thin-provisioning-tools/src/thin/check.rs

361 lines
9.1 KiB
Rust
Raw Normal View History

use anyhow::{anyhow, Result};
use fixedbitset::FixedBitSet;
use nom::{number::complete::*, IResult};
use std::collections::{HashMap, BTreeMap};
2020-07-27 20:23:42 +05:30
use std::path::Path;
use std::sync::{Arc, Mutex};
use std::time::Instant;
use threadpool::ThreadPool;
use crate::block_manager::{AsyncIoEngine, Block, IoEngine};
use crate::pdata::btree::{BTreeWalker, Node, NodeVisitor, Unpack, unpack};
use crate::pdata::space_map::*;
use crate::thin::superblock::*;
use crate::checksum;
//------------------------------------------
struct TopLevelVisitor<'a> {
roots: &'a mut HashMap<u32, u64>,
}
impl<'a> NodeVisitor<u64> for TopLevelVisitor<'a> {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<u64>) -> Result<()> {
if let Node::Leaf {
header: _h,
keys,
values,
} = node
{
for n in 0..keys.len() {
let k = keys[n];
let root = values[n];
self.roots.insert(k as u32, root);
}
}
Ok(())
}
}
//------------------------------------------
#[allow(dead_code)]
struct BlockTime {
block: u64,
time: u32,
}
impl Unpack for BlockTime {
fn disk_size() -> u32 {
8
}
fn unpack(i: &[u8]) -> IResult<&[u8], BlockTime> {
let (i, n) = le_u64(i)?;
let block = n >> 24;
let time = n & ((1 << 24) - 1);
Ok((
i,
BlockTime {
block,
time: time as u32,
},
))
}
}
struct BottomLevelVisitor {
data_sm: Arc<Mutex<CoreSpaceMap>>,
}
2020-08-03 20:52:08 +05:30
impl NodeVisitor<BlockTime> for BottomLevelVisitor {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<BlockTime>) -> Result<()> {
// FIXME: do other checks
if let Node::Leaf {header: _h, keys: _k, values} = node {
let mut data_sm = self.data_sm.lock().unwrap();
for bt in values {
data_sm.inc(bt.block)?;
}
}
2020-08-03 20:52:08 +05:30
Ok(())
}
}
//------------------------------------------
#[derive(Clone)]
struct DeviceDetail {
mapped_blocks: u64,
transaction_id: u64,
creation_time: u32,
snapshotted_time: u32,
}
impl Unpack for DeviceDetail {
2020-08-03 20:52:08 +05:30
fn disk_size() -> u32 {
24
}
fn unpack(i: &[u8]) -> IResult<&[u8], DeviceDetail> {
let (i, mapped_blocks) = le_u64(i)?;
let (i, transaction_id) = le_u64(i)?;
let (i, creation_time) = le_u32(i)?;
let (i, snapshotted_time) = le_u32(i)?;
Ok((
i,
DeviceDetail {
mapped_blocks,
transaction_id,
creation_time,
snapshotted_time,
},
))
}
}
struct DeviceVisitor {
devs: HashMap<u32, DeviceDetail>,
}
impl DeviceVisitor {
pub fn new() -> DeviceVisitor {
DeviceVisitor {
devs: HashMap::new(),
}
}
}
impl NodeVisitor<DeviceDetail> for DeviceVisitor {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<DeviceDetail>) -> Result<()> {
if let Node::Leaf {
header: _h,
keys,
values,
} = node
{
for n in 0..keys.len() {
let k = keys[n] as u32;
let v = values[n].clone();
self.devs.insert(k, v);
}
2020-08-03 20:52:08 +05:30
}
Ok(())
}
}
//------------------------------------------
struct IndexVisitor {
entries: Vec<IndexEntry>,
}
impl NodeVisitor<IndexEntry> for IndexVisitor {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<IndexEntry>) -> Result<()> {
if let Node::Leaf {
header: _h,
2020-08-07 20:11:21 +05:30
keys: _k,
values,
} = node {
2020-08-07 20:11:21 +05:30
for v in values {
// FIXME: check keys are in incremental order
2020-08-07 20:11:21 +05:30
let v = v.clone();
self.entries.push(v);
}
}
Ok(())
}
}
//------------------------------------------
// FIXME: move to btree
struct ValueCollector<V> {
values: Vec<(u64, V)>,
}
impl<V> ValueCollector<V> {
fn new() -> ValueCollector<V> {
ValueCollector {
values: Vec::new(),
}
}
}
impl<V: Unpack + Clone> NodeVisitor<V> for ValueCollector<V> {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<V>) -> Result<()> {
if let Node::Leaf {
header: _h,
keys,
values,
} = node {
for n in 0..keys.len() {
let k = keys[n];
let v = values[n].clone();
self.values.push((k, v));
}
}
Ok(())
}
}
//------------------------------------------
struct RangeBuilder {
run: Option<(u64, BitmapEntry)>,
runs: Vec<(u64, BitmapEntry)>
}
impl RangeBuilder {
fn new() -> RangeBuilder {
RangeBuilder {
run: None,
runs: Vec::new(),
}
}
fn push(&mut self, e: &BitmapEntry) {
match &self.run {
Some((len, e2)) if *e == *e2 => {
self.run = Some((*len + 1, e2.clone()));
},
Some((len, e2)) => {
self.runs.push((*len, e2.clone()));
self.run = Some((1, e.clone()));
},
None => {
self.run = Some((1, e.clone()));
}
}
}
fn complete(&mut self) {
match &self.run {
Some((len, e)) => {
self.runs.push((*len, e.clone()));
},
None => {}
}
}
}
//------------------------------------------
pub fn check(dev: &Path) -> Result<()> {
let engine = Arc::new(AsyncIoEngine::new(dev, 256)?);
2020-07-27 20:23:42 +05:30
let now = Instant::now();
2020-08-03 20:52:08 +05:30
let sb = read_superblock(engine.as_ref(), SUPERBLOCK_LOCATION)?;
eprintln!("{:?}", sb);
// device details
2020-08-03 20:52:08 +05:30
{
let mut visitor = DeviceVisitor::new();
let mut w = BTreeWalker::new(engine.clone(), false);
w.walk(&mut visitor, sb.details_root)?;
println!("found {} devices", visitor.devs.len());
}
// mapping top level
let mut roots = HashMap::new();
2020-08-03 20:52:08 +05:30
{
let mut visitor = TopLevelVisitor { roots: &mut roots };
2020-08-03 20:52:08 +05:30
let mut w = BTreeWalker::new(engine.clone(), false);
let _result = w.walk(&mut visitor, sb.mapping_root)?;
println!("read mapping tree in {} ms", now.elapsed().as_millis());
}
2020-07-27 20:23:42 +05:30
// mapping bottom level
{
// FIXME: with a thread pool we need to return errors another way.
let nr_workers = 4;
let pool = ThreadPool::new(nr_workers);
let seen = Arc::new(Mutex::new(FixedBitSet::with_capacity(
engine.get_nr_blocks() as usize,
)));
let root = unpack::<SMRoot>(&sb.data_sm_root[0..])?;
let data_sm = Arc::new(Mutex::new(CoreSpaceMap::new(root.nr_blocks)));
for (thin_id, root) in roots {
let mut w = BTreeWalker::new_with_seen(engine.clone(), seen.clone(), false);
let data_sm = data_sm.clone();
pool.execute(move || {
let mut v = BottomLevelVisitor {data_sm};
let result = w.walk(&mut v, root).expect("walk failed"); // FIXME: return error
eprintln!("checked thin_dev {} -> {:?}", thin_id, result);
});
}
pool.join();
}
// data space map
{
let root = unpack::<SMRoot>(&sb.data_sm_root[0..])?;
eprintln!("data root: {:?}", root);
// overflow btree
let mut overflow: HashMap<u64, u32> = HashMap::new();
{
let mut v: ValueCollector<u32> = ValueCollector::new();
let mut w = BTreeWalker::new(engine.clone(), false);
w.walk(&mut v, root.ref_count_root)?;
for (k, v) in v.values {
overflow.insert(k, v);
}
}
eprintln!("{} overflow entries", overflow.len());
// Bitmaps
let mut v = IndexVisitor {entries: Vec::new()};
let mut w = BTreeWalker::new(engine.clone(), false);
let _result = w.walk(&mut v, root.bitmap_root);
eprintln!("{} index entries", v.entries.len());
let mut builder = RangeBuilder::new();
for i in v.entries {
let mut b = Block::new(i.blocknr);
engine.read(&mut b)?;
if checksum::metadata_block_type(&b.get_data()) != checksum::BT::BITMAP {
return Err(anyhow!("Index entry points to block ({}) that isn't a bitmap", b.loc));
}
let bitmap = unpack::<Bitmap>(b.get_data())?;
for e in bitmap.entries {
builder.push(&e);
}
}
builder.complete();
eprintln!("{} ranges", builder.runs.len());
let mut counts = BTreeMap::new();
for (len, _v) in builder.runs {
if let Some(c) = counts.get(&len) {
let new_c = *c + 1;
counts.insert(len, new_c);
} else {
counts.insert(len, 1);
}
}
for (len, c) in counts {
eprintln!("{}: {}", len, c);
}
}
Ok(())
}
//------------------------------------------