807 lines
29 KiB
Scheme
Raw Normal View History

;;; SRFI-14 character-sets library -*- Scheme -*-
;;;
;;; - Ported from MIT Scheme runtime by Brian D. Carlstrom.
;;; - Massively rehacked & extended by Olin Shivers 6/98.
;;; - Massively redesigned and rehacked 5/2000 during SRFI process.
;;; At this point, the code bears the following relationship to the
;;; MIT Scheme code: "This is my grandfather's axe. My father replaced
;;; the head, and I have replaced the handle." Nonetheless, we preserve
;;; the MIT Scheme copyright:
;;; Copyright (c) 1988-1995 Massachusetts Institute of Technology
;;; The MIT Scheme license is a "free software" license. See the end of
;;; this file for the tedious details.
;;; Exports:
;;; char-set? char-set= char-set<=
;;; char-set-hash
;;; char-set-cursor char-set-ref char-set-cursor-next end-of-char-set?
;;; char-set-fold char-set-unfold char-set-unfold!
;;; char-set-for-each char-set-map
;;; char-set-copy char-set
;;;
;;; list->char-set string->char-set
;;; list->char-set! string->char-set!
;;;
;;; filterchar-set ucs-range->char-set ->char-set
;;; filterchar-set! ucs-range->char-set!
;;;
;;; char-set->list char-set->string
;;;
;;; char-set-size char-set-count char-set-contains?
;;; char-set-every char-set-any
;;;
;;; char-set-adjoin char-set-delete
;;; char-set-adjoin! char-set-delete!
;;;
;;; char-set-complement char-set-union char-set-intersection
;;; char-set-complement! char-set-union! char-set-intersection!
;;;
;;; char-set-difference char-set-xor char-set-diff+intersection
;;; char-set-difference! char-set-xor! char-set-diff+intersection!
;;;
;;; char-set:lower-case char-set:upper-case char-set:title-case
;;; char-set:letter char-set:digit char-set:letter+digit
;;; char-set:graphic char-set:printing char-set:whitespace
;;; char-set:iso-control char-set:punctuation char-set:symbol
;;; char-set:hex-digit char-set:blank char-set:ascii
;;; char-set:empty char-set:full
;;; Imports
;;; This code has the following non-R5RS dependencies:
;;; - ERROR
;;; - %LATIN1->CHAR %CHAR->LATIN1
;;; - LET-OPTIONALS* and :OPTIONAL macros for parsing, checking & defaulting
;;; optional arguments from rest lists.
;;; - BITWISE-AND for CHAR-SET-HASH
;;; - The SRFI-19 DEFINE-RECORD-TYPE record macro
;;; - A simple CHECK-ARG procedure:
;;; (lambda (pred val caller) (if (not (pred val)) (error val caller)))
;;; This is simple code, not great code. Char sets are represented as 256-char
;;; strings. If char I is ASCII/Latin-1 0, then it isn't in the set; if char I
;;; is ASCII/Latin-1 1, then it is in the set.
;;; - Should be rewritten to use bit strings or byte vecs.
;;; - Is Latin-1 specific. Would certainly have to be rewritten for Unicode.
;;; See the end of the file for porting and performance-tuning notes.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define-record-type :char-set
(make-char-set s)
char-set?
(s char-set:s))
(define (%string-copy s) (substring s 0 (string-length s)))
;;; Parse, type-check & default a final optional BASE-CS parameter from
;;; a rest argument. Return a *fresh copy* of the underlying string.
;;; The default is the empty set. The PROC argument is to help us
;;; generate informative error exceptions.
(define (%default-base maybe-base proc)
(if (pair? maybe-base)
(let ((bcs (car maybe-base))
(tail (cdr maybe-base)))
(if (null? tail)
(if (char-set? bcs) (%string-copy (char-set:s bcs))
(assertion-violation proc "BASE-CS parameter not a char-set" bcs))
(assertion-violation proc
"Expected final base char set -- too many parameters" maybe-base)))
(make-string 256 (%latin1->char 0))))
;;; If CS is really a char-set, do CHAR-SET:S, otw report an error msg on
;;; behalf of our caller, PROC. This procedure exists basically to provide
;;; explicit error-checking & reporting.
(define (%char-set:s/check cs proc)
(let lp ((cs cs))
(if (char-set? cs) (char-set:s cs)
(lp (assertion-violation proc "Not a char-set" cs)))))
;;; These internal functions hide a lot of the dependency on the
;;; underlying string representation of char sets. They should be
;;; inlined if possible.
(define (si=0? s i) (zero? (%char->latin1 (string-ref s i))))
(define (si=1? s i) (not (si=0? s i)))
(define c0 (%latin1->char 0))
(define c1 (%latin1->char 1))
(define (si s i) (%char->latin1 (string-ref s i)))
(define (%set0! s i) (string-set! s i c0))
(define (%set1! s i) (string-set! s i c1))
;;; These do various "s[i] := s[i] op val" operations -- see
;;; %CHAR-SET-ALGEBRA. They are used to implement the various
;;; set-algebra procedures.
(define (setv! s i v) (string-set! s i (%latin1->char v))) ; SET to a Value.
(define (%not! s i v) (setv! s i (- 1 v)))
(define (%and! s i v) (if (zero? v) (%set0! s i)))
(define (%or! s i v) (if (not (zero? v)) (%set1! s i)))
(define (%minus! s i v) (if (not (zero? v)) (%set0! s i)))
(define (%xor! s i v) (if (not (zero? v)) (setv! s i (- 1 (si s i)))))
(define (char-set-copy cs)
(make-char-set (%string-copy (%char-set:s/check cs 'char-set-copy))))
(define (char-set= . rest)
(or (null? rest)
(let* ((cs1 (car rest))
(rest (cdr rest))
(s1 (%char-set:s/check cs1 'char-set=)))
(let lp ((rest rest))
(or (not (pair? rest))
(and (string=? s1 (%char-set:s/check (car rest) 'char-set=))
(lp (cdr rest))))))))
(define (char-set<= . rest)
(or (null? rest)
(let ((cs1 (car rest))
(rest (cdr rest)))
(let lp ((s1 (%char-set:s/check cs1 'char-set<=)) (rest rest))
(or (not (pair? rest))
(let ((s2 (%char-set:s/check (car rest) 'char-set<=))
(rest (cdr rest)))
(if (eq? s1 s2) (lp s2 rest) ; Fast path
(let lp2 ((i 255)) ; Real test
(if (< i 0) (lp s2 rest)
(and (<= (si s1 i) (si s2 i))
(lp2 (- i 1))))))))))))
;;; Hash
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Compute (c + 37 c + 37^2 c + ...) modulo BOUND, with sleaze thrown in
;;; to keep the intermediate values small. (We do the calculation with just
;;; enough bits to represent BOUND, masking off high bits at each step in
;;; calculation. If this screws up any important properties of the hash
;;; function I'd like to hear about it. -Olin)
;;;
;;; If you keep BOUND small enough, the intermediate calculations will
;;; always be fixnums. How small is dependent on the underlying Scheme system;
;;; we use a default BOUND of 2^22 = 4194304, which should hack it in
;;; Schemes that give you at least 29 signed bits for fixnums. The core
;;; calculation that you don't want to overflow is, worst case,
;;; (+ 65535 (* 37 (- bound 1)))
;;; where 65535 is the max character code. Choose the default BOUND to be the
;;; biggest power of two that won't cause this expression to fixnum overflow,
;;; and everything will be copacetic.
(define (char-set-hash cs . maybe-bound)
(let* ((bound (:optional maybe-bound 4194304 (lambda (n) (and (integer? n)
(exact? n)
(<= 0 n)))))
(bound (if (zero? bound) 4194304 bound)) ; 0 means default.
(s (%char-set:s/check cs 'char-set-hash))
;; Compute a 111...1 mask that will cover BOUND-1:
(mask (let lp ((i #x10000)) ; Let's skip first 16 iterations, eh?
(if (>= i bound) (- i 1) (lp (+ i i))))))
(let lp ((i 255) (ans 0))
(if (< i 0) (modulo ans bound)
(lp (- i 1)
(if (si=0? s i) ans
(bitwise-and mask (+ (* 37 ans) i))))))))
(define (char-set-contains? cs char)
(check-arg char? char 'char-set-contains?)
(si=1? (%char-set:s/check cs 'char-set-contains?)
(%char->latin1 char)))
(define (char-set-size cs)
(let ((s (%char-set:s/check cs 'char-set-size)))
(let lp ((i 255) (size 0))
(if (< i 0) size
(lp (- i 1) (+ size (si s i)))))))
(define (char-set-count pred cset)
(check-arg procedure? pred 'char-set-count)
(let ((s (%char-set:s/check cset 'char-set-count)))
(let lp ((i 255) (count 0))
(if (< i 0) count
(lp (- i 1)
(if (and (si=1? s i) (pred (%latin1->char i)))
(+ count 1)
count))))))
;;; -- Adjoin & delete
(define (%set-char-set set proc cs chars)
(let ((s (%string-copy (%char-set:s/check cs proc))))
(for-each (lambda (c) (set s (%char->latin1 c)))
chars)
(make-char-set s)))
(define (%set-char-set! set proc cs chars)
(let ((s (%char-set:s/check cs proc)))
(for-each (lambda (c) (set s (%char->latin1 c)))
chars))
cs)
(define (char-set-adjoin cs . chars)
(%set-char-set %set1! 'char-set-adjoin cs chars))
(define (char-set-adjoin! cs . chars)
(%set-char-set! %set1! 'char-set-adjoin! cs chars))
(define (char-set-delete cs . chars)
(%set-char-set %set0! 'char-set-delete cs chars))
(define (char-set-delete! cs . chars)
(%set-char-set! %set0! 'char-set-delete! cs chars))
;;; Cursors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Simple implementation. A cursors is an integer index into the
;;; mark vector, and -1 for the end-of-char-set cursor.
;;;
;;; If we represented char sets as a bit set, we could do the following
;;; trick to pick the lowest bit out of the set:
;;; (count-bits (xor (- cset 1) cset))
;;; (But first mask out the bits already scanned by the cursor first.)
(define (char-set-cursor cset)
(%char-set-cursor-next cset 256 'char-set-cursor))
(define (end-of-char-set? cursor) (< cursor 0))
(define (char-set-ref cset cursor) (%latin1->char cursor))
(define (char-set-cursor-next cset cursor)
(check-arg (lambda (i) (and (integer? i) (exact? i) (<= 0 i 255))) cursor
'char-set-cursor-next)
(%char-set-cursor-next cset cursor 'char-set-cursor-next))
(define (%char-set-cursor-next cset cursor proc) ; Internal
(let ((s (%char-set:s/check cset proc)))
(let lp ((cur cursor))
(let ((cur (- cur 1)))
(if (or (< cur 0) (si=1? s cur)) cur
(lp cur))))))
;;; -- for-each map fold unfold every any
(define (char-set-for-each proc cs)
(check-arg procedure? proc 'char-set-for-each)
(let ((s (%char-set:s/check cs 'char-set-for-each)))
(let lp ((i 255))
(cond ((>= i 0)
(if (si=1? s i) (proc (%latin1->char i)))
(lp (- i 1)))))))
(define (char-set-map proc cs)
(check-arg procedure? proc 'char-set-map)
(let ((s (%char-set:s/check cs 'char-set-map))
(ans (make-string 256 c0)))
(let lp ((i 255))
(cond ((>= i 0)
(if (si=1? s i)
(%set1! ans (%char->latin1 (proc (%latin1->char i)))))
(lp (- i 1)))))
(make-char-set ans)))
(define (char-set-fold kons knil cs)
(check-arg procedure? kons 'char-set-fold)
(let ((s (%char-set:s/check cs 'char-set-fold)))
(let lp ((i 255) (ans knil))
(if (< i 0) ans
(lp (- i 1)
(if (si=0? s i) ans
(kons (%latin1->char i) ans)))))))
(define (char-set-every pred cs)
(check-arg procedure? pred 'char-set-every)
(let ((s (%char-set:s/check cs 'char-set-every)))
(let lp ((i 255))
(or (< i 0)
(and (or (si=0? s i) (pred (%latin1->char i)))
(lp (- i 1)))))))
(define (char-set-any pred cs)
(check-arg procedure? pred 'char-set-any)
(let ((s (%char-set:s/check cs 'char-set-any)))
(let lp ((i 255))
(and (>= i 0)
(or (and (si=1? s i) (pred (%latin1->char i)))
(lp (- i 1)))))))
(define (%char-set-unfold! proc p f g s seed)
(check-arg procedure? p proc)
(check-arg procedure? f proc)
(check-arg procedure? g proc)
(let lp ((seed seed))
(cond ((not (p seed)) ; P says we are done.
(%set1! s (%char->latin1 (f seed))) ; Add (F SEED) to set.
(lp (g seed)))))) ; Loop on (G SEED).
(define (char-set-unfold p f g seed . maybe-base)
(let ((bs (%default-base maybe-base 'char-set-unfold)))
(%char-set-unfold! 'char-set-unfold p f g bs seed)
(make-char-set bs)))
(define (char-set-unfold! p f g seed base-cset)
(%char-set-unfold! 'char-set-unfold! p f g
(%char-set:s/check base-cset 'char-set-unfold!)
seed)
base-cset)
;;; list <--> char-set
(define (%list->char-set! chars s)
(for-each (lambda (char) (%set1! s (%char->latin1 char)))
chars))
(define (char-set . chars)
(let ((s (make-string 256 c0)))
(%list->char-set! chars s)
(make-char-set s)))
(define (list->char-set chars . maybe-base)
(let ((bs (%default-base maybe-base 'list->char-set)))
(%list->char-set! chars bs)
(make-char-set bs)))
(define (list->char-set! chars base-cs)
(%list->char-set! chars (%char-set:s/check base-cs 'list->char-set!))
base-cs)
(define (char-set->list cs)
(let ((s (%char-set:s/check cs 'char-set->list)))
(let lp ((i 255) (ans '()))
(if (< i 0) ans
(lp (- i 1)
(if (si=0? s i) ans
(cons (%latin1->char i) ans)))))))
;;; string <--> char-set
(define (%string->char-set! str bs proc)
(check-arg string? str proc)
(do ((i (- (string-length str) 1) (- i 1)))
((< i 0))
(%set1! bs (%char->latin1 (string-ref str i)))))
(define (string->char-set str . maybe-base)
(let ((bs (%default-base maybe-base 'string->char-set)))
(%string->char-set! str bs 'string->char-set)
(make-char-set bs)))
(define (string->char-set! str base-cs)
(%string->char-set! str (%char-set:s/check base-cs 'string->char-set!)
'string->char-set!)
base-cs)
(define (char-set->string cs)
(let* ((s (%char-set:s/check cs 'char-set->string))
(ans (make-string (char-set-size cs))))
(let lp ((i 255) (j 0))
(if (< i 0) ans
(let ((j (if (si=0? s i) j
(begin (string-set! ans j (%latin1->char i))
(+ j 1)))))
(lp (- i 1) j))))))
;;; -- UCS-range -> char-set
(define (%ucs-range->char-set! lower upper error? bs proc)
(check-arg (lambda (x) (and (integer? x) (exact? x) (<= 0 x))) lower proc)
(check-arg (lambda (x) (and (integer? x) (exact? x) (<= lower x))) upper proc)
(if (and (< lower upper) (< 256 upper) error?)
(assertion-violation proc
"Requested UCS range contains unavailable characters -- this implementation only supports Latin-1"
lower upper))
(let lp ((i (- (min upper 256) 1)))
(cond ((<= lower i) (%set1! bs i) (lp (- i 1))))))
(define (ucs-range->char-set lower upper . rest)
(let-optionals* rest ((error? #f) rest)
(let ((bs (%default-base rest 'ucs-range->char-set)))
(%ucs-range->char-set! lower upper error? bs 'ucs-range->char-set)
(make-char-set bs))))
(define (ucs-range->char-set! lower upper error? base-cs)
(%ucs-range->char-set! lower upper error?
(%char-set:s/check base-cs 'ucs-range->char-set!)
'ucs-range->char-set)
base-cs)
;;; -- predicate -> char-set
(define (%char-set-filter! pred ds bs proc)
(check-arg procedure? pred proc)
(let lp ((i 255))
(cond ((>= i 0)
(if (and (si=1? ds i) (pred (%latin1->char i)))
(%set1! bs i))
(lp (- i 1))))))
(define (char-set-filter predicate domain . maybe-base)
(let ((bs (%default-base maybe-base 'char-set-filter)))
(%char-set-filter! predicate
(%char-set:s/check domain 'char-set-filter!)
bs
'char-set-filter)
(make-char-set bs)))
(define (char-set-filter! predicate domain base-cs)
(%char-set-filter! predicate
(%char-set:s/check domain 'char-set-filter!)
(%char-set:s/check base-cs 'char-set-filter!)
'char-set-filter!)
base-cs)
;;; {string, char, char-set, char predicate} -> char-set
(define (->char-set x)
(cond ((char-set? x) x)
((string? x) (string->char-set x))
((char? x) (char-set x))
(else (error "Not a charset, string or char." x))))
;;; Set algebra
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The exported ! procs are "linear update" -- allowed, but not required, to
;;; side-effect their first argument when computing their result. In other
;;; words, you must use them as if they were completely functional, just like
;;; their non-! counterparts, and you must additionally ensure that their
;;; first arguments are "dead" at the point of call. In return, we promise a
;;; more efficient result, plus allowing you to always assume char-sets are
;;; unchangeable values.
;;; Apply P to each index and its char code in S: (P I VAL).
;;; Used by the set-algebra ops.
(define (%string-iter p s)
(let lp ((i (- (string-length s) 1)))
(cond ((>= i 0)
(p i (%char->latin1 (string-ref s i)))
(lp (- i 1))))))
;;; String S represents some initial char-set. (OP s i val) does some
;;; kind of s[i] := s[i] op val update. Do
;;; S := S OP CSETi
;;; for all the char-sets in the list CSETS. The n-ary set-algebra ops
;;; all use this internal proc.
(define (%char-set-algebra s csets op proc)
(for-each (lambda (cset)
(let ((s2 (%char-set:s/check cset proc)))
(let lp ((i 255))
(cond ((>= i 0)
(op s i (si s2 i))
(lp (- i 1)))))))
csets))
;;; -- Complement
(define (char-set-complement cs)
(let ((s (%char-set:s/check cs 'char-set-complement))
(ans (make-string 256)))
(%string-iter (lambda (i v) (%not! ans i v)) s)
(make-char-set ans)))
(define (char-set-complement! cset)
(let ((s (%char-set:s/check cset 'char-set-complement!)))
(%string-iter (lambda (i v) (%not! s i v)) s))
cset)
;;; -- Union
(define (char-set-union! cset1 . csets)
(%char-set-algebra (%char-set:s/check cset1 'char-set-union!)
csets %or! 'char-set-union!)
cset1)
(define (char-set-union . csets)
(if (pair? csets)
(let ((s (%string-copy (%char-set:s/check (car csets) 'char-set-union))))
(%char-set-algebra s (cdr csets) %or! 'char-set-union)
(make-char-set s))
(char-set-copy char-set:empty)))
;;; -- Intersection
(define (char-set-intersection! cset1 . csets)
(%char-set-algebra (%char-set:s/check cset1 'char-set-intersection!)
csets %and! 'char-set-intersection!)
cset1)
(define (char-set-intersection . csets)
(if (pair? csets)
(let ((s (%string-copy (%char-set:s/check (car csets) 'char-set-intersection))))
(%char-set-algebra s (cdr csets) %and! 'char-set-intersection)
(make-char-set s))
(char-set-copy char-set:full)))
;;; -- Difference
(define (char-set-difference! cset1 . csets)
(%char-set-algebra (%char-set:s/check cset1 'char-set-difference!)
csets %minus! 'char-set-difference!)
cset1)
(define (char-set-difference cs1 . csets)
(if (pair? csets)
(let ((s (%string-copy (%char-set:s/check cs1 'char-set-difference))))
(%char-set-algebra s csets %minus! 'char-set-difference)
(make-char-set s))
(char-set-copy cs1)))
;;; -- Xor
(define (char-set-xor! cset1 . csets)
(%char-set-algebra (%char-set:s/check cset1 'char-set-xor!)
csets %xor! 'char-set-xor!)
cset1)
(define (char-set-xor . csets)
(if (pair? csets)
(let ((s (%string-copy (%char-set:s/check (car csets) 'char-set-xor))))
(%char-set-algebra s (cdr csets) %xor! 'char-set-xor)
(make-char-set s))
(char-set-copy char-set:empty)))
;;; -- Difference & intersection
(define (%char-set-diff+intersection! diff int csets proc)
(for-each (lambda (cs)
(%string-iter (lambda (i v)
(if (not (zero? v))
(cond ((si=1? diff i)
(%set0! diff i)
(%set1! int i)))))
(%char-set:s/check cs proc)))
csets))
(define (char-set-diff+intersection! cs1 cs2 . csets)
(let ((s1 (%char-set:s/check cs1 'char-set-diff+intersection!))
(s2 (%char-set:s/check cs2 'char-set-diff+intersection!)))
(%string-iter (lambda (i v) (if (zero? v)
(%set0! s2 i)
(if (si=1? s2 i) (%set0! s1 i))))
s1)
(%char-set-diff+intersection! s1 s2 csets 'char-set-diff+intersection!))
(values cs1 cs2))
(define (char-set-diff+intersection cs1 . csets)
(let ((diff (string-copy (%char-set:s/check cs1 'char-set-diff+intersection)))
(int (make-string 256 c0)))
(%char-set-diff+intersection! diff int csets 'char-set-diff+intersection)
(values (make-char-set diff) (make-char-set int))))
;;;; System character sets
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; These definitions are for Latin-1.
;;;
;;; If your Scheme implementation allows you to mark the underlying strings
;;; as immutable, you should do so -- it would be very, very bad if a client's
;;; buggy code corrupted these constants.
(define char-set:empty (char-set))
(define char-set:full (char-set-complement char-set:empty))
(define char-set:lower-case
(let* ((a-z (ucs-range->char-set #x61 #x7B))
(latin1 (ucs-range->char-set! #xdf #xf7 #t a-z))
(latin2 (ucs-range->char-set! #xf8 #x100 #t latin1)))
(char-set-adjoin! latin2 (%latin1->char #xb5))))
(define char-set:upper-case
(let ((A-Z (ucs-range->char-set #x41 #x5B)))
;; Add in the Latin-1 upper-case chars.
(ucs-range->char-set! #xd8 #xdf #t
(ucs-range->char-set! #xc0 #xd7 #t A-Z))))
(define char-set:title-case char-set:empty)
(define char-set:letter
(let ((u/l (char-set-union char-set:upper-case char-set:lower-case)))
(char-set-adjoin! u/l
(%latin1->char #xaa) ; FEMININE ORDINAL INDICATOR
(%latin1->char #xba)))) ; MASCULINE ORDINAL INDICATOR
(define char-set:digit (string->char-set "0123456789"))
(define char-set:hex-digit (string->char-set "0123456789abcdefABCDEF"))
(define char-set:letter+digit
(char-set-union char-set:letter char-set:digit))
(define char-set:punctuation
(let ((ascii (string->char-set "!\"#%&'()*,-./:;?@[\\]_{}"))
(latin-1-chars (map %latin1->char '(#xA1 ; INVERTED EXCLAMATION MARK
#xAB ; LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
#xAD ; SOFT HYPHEN
#xB7 ; MIDDLE DOT
#xBB ; RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
#xBF)))) ; INVERTED QUESTION MARK
(list->char-set! latin-1-chars ascii)))
(define char-set:symbol
(let ((ascii (string->char-set "$+<=>^`|~"))
(latin-1-chars (map %latin1->char '(#x00A2 ; CENT SIGN
#x00A3 ; POUND SIGN
#x00A4 ; CURRENCY SIGN
#x00A5 ; YEN SIGN
#x00A6 ; BROKEN BAR
#x00A7 ; SECTION SIGN
#x00A8 ; DIAERESIS
#x00A9 ; COPYRIGHT SIGN
#x00AC ; NOT SIGN
#x00AE ; REGISTERED SIGN
#x00AF ; MACRON
#x00B0 ; DEGREE SIGN
#x00B1 ; PLUS-MINUS SIGN
#x00B4 ; ACUTE ACCENT
#x00B6 ; PILCROW SIGN
#x00B8 ; CEDILLA
#x00D7 ; MULTIPLICATION SIGN
#x00F7)))) ; DIVISION SIGN
(list->char-set! latin-1-chars ascii)))
(define char-set:graphic
(char-set-union char-set:letter+digit char-set:punctuation char-set:symbol))
(define char-set:whitespace
(list->char-set (map %latin1->char '(#x09 ; HORIZONTAL TABULATION
#x0A ; LINE FEED
#x0B ; VERTICAL TABULATION
#x0C ; FORM FEED
#x0D ; CARRIAGE RETURN
#x20 ; SPACE
#xA0))))
(define char-set:printing (char-set-union char-set:whitespace char-set:graphic)) ; NO-BREAK SPACE
(define char-set:blank
(list->char-set (map %latin1->char '(#x09 ; HORIZONTAL TABULATION
#x20 ; SPACE
#xA0)))) ; NO-BREAK SPACE
(define char-set:iso-control
(ucs-range->char-set! #x7F #xA0 #t (ucs-range->char-set 0 32)))
(define char-set:ascii (ucs-range->char-set 0 128))
;;; Porting & performance-tuning notes
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; See the section at the beginning of this file on external dependencies.
;;;
;;; First and foremost, rewrite this code to use bit vectors of some sort.
;;; This will give big speedup and memory savings.
;;;
;;; - LET-OPTIONALS* macro.
;;; This is only used once. You can rewrite the use, port the hairy macro
;;; definition (which is implemented using a Clinger-Rees low-level
;;; explicit-renaming macro system), or port the simple, high-level
;;; definition, which is less efficient.
;;;
;;; - :OPTIONAL macro
;;; Very simply defined using an R5RS high-level macro.
;;;
;;; Implementations that can arrange for the base char sets to be immutable
;;; should do so. (E.g., Scheme 48 allows one to mark a string as immutable,
;;; which can be used to protect the underlying strings.) It would be very,
;;; very bad if a client's buggy code corrupted these constants.
;;;
;;; There is a fair amount of argument checking. This is, strictly speaking,
;;; unnecessary -- the actual body of the procedures will blow up if an
;;; illegal value is passed in. However, the error message will not be as good
;;; as if the error were caught at the "higher level." Also, a very, very
;;; smart Scheme compiler may be able to exploit having the type checks done
;;; early, so that the actual body of the procedures can assume proper values.
;;; This isn't likely; this kind of compiler technology isn't common any
;;; longer.
;;;
;;; The overhead of optional-argument parsing is irritating. The optional
;;; arguments must be consed into a rest list on entry, and then parsed out.
;;; Function call should be a matter of a few register moves and a jump; it
;;; should not involve heap allocation! Your Scheme system may have a superior
;;; non-R5RS optional-argument system that can eliminate this overhead. If so,
;;; then this is a prime candidate for optimising these procedures,
;;; *especially* the many optional BASE-CS parameters.
;;;
;;; Note that optional arguments are also a barrier to procedure integration.
;;; If your Scheme system permits you to specify alternate entry points
;;; for a call when the number of optional arguments is known in a manner
;;; that enables inlining/integration, this can provide performance
;;; improvements.
;;;
;;; There is enough *explicit* error checking that *all* internal operations
;;; should *never* produce a type or index-range error. Period. Feel like
;;; living dangerously? *Big* performance win to be had by replacing string
;;; and record-field accessors and setters with unsafe equivalents in the
;;; code. Similarly, fixnum-specific operators can speed up the arithmetic
;;; done on the index values in the inner loops. The only arguments that are
;;; not completely error checked are
;;; - string lists (complete checking requires time proportional to the
;;; length of the list)
;;; - procedure arguments, such as char->char maps & predicates.
;;; There is no way to check the range & domain of procedures in Scheme.
;;; Procedures that take these parameters cannot fully check their
;;; arguments. But all other types to all other procedures are fully
;;; checked.
;;;
;;; This does open up the alternate possibility of simply *removing* these
;;; checks, and letting the safe primitives raise the errors. On a dumb
;;; Scheme system, this would provide speed (by eliminating the redundant
;;; error checks) at the cost of error-message clarity.
;;;
;;; In an interpreted Scheme, some of these procedures, or the internal
;;; routines with % prefixes, are excellent candidates for being rewritten
;;; in C.
;;;
;;; It would also be nice to have the ability to mark some of these
;;; routines as candidates for inlining/integration.
;;;
;;; See the comments preceding the hash function code for notes on tuning
;;; the default bound so that the code never overflows your implementation's
;;; fixnum size into bignum calculation.
;;;
;;; All the %-prefixed routines in this source code are written
;;; to be called internally to this library. They do *not* perform
;;; friendly error checks on the inputs; they assume everything is
;;; proper. They also do not take optional arguments. These two properties
;;; save calling overhead and enable procedure integration -- but they
;;; are not appropriate for exported routines.
;;; Copyright notice
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Copyright (c) 1988-1995 Massachusetts Institute of Technology
;;;
;;; This material was developed by the Scheme project at the Massachusetts
;;; Institute of Technology, Department of Electrical Engineering and
;;; Computer Science. Permission to copy and modify this software, to
;;; redistribute either the original software or a modified version, and
;;; to use this software for any purpose is granted, subject to the
;;; following restrictions and understandings.
;;;
;;; 1. Any copy made of this software must include this copyright notice
;;; in full.
;;;
;;; 2. Users of this software agree to make their best efforts (a) to
;;; return to the MIT Scheme project any improvements or extensions that
;;; they make, so that these may be included in future releases; and (b)
;;; to inform MIT of noteworthy uses of this software.
;;;
;;; 3. All materials developed as a consequence of the use of this
;;; software shall duly acknowledge such use, in accordance with the usual
;;; standards of acknowledging credit in academic research.
;;;
;;; 4. MIT has made no warrantee or representation that the operation of
;;; this software will be error-free, and MIT is under no obligation to
;;; provide any services, by way of maintenance, update, or otherwise.
;;;
;;; 5. In conjunction with products arising from the use of this material,
;;; there shall be no use of the name of the Massachusetts Institute of
;;; Technology nor of any adaptation thereof in any advertising,
;;; promotional, or sales literature without prior written consent from
;;; MIT in each case.