Qualys Security Advisory 14758ebc8f proc/readproc.c: Work around a design flaw in readeither().
readeither() caches (in new_p) a pointer to the proc_t of a task-group
leader, but readeither()'s callers can do pretty much anything with the
proc_t structure passed to and/or returned by this function. For
example, they can 1/ free it or 2/ recycle it (by passing it to
readeither() as x).

1/ leads to a use-after-free, and 2/ leads to unexpected behavior when
taskreader()/simple_readtask() is called with new_p equal to x (this is
not a theoretical flaw: 2/ happens in readproctab3() when want_task()
returns false and p is a group leader).

As a workaround, we keep a copy of new_p's first member (tid) in static
storage, and the next times we enter readeither() we check this "canary"
against the tid in new_p: if they differ, we reset new_p to NULL, which
forces the allocation of a new proc_t (the new "leader", or reference).

This always detects 2/ (because free_acquired(x,1) memsets x and hence
new_p); always detects 1/ if freed via free_acquired() and/or freeproc()
(very likely, otherwise memory may be leaked); probably detects 1/ even
if freed directly via free() (because the canary is the first member of
proc_t, likely to be overwritten by free()); but can not detect 1/ if
free() does not write to new_p's chunk at all.

Moreover, accessing new_p->tid to check the canary in case 1/ is itself
a use-after-free, so a better long-term solution should be implemented
at some point (we wanted to avoid intrusive and backward-incompatible
changes in this library function, hence this imperfect workaround).
2018-05-19 07:32:22 +10:00
..
2018-04-10 21:28:11 +10:00
2015-06-19 21:00:46 +10:00