if (maxthese < 1 || maxthese > FILL_ID_MAX)
|
|
return NULL;
|
|
if (which != PROCPS_FILL_PID && which != PROCPS_FILL_UID)
|
|
return NULL;
|
|
|
|
// this zero delimiter is really only needed with PROCPS_FILL_PID
|
|
memcpy(ids, these, sizeof(unsigned) * maxthese);
|
|
ids[maxthese] = 0;
|
|
|
|
if (!oldproc_open(info, which, ids, maxthese))
|
|
return NULL;
|
|
info->read_something = readproc;
|
|
|
|
rc = fetch_helper(info, &info->select);
|
|
|
|
oldproc_close(info);
|
|
// no guarantee any pids/uids were found
|
|
return (rc > -1) ? &info->select.summary : NULL;
|
|
} // end: procps_pids_select
|
|
|
|
|
|
/*
|
|
* procps_pids_stacks_sort():
|
|
*
|
|
* Sort stacks anchored in the passed pids_stack pointers array
|
|
* based on the designated sort enumerator and specified order.
|
|
*
|
|
* Returns those same addresses sorted.
|
|
*
|
|
* Note: all of the stacks must be homogeneous (of equal length and content).
|
|
*/
|
|
PROCPS_EXPORT struct pids_stack **procps_pids_stacks_sort (
|
|
struct procps_pidsinfo *info,
|
|
struct pids_stack *stacks[],
|
|
int numstacked,
|
|
enum pids_item sort,
|
|
enum pids_sort_order order)
|
|
{
|
|
struct sort_parms parms;
|
|
struct pids_result *p;
|
|
int offset;
|
|
|
|
if (info == NULL || stacks == NULL)
|
|
return NULL;
|
|
// a pids_item is currently unsigned, but we'll protect our future
|
|
if (sort < 0 || sort > PROCPS_PIDS_noop)
|
|
return NULL;
|
|
if (order != PROCPS_SORT_ASCEND && order != PROCPS_SORT_DESCEND)
|
|
return NULL;
|
|
if (numstacked < 2)
|
|
return stacks;
|
|
|
|
offset = 0;
|
|
p = stacks[0]->head;
|
|
for (;;) {
|
|
if (p->item == sort)
|
|
break;
|
|
++offset;
|
|
if (offset >= info->curitems)
|
|
return NULL;
|
|
if (p->item > PROCPS_PIDS_noop)
|
|
return NULL;
|
|
++p;
|
|
}
|
|
parms.offset = offset;
|
|
parms.order = order;
|
|
|
|
qsort_r(stacks, numstacked, sizeof(void *), (QSR_t)Item_table[p->item].sortfunc, &parms);
|
|
return stacks;
|
|
} // end: procps_pids_stacks_sort
|
|
|
|
|
|
PROCPS_EXPORT int procps_pids_unref (
|
|
struct procps_pidsinfo **info)
|
|
{
|
|
if (info == NULL || *info == NULL)
|
|
return -EINVAL;
|
|
|
|
(*info)->refcount--;
|
|
if ((*info)->refcount == 0) {
|
|
#ifdef UNREF_RPTHASH
|
|
unref_rpthash(*info);
|
|
#endif
|
|
if ((*info)->extents) {
|
|
cleanup_stacks_all(*info);
|
|
do {
|
|
struct stacks_extent *p = (*info)->extents;
|
|
(*info)->extents = (*info)->extents->next;
|
|
free(p);
|
|
} while ((*info)->extents);
|
|
}
|
|
if ((*info)->otherexts) {
|
|
struct stacks_extent *nextext, *ext = (*info)->otherexts;
|
|
while (ext) {
|
|
nextext = ext->next;
|
|
cleanup_stack(ext->stacks[0]->head, ext->ext_numitems);
|
|
free(ext);
|
|
ext = nextext;
|
|
};
|
|
}
|
|
if ((*info)->reap.anchor)
|
|
free((*info)->reap.anchor);
|
|
if ((*info)->reap.summary.stacks)
|
|
free((*info)->reap.summary.stacks);
|
|
if ((*info)->select.anchor)
|
|
free((*info)->select.anchor);
|
|
if ((*info)->select.summary.stacks)
|
|
free((*info)->select.summary.stacks);
|
|
if ((*info)->items)
|
|
free((*info)->items);
|
|
if ((*info)->hist) {
|
|
free((*info)->hist->PHist_sav);
|
|
free((*info)->hist->PHist_new);
|
|
free((*info)->hist);
|
|
}
|
|
free(*info);
|
|
*info = NULL;
|
|
return 0;
|
|
}
|
|
return (*info)->refcount;
|
|
} // end: procps_pids_unref
|