procps/proc/meminfo.c
Jim Warner aab537bc13 library: refactor meminfo providing dynamic allocation
An earlier approach to meminfo chaining, referenced in
the patch shown below, represents the first baby steps
toward the goal of some generalized approach with PIDs
processing. However, statically allocating a chain for
each task or thread is totally impractical. And, while
a single chain could serve all PIDs, that would mean a
separate call to our library for each running process.

This commit is intended as the next evolutionary step,
dynamically allocating some 'result' chains to contain
as many or as few 'items' as a caller wishes. In other
words, holding only those 'items' of current interest.

This is the kind of service useful for both top and ps
programs if we finally get around to /proc/<PID> data.

Reference(s):
commit c3fd7473c5

Signed-off-by: Jim Warner <james.warner@comcast.net>
2015-07-14 22:32:41 +10:00

556 lines
17 KiB
C

/*
* meminfo - Memory statistics part of procps
*
* Copyright (C) 1992-1998 by Michael K. Johnson <johnsonm@redhat.com>
* Copyright (C) 1998-2003 Albert Cahalan
* Copyright (C) 2015 Craig Small <csmall@enc.com.au>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <proc/meminfo.h>
#include "procps-private.h"
#define MEMINFO_FILE "/proc/meminfo"
struct meminfo_data {
unsigned long active;
unsigned long inactive;
unsigned long high_free;
unsigned long high_total;
unsigned long low_free;
unsigned long low_total;
unsigned long available;
unsigned long buffers;
unsigned long cached;
unsigned long free;
unsigned long shared;
unsigned long total;
unsigned long used;
unsigned long slab;
unsigned long swap_free;
unsigned long swap_total;
unsigned long swap_used;
};
struct procps_meminfo {
int refcount;
int meminfo_fd;
struct meminfo_data data;
struct chains_anchor *chained;
};
struct chain_vectors {
struct chains_anchor *owner;
struct meminfo_chain **heads;
};
struct chains_anchor {
int depth;
int header_size;
struct chain_vectors *vectors;
struct chains_anchor *self;
struct chains_anchor *next;
};
/*
* procps_meminfo_new():
*
* Create a new container to hold the meminfo information
*
* The initial refcount is 1, and needs to be decremented
* to release the resources of the structure.
*
* Returns: a new meminfo info container
*/
PROCPS_EXPORT int procps_meminfo_new (
struct procps_meminfo **info)
{
struct procps_meminfo *m;
m = calloc(1, sizeof(struct procps_meminfo));
if (!m)
return -ENOMEM;
m->refcount = 1;
m->meminfo_fd = -1;
*info = m;
return 0;
}
/*
* procps_meminfo_read():
*
* Read the data out of /proc/meminfo putting the information
* into the supplied info structure
*/
PROCPS_EXPORT int procps_meminfo_read (
struct procps_meminfo *info)
{
char buf[8192];
char *head, *tail;
int size;
unsigned long *valptr;
signed long mem_used;
if (info == NULL)
return -1;
memset(&(info->data), 0, sizeof(struct meminfo_data));
/* read in the data */
if (-1 == info->meminfo_fd && (info->meminfo_fd = open(MEMINFO_FILE, O_RDONLY)) == -1) {
return -errno;
}
if (lseek(info->meminfo_fd, 0L, SEEK_SET) == -1) {
return -errno;
}
for (;;) {
if ((size = read(info->meminfo_fd, buf, sizeof(buf)-1)) < 0) {
if (errno == EINTR || errno == EAGAIN)
continue;
return -errno;
}
break;
}
if (size == 0)
return 0;
buf[size] = '\0';
/* Scan the file */
head = buf;
do {
tail = strchr(head, ' ');
if (!tail)
break;
*tail = '\0';
valptr = NULL;
switch (*head) {
case 'A':
if (0 == strcmp(head, "Active:"))
valptr = &(info->data.active);
break;
case 'B':
if (0 == strcmp(head, "Buffers:"))
valptr = &(info->data.buffers);
break;
case 'C':
if (0 == strcmp(head, "Cached:"))
valptr = &(info->data.cached);
break;
case 'H':
if (0 == strcmp(head, "HighFree:"))
valptr = &(info->data.high_free);
else if (0 == strcmp(head, "HighTotal:"))
valptr = &(info->data.high_total);
break;
case 'I':
if (0 == strcmp(head, "Inactive:"))
valptr = &(info->data.inactive);
break;
case 'L':
if (0 == strcmp(head, "LowFree:"))
valptr = &(info->data.low_free);
else if (0 == strcmp(head, "LowTotal:"))
valptr = &(info->data.low_total);
break;
case 'M':
if (0 == strcmp(head, "MemAvailable:"))
valptr = &(info->data.available);
else if (0 == strcmp(head, "MemFree:"))
valptr = &(info->data.free);
else if (0 == strcmp(head, "MemTotal:"))
valptr = &(info->data.total);
break;
case 'S':
if (0 == strcmp(head, "Slab:"))
valptr = &(info->data.slab);
else if (0 == strcmp(head, "SwapFree:"))
valptr = &(info->data.swap_free);
else if (0 == strcmp(head, "SwapTotal:"))
valptr = &(info->data.swap_total);
else if (0 == strcmp(head, "Shmem:"))
valptr = &(info->data.shared);
break;
default:
break;
}
head = tail+1;
if (valptr) {
*valptr = strtoul(head, &tail, 10);
}
tail = strchr(head, '\n');
if (!tail)
break;
head = tail + 1;
} while(tail);
if (0 == info->data.low_total) {
info->data.low_total = info->data.total;
info->data.low_free = info->data.free;
}
if (0 == info->data.available) {
info->data.available = info->data.free;
}
info->data.cached += info->data.slab;
info->data.swap_used = info->data.swap_total - info->data.swap_free;
/* if 'available' is greater than 'total' or our calculation of mem_used
overflows, that's symptomatic of running within a lxc container where
such values will be dramatically distorted over those of the host. */
if (info->data.available > info->data.total)
info->data.available = info->data.free;
mem_used = info->data.total - info->data.free - info->data.cached - info->data.buffers;
if (mem_used < 0)
mem_used = info->data.total - info->data.free;
info->data.used = (unsigned long)mem_used;
return 0;
}
PROCPS_EXPORT int procps_meminfo_ref (
struct procps_meminfo *info)
{
if (info == NULL)
return -EINVAL;
info->refcount++;
return info->refcount;
}
PROCPS_EXPORT int procps_meminfo_unref (
struct procps_meminfo **info)
{
if (info == NULL || *info == NULL)
return -EINVAL;
(*info)->refcount--;
if ((*info)->refcount == 0) {
if ((*info)->chained) {
do {
struct chains_anchor *p = (*info)->chained;
(*info)->chained = (*info)->chained->next;
free(p);
} while((*info)->chained);
}
free(*info);
*info = NULL;
return 0;
}
return (*info)->refcount;
}
/*
* Accessor functions
*/
PROCPS_EXPORT unsigned long procps_meminfo_get (
struct procps_meminfo *info,
enum meminfo_item item)
{
switch (item) {
case PROCPS_MEM_ACTIVE:
return info->data.active;
case PROCPS_MEM_INACTIVE:
return info->data.inactive;
case PROCPS_MEMHI_FREE:
return info->data.high_free;
case PROCPS_MEMHI_TOTAL:
return info->data.high_total;
case PROCPS_MEMHI_USED:
if (info->data.high_free > info->data.high_total)
return 0;
return info->data.high_total - info->data.high_free;
case PROCPS_MEMLO_FREE:
return info->data.low_free;
case PROCPS_MEMLO_TOTAL:
return info->data.low_total;
case PROCPS_MEMLO_USED:
if (info->data.low_free > info->data.low_total)
return 0;
return info->data.low_total - info->data.low_free;
case PROCPS_MEM_AVAILABLE:
return info->data.available;
case PROCPS_MEM_BUFFERS:
return info->data.buffers;
case PROCPS_MEM_CACHED:
return info->data.cached;
case PROCPS_MEM_FREE:
return info->data.free;
case PROCPS_MEM_SHARED:
return info->data.shared;
case PROCPS_MEM_TOTAL:
return info->data.total;
case PROCPS_MEM_USED:
return info->data.used;
case PROCPS_SWAP_FREE:
return info->data.swap_free;
case PROCPS_SWAP_TOTAL:
return info->data.swap_total;
case PROCPS_SWAP_USED:
if (info->data.swap_free > info->data.swap_total)
return 0;
return info->data.swap_total - info->data.swap_free;
case PROCPS_MEM_noop:
return 0;
}
return 0;
}
PROCPS_EXPORT int procps_meminfo_getchain (
struct procps_meminfo *info,
struct meminfo_result *these)
{
if (info == NULL || these == NULL)
return -EINVAL;
do {
switch (these->item) {
case PROCPS_MEM_ACTIVE:
these->result = info->data.active;
break;
case PROCPS_MEM_INACTIVE:
these->result = info->data.inactive;
break;
case PROCPS_MEMHI_FREE:
these->result = info->data.high_free;
break;
case PROCPS_MEMHI_TOTAL:
these->result = info->data.high_total;
break;
case PROCPS_MEMHI_USED:
if (info->data.high_free > info->data.high_total)
these->result = 0;
else
these->result = info->data.high_total - info->data.high_free;
break;
case PROCPS_MEMLO_FREE:
these->result = info->data.low_free;
break;
case PROCPS_MEMLO_TOTAL:
these->result = info->data.low_total;
break;
case PROCPS_MEMLO_USED:
if (info->data.low_free > info->data.low_total)
these->result = 0;
else
these->result = info->data.low_total - info->data.low_free;
break;
case PROCPS_MEM_AVAILABLE:
these->result = info->data.available;
break;
case PROCPS_MEM_BUFFERS:
these->result = info->data.buffers;
break;
case PROCPS_MEM_CACHED:
these->result = info->data.cached;
break;
case PROCPS_MEM_FREE:
these->result = info->data.free;
break;
case PROCPS_MEM_SHARED:
these->result = info->data.shared;
break;
case PROCPS_MEM_TOTAL:
these->result = info->data.total;
break;
case PROCPS_MEM_USED:
these->result = info->data.used;
break;
case PROCPS_SWAP_FREE:
these->result = info->data.swap_free;
break;
case PROCPS_SWAP_TOTAL:
these->result = info->data.swap_total;
break;
case PROCPS_SWAP_USED:
if (info->data.swap_free > info->data.swap_total)
these->result = 0;
else
these->result = info->data.swap_total - info->data.swap_free;
break;
case PROCPS_MEM_noop:
break;
default:
return -EINVAL;
}
these = these->next;
} while (these);
return 0;
}
PROCPS_EXPORT int procps_meminfo_chain_fill (
struct procps_meminfo *info,
struct meminfo_chain *chain)
{
struct meminfo_result *these = chain->head;
int rc;
if (info == NULL || chain == NULL || these == NULL)
return -EINVAL;
if ((rc == procps_meminfo_read(info)) < 0)
return rc;
return procps_meminfo_getchain(info, these);
}
static void chains_validate (struct meminfo_chain **v, const char *who)
{
#if 0
#include <stdio.h>
int i, x, n = 0;
struct chain_vectors *p = (struct chain_vectors *)v - 1;
fprintf(stderr, "%s: called by '%s'\n", __func__, who);
fprintf(stderr, "%s: owned by %p (whose self = %p)\n", __func__, p->owner, p->owner->self);
for (x = 0; v[x]; x++) {
struct meminfo_chain *h = v[x];
struct meminfo_result *r = h->head;
fprintf(stderr, "%s: vector[%02d] = %p", __func__, x, h);
i = 0;
do {
i++;
r = r->next;
} while (r);
fprintf(stderr, ", chain %d found %d elements\n", n, i);
++n;
}
fprintf(stderr, "%s: found %d chain(s)\n", __func__, x);
fprintf(stderr, "%s: this header size = %2d\n", __func__, (int)p->owner->header_size);
fprintf(stderr, "%s: sizeof(struct meminfo_chain) = %2d\n", __func__, (int)sizeof(struct meminfo_chain));
fprintf(stderr, "%s: sizeof(struct meminfo_result) = %2d\n", __func__, (int)sizeof(struct meminfo_result));
fputc('\n', stderr);
return;
#endif
}
static struct meminfo_result *chain_make (
struct meminfo_result *p,
int maxitems,
enum meminfo_item *items)
{
struct meminfo_result *p_sav = p;
int i;
for (i = 0; i < maxitems; i++) {
if (i > PROCPS_MEM_noop)
p->item = PROCPS_MEM_noop;
else
p->item = items[i];
p->result = 0;
p->next = p + 1;
++p;
}
(--p)->next = NULL;
return p_sav;
}
/*
* procps_meminfo_chains_alloc():
*
* A local copy of code borrowed from slab.c to support the public version
* representing a single chain. Currently there is no conceivable need
* for multiple chains in the 'memory' arena.
*/
static struct meminfo_chain **procps_meminfo_chains_alloc (
struct procps_meminfo *info,
int maxchains,
int chain_extra,
int maxitems,
enum meminfo_item *items)
{
struct chains_anchor *p_blob;
struct chain_vectors *p_vect;
struct meminfo_chain *p_head;
size_t vect_size, head_size, list_size, blob_size;
void *v_head, *v_list;
int i;
if (info == NULL || items == NULL)
return NULL;
if (maxchains < 1 || maxitems < 1)
return NULL;
vect_size = sizeof(struct chain_vectors); // address vector struct
vect_size += sizeof(void *) * maxchains; // plus vectors themselves
vect_size += sizeof(void *); // plus NULL delimiter
head_size = sizeof(struct meminfo_chain) + chain_extra; // a head struct + user stuff
list_size = sizeof(struct meminfo_result) * maxitems; // a results chain
blob_size = sizeof(struct chains_anchor); // the anchor itself
blob_size += vect_size; // all vectors + delims
blob_size += head_size * maxchains; // all head structs + user stuff
blob_size += list_size * maxchains; // all results chains
/* note: all memory is allocated in a single blob, facilitating a later free().
as a minimum, it's important that the result structures themselves always be
contiguous for any given chain (just as they are when defined statically). */
if (NULL == (p_blob = calloc(1, blob_size)))
return NULL;
p_blob->next = info->chained;
info->chained = p_blob;
p_blob->self = p_blob;
p_blob->header_size = head_size;
p_blob->vectors = (void *)p_blob + sizeof(struct chains_anchor);
p_vect = p_blob->vectors;
p_vect->owner = p_blob->self;
p_vect->heads = (void *)p_vect + sizeof(struct chain_vectors);
v_head = (void *)p_vect + vect_size;
v_list = v_head + (head_size * maxchains);
for (i = 0; i < maxchains; i++) {
p_head = (struct meminfo_chain *)v_head;
p_head->head = chain_make((struct meminfo_result *)v_list, maxitems, items);
p_blob->vectors->heads[i] = p_head;
v_list += list_size;
v_head += head_size;
}
p_blob->depth = maxchains;
chains_validate(p_blob->vectors->heads, __func__);
return p_blob->vectors->heads;
}
/*
* procps_meminfo_chain_alloc():
*
* Allocate and initialize a single result chain under a simplified interface.
*
* Such a chain will will have its result structures properly primed with
* 'items' and 'next' pointers, while the result itself is set to zero.
*
*/
PROCPS_EXPORT struct meminfo_chain *procps_meminfo_chain_alloc (
struct procps_meminfo *info,
int maxitems,
enum meminfo_item *items)
{
struct meminfo_chain **v;
if (info == NULL || items == NULL || maxitems < 1)
return NULL;
v = procps_meminfo_chains_alloc(info, 1, 0, maxitems, items);
if (!v)
return NULL;
chains_validate(v, __func__);
return v[0];
}