1143 lines
41 KiB
Plaintext
1143 lines
41 KiB
Plaintext
|
#!r6rs
|
||
|
|
||
|
;; Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with
|
||
|
;; this code as long as you do not remove this copyright notice or
|
||
|
;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
|
||
|
;; -Olin
|
||
|
|
||
|
;; Ikarus porting begun by Abdulaziz Ghuloum,
|
||
|
;; and continued by Derick Eddington.
|
||
|
|
||
|
(library (srfi s1 lists)
|
||
|
(export
|
||
|
xcons make-list list-tabulate list-copy
|
||
|
proper-list? circular-list? dotted-list? not-pair? null-list? list=
|
||
|
circular-list length+
|
||
|
iota
|
||
|
first second third fourth fifth sixth seventh eighth ninth tenth
|
||
|
car+cdr
|
||
|
take drop
|
||
|
take-right drop-right
|
||
|
take! drop-right!
|
||
|
split-at split-at!
|
||
|
last last-pair
|
||
|
zip unzip1 unzip2 unzip3 unzip4 unzip5
|
||
|
count
|
||
|
append! append-reverse append-reverse! concatenate concatenate!
|
||
|
unfold fold pair-fold reduce
|
||
|
unfold-right pair-fold-right reduce-right
|
||
|
append-map append-map! map! pair-for-each filter-map map-in-order
|
||
|
filter! partition! remove!
|
||
|
find-tail any every list-index
|
||
|
take-while drop-while take-while!
|
||
|
span break span! break!
|
||
|
delete delete!
|
||
|
alist-cons alist-copy
|
||
|
delete-duplicates delete-duplicates!
|
||
|
alist-delete alist-delete!
|
||
|
reverse!
|
||
|
lset<= lset= lset-adjoin
|
||
|
lset-union lset-intersection lset-difference lset-xor
|
||
|
lset-diff+intersection
|
||
|
lset-union! lset-intersection! lset-difference! lset-xor!
|
||
|
lset-diff+intersection!
|
||
|
;; re-exported:
|
||
|
append assq assv caaaar caaadr caaar caadar caaddr
|
||
|
caadr caar cadaar cadadr cadar caddar cadddr caddr cadr
|
||
|
car cdaaar cdaadr cdaar cdadar cdaddr cdadr cdar cddaar
|
||
|
cddadr cddar cdddar cddddr cdddr cddr cdr cons cons*
|
||
|
length list list-ref memq memv null? pair?
|
||
|
reverse set-car! set-cdr!
|
||
|
;; different than R6RS:
|
||
|
assoc filter find fold-right for-each map member partition remove)
|
||
|
(import
|
||
|
(except (rnrs)
|
||
|
assoc error filter find fold-right
|
||
|
for-each map member partition remove)
|
||
|
(rnrs mutable-pairs))
|
||
|
|
||
|
(define-syntax check-arg
|
||
|
(lambda (stx)
|
||
|
(syntax-case stx ()
|
||
|
[(_ pred val caller)
|
||
|
(and (identifier? #'val) (identifier? #'caller))
|
||
|
#'(unless (pred val)
|
||
|
(assertion-violation 'caller "check-arg failed" val))])))
|
||
|
|
||
|
(define (error . args)
|
||
|
(if (and (<= 2 (length args)) (symbol? (car args)) (string? (cadr args)))
|
||
|
(apply assertion-violation args)
|
||
|
(apply assertion-violation "(library (srfi s1 lists))"
|
||
|
"misuse of error procedure" args)))
|
||
|
|
||
|
;; Constructors
|
||
|
;; ;;;;;;;;;;;;;
|
||
|
|
||
|
(define (xcons d a) (cons a d))
|
||
|
|
||
|
(define (make-list len . maybe-elt)
|
||
|
(check-arg (lambda (n) (and (integer? n) (>= n 0))) len make-list)
|
||
|
(let ((elt (cond ((null? maybe-elt) #f) ; Default value
|
||
|
((null? (cdr maybe-elt)) (car maybe-elt))
|
||
|
(else (error 'make-list "Too many arguments"
|
||
|
(cons len maybe-elt))))))
|
||
|
(do ((i len (- i 1))
|
||
|
(ans '() (cons elt ans)))
|
||
|
((<= i 0) ans))))
|
||
|
|
||
|
(define (list-tabulate len proc)
|
||
|
(check-arg (lambda (n) (and (integer? n) (>= n 0))) len list-tabulate)
|
||
|
(check-arg procedure? proc list-tabulate)
|
||
|
(do ((i (- len 1) (- i 1))
|
||
|
(ans '() (cons (proc i) ans)))
|
||
|
((< i 0) ans)))
|
||
|
|
||
|
(define (list-copy lis)
|
||
|
(let recur ((lis lis))
|
||
|
(if (pair? lis)
|
||
|
(cons (car lis) (recur (cdr lis)))
|
||
|
lis)))
|
||
|
|
||
|
(define iota
|
||
|
(case-lambda
|
||
|
[(count) (iota count 0 1)]
|
||
|
[(count start) (iota count start 1)]
|
||
|
[(count start step)
|
||
|
(check-arg integer? count iota)
|
||
|
(if (< count 0) (error 'iota "Negative step count" count))
|
||
|
(check-arg number? start iota)
|
||
|
(check-arg number? step iota)
|
||
|
(let ((last-val (+ start (* (- count 1) step))))
|
||
|
(do ((count count (- count 1))
|
||
|
(val last-val (- val step))
|
||
|
(ans '() (cons val ans)))
|
||
|
((<= count 0) ans)))]))
|
||
|
|
||
|
(define (circular-list val1 . vals)
|
||
|
(let ((ans (cons val1 vals)))
|
||
|
(set-cdr! (last-pair ans) ans)
|
||
|
ans))
|
||
|
|
||
|
(define (proper-list? x)
|
||
|
(let lp ((x x) (lag x))
|
||
|
(if (pair? x)
|
||
|
(let ((x (cdr x)))
|
||
|
(if (pair? x)
|
||
|
(let ((x (cdr x))
|
||
|
(lag (cdr lag)))
|
||
|
(and (not (eq? x lag)) (lp x lag)))
|
||
|
(null? x)))
|
||
|
(null? x))))
|
||
|
|
||
|
(define (dotted-list? x)
|
||
|
(let lp ((x x) (lag x))
|
||
|
(if (pair? x)
|
||
|
(let ((x (cdr x)))
|
||
|
(if (pair? x)
|
||
|
(let ((x (cdr x))
|
||
|
(lag (cdr lag)))
|
||
|
(and (not (eq? x lag)) (lp x lag)))
|
||
|
(not (null? x))))
|
||
|
(not (null? x)))))
|
||
|
|
||
|
(define (circular-list? x)
|
||
|
(let lp ((x x) (lag x))
|
||
|
(and (pair? x)
|
||
|
(let ((x (cdr x)))
|
||
|
(and (pair? x)
|
||
|
(let ((x (cdr x))
|
||
|
(lag (cdr lag)))
|
||
|
(or (eq? x lag) (lp x lag))))))))
|
||
|
|
||
|
(define (not-pair? x) (not (pair? x))) ; Inline me.
|
||
|
|
||
|
(define (null-list? l)
|
||
|
(cond ((pair? l) #f)
|
||
|
((null? l) #t)
|
||
|
(else (error 'null-list? "argument out of domain" l))))
|
||
|
|
||
|
|
||
|
(define (list= elt= . lists)
|
||
|
(or (null? lists) ; special case
|
||
|
(let lp1 ((list-a (car lists)) (others (cdr lists)))
|
||
|
(or (null? others)
|
||
|
(let ((list-b-orig (car others))
|
||
|
(others (cdr others)))
|
||
|
(if (eq? list-a list-b-orig) ; EQ? => LIST=
|
||
|
(lp1 list-b-orig others)
|
||
|
(let lp2 ((list-a list-a) (list-b list-b-orig))
|
||
|
(if (null-list? list-a)
|
||
|
(and (null-list? list-b)
|
||
|
(lp1 list-b-orig others))
|
||
|
(and (not (null-list? list-b))
|
||
|
(elt= (car list-a) (car list-b))
|
||
|
(lp2 (cdr list-a) (cdr list-b)))))))))))
|
||
|
|
||
|
(define (length+ x) ; Returns #f if X is circular.
|
||
|
(let lp ((x x) (lag x) (len 0))
|
||
|
(if (pair? x)
|
||
|
(let ((x (cdr x))
|
||
|
(len (+ len 1)))
|
||
|
(if (pair? x)
|
||
|
(let ((x (cdr x))
|
||
|
(lag (cdr lag))
|
||
|
(len (+ len 1)))
|
||
|
(and (not (eq? x lag)) (lp x lag len)))
|
||
|
len))
|
||
|
len)))
|
||
|
|
||
|
(define (zip list1 . more-lists) (apply map list list1 more-lists))
|
||
|
|
||
|
|
||
|
;; Selectors
|
||
|
;; ;;;;;;;;;;
|
||
|
|
||
|
(define first car)
|
||
|
(define second cadr)
|
||
|
(define third caddr)
|
||
|
(define fourth cadddr)
|
||
|
(define (fifth x) (car (cddddr x)))
|
||
|
(define (sixth x) (cadr (cddddr x)))
|
||
|
(define (seventh x) (caddr (cddddr x)))
|
||
|
(define (eighth x) (cadddr (cddddr x)))
|
||
|
(define (ninth x) (car (cddddr (cddddr x))))
|
||
|
(define (tenth x) (cadr (cddddr (cddddr x))))
|
||
|
|
||
|
(define (car+cdr pair) (values (car pair) (cdr pair)))
|
||
|
|
||
|
(define (take lis k)
|
||
|
(check-arg integer? k take)
|
||
|
(let recur ((lis lis) (k k))
|
||
|
(if (zero? k) '()
|
||
|
(cons (car lis)
|
||
|
(recur (cdr lis) (- k 1))))))
|
||
|
|
||
|
(define (drop lis k)
|
||
|
(check-arg integer? k drop)
|
||
|
(let iter ((lis lis) (k k))
|
||
|
(if (zero? k) lis (iter (cdr lis) (- k 1)))))
|
||
|
|
||
|
(define (take! lis k)
|
||
|
(check-arg integer? k take!)
|
||
|
(if (zero? k) '()
|
||
|
(begin (set-cdr! (drop lis (- k 1)) '())
|
||
|
lis)))
|
||
|
|
||
|
(define (take-right lis k)
|
||
|
(check-arg integer? k take-right)
|
||
|
(let lp ((lag lis) (lead (drop lis k)))
|
||
|
(if (pair? lead)
|
||
|
(lp (cdr lag) (cdr lead))
|
||
|
lag)))
|
||
|
|
||
|
(define (drop-right lis k)
|
||
|
(check-arg integer? k drop-right)
|
||
|
(let recur ((lag lis) (lead (drop lis k)))
|
||
|
(if (pair? lead)
|
||
|
(cons (car lag) (recur (cdr lag) (cdr lead)))
|
||
|
'())))
|
||
|
|
||
|
(define (drop-right! lis k)
|
||
|
(check-arg integer? k drop-right!)
|
||
|
(let ((lead (drop lis k)))
|
||
|
(if (pair? lead)
|
||
|
|
||
|
(let lp ((lag lis) (lead (cdr lead))) ; Standard case
|
||
|
(if (pair? lead)
|
||
|
(lp (cdr lag) (cdr lead))
|
||
|
(begin (set-cdr! lag '())
|
||
|
lis)))
|
||
|
|
||
|
'()))) ; Special case dropping everything -- no cons to side-effect.
|
||
|
|
||
|
(define-syntax receive
|
||
|
(syntax-rules ()
|
||
|
[(_ (id* ...) expr body body* ...)
|
||
|
(let-values ([(id* ...) expr]) body body* ...)]))
|
||
|
|
||
|
|
||
|
(define (split-at x k)
|
||
|
(check-arg integer? k split-at)
|
||
|
(let recur ((lis x) (k k))
|
||
|
(if (zero? k) (values '() lis)
|
||
|
(receive (prefix suffix) (recur (cdr lis) (- k 1))
|
||
|
(values (cons (car lis) prefix) suffix)))))
|
||
|
|
||
|
(define (split-at! x k)
|
||
|
(check-arg integer? k split-at!)
|
||
|
(if (zero? k) (values '() x)
|
||
|
(let* ((prev (drop x (- k 1)))
|
||
|
(suffix (cdr prev)))
|
||
|
(set-cdr! prev '())
|
||
|
(values x suffix))))
|
||
|
|
||
|
|
||
|
(define (last lis) (car (last-pair lis)))
|
||
|
|
||
|
(define (last-pair lis)
|
||
|
(check-arg pair? lis last-pair)
|
||
|
(let lp ((lis lis))
|
||
|
(let ((tail (cdr lis)))
|
||
|
(if (pair? tail) (lp tail) lis))))
|
||
|
|
||
|
|
||
|
;; Unzippers -- 1 through 5
|
||
|
;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||
|
|
||
|
(define (unzip1 lis) (map car lis))
|
||
|
|
||
|
(define (unzip2 lis)
|
||
|
(let recur ((lis lis))
|
||
|
(if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle
|
||
|
(let ((elt (car lis))) ; dotted lists.
|
||
|
(receive (a b) (recur (cdr lis))
|
||
|
(values (cons (car elt) a)
|
||
|
(cons (cadr elt) b)))))))
|
||
|
|
||
|
(define (unzip3 lis)
|
||
|
(let recur ((lis lis))
|
||
|
(if (null-list? lis) (values lis lis lis)
|
||
|
(let ((elt (car lis)))
|
||
|
(receive (a b c) (recur (cdr lis))
|
||
|
(values (cons (car elt) a)
|
||
|
(cons (cadr elt) b)
|
||
|
(cons (caddr elt) c)))))))
|
||
|
|
||
|
(define (unzip4 lis)
|
||
|
(let recur ((lis lis))
|
||
|
(if (null-list? lis) (values lis lis lis lis)
|
||
|
(let ((elt (car lis)))
|
||
|
(receive (a b c d) (recur (cdr lis))
|
||
|
(values (cons (car elt) a)
|
||
|
(cons (cadr elt) b)
|
||
|
(cons (caddr elt) c)
|
||
|
(cons (cadddr elt) d)))))))
|
||
|
|
||
|
(define (unzip5 lis)
|
||
|
(let recur ((lis lis))
|
||
|
(if (null-list? lis) (values lis lis lis lis lis)
|
||
|
(let ((elt (car lis)))
|
||
|
(receive (a b c d e) (recur (cdr lis))
|
||
|
(values (cons (car elt) a)
|
||
|
(cons (cadr elt) b)
|
||
|
(cons (caddr elt) c)
|
||
|
(cons (cadddr elt) d)
|
||
|
(cons (car (cddddr elt)) e)))))))
|
||
|
|
||
|
|
||
|
;; append! append-reverse append-reverse! concatenate concatenate!
|
||
|
;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||
|
|
||
|
(define (append! . lists)
|
||
|
;; First, scan through lists looking for a non-empty one.
|
||
|
(let lp ((lists lists) (prev '()))
|
||
|
(if (not (pair? lists)) prev
|
||
|
(let ((first (car lists))
|
||
|
(rest (cdr lists)))
|
||
|
(if (not (pair? first)) (lp rest first)
|
||
|
|
||
|
;; Now, do the splicing.
|
||
|
(let lp2 ((tail-cons (last-pair first))
|
||
|
(rest rest))
|
||
|
(if (pair? rest)
|
||
|
(let ((next (car rest))
|
||
|
(rest (cdr rest)))
|
||
|
(set-cdr! tail-cons next)
|
||
|
(lp2 (if (pair? next) (last-pair next) tail-cons)
|
||
|
rest))
|
||
|
first)))))))
|
||
|
|
||
|
(define (append-reverse rev-head tail)
|
||
|
(let lp ((rev-head rev-head) (tail tail))
|
||
|
(if (null-list? rev-head) tail
|
||
|
(lp (cdr rev-head) (cons (car rev-head) tail)))))
|
||
|
|
||
|
(define (append-reverse! rev-head tail)
|
||
|
(let lp ((rev-head rev-head) (tail tail))
|
||
|
(if (null-list? rev-head) tail
|
||
|
(let ((next-rev (cdr rev-head)))
|
||
|
(set-cdr! rev-head tail)
|
||
|
(lp next-rev rev-head)))))
|
||
|
|
||
|
|
||
|
(define (concatenate lists) (reduce-right append '() lists))
|
||
|
(define (concatenate! lists) (reduce-right append! '() lists))
|
||
|
|
||
|
;; Fold/map internal utilities
|
||
|
;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||
|
|
||
|
(define (%cdrs lists)
|
||
|
(call-with-current-continuation
|
||
|
(lambda (abort)
|
||
|
(let recur ((lists lists))
|
||
|
(if (pair? lists)
|
||
|
(let ((lis (car lists)))
|
||
|
(if (null-list? lis) (abort '())
|
||
|
(cons (cdr lis) (recur (cdr lists)))))
|
||
|
'())))))
|
||
|
|
||
|
(define (%cars+ lists last-elt) ; (append! (map car lists) (list last-elt))
|
||
|
(let recur ((lists lists))
|
||
|
(if (pair? lists) (cons (caar lists) (recur (cdr lists))) (list last-elt))))
|
||
|
|
||
|
(define (%cars+cdrs lists)
|
||
|
(let f ([ls lists] [a* '()] [d* '()])
|
||
|
(cond
|
||
|
[(pair? ls)
|
||
|
(let ([a (car ls)])
|
||
|
(if (pair? a)
|
||
|
(f (cdr ls) (cons (car a) a*) (cons (cdr a) d*))
|
||
|
(values '() '())))]
|
||
|
[else (values (reverse a*) (reverse d*))])))
|
||
|
|
||
|
(define (%cars+cdrs+ lists cars-final)
|
||
|
(call-with-current-continuation
|
||
|
(lambda (abort)
|
||
|
(let recur ((lists lists))
|
||
|
(if (pair? lists)
|
||
|
(receive (list other-lists) (car+cdr lists)
|
||
|
(if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
|
||
|
(receive (a d) (car+cdr list)
|
||
|
(receive (cars cdrs) (recur other-lists)
|
||
|
(values (cons a cars) (cons d cdrs))))))
|
||
|
(values (list cars-final) '()))))))
|
||
|
|
||
|
(define (%cars+cdrs/no-test lists)
|
||
|
(let recur ((lists lists))
|
||
|
(if (pair? lists)
|
||
|
(receive (list other-lists) (car+cdr lists)
|
||
|
(receive (a d) (car+cdr list)
|
||
|
(receive (cars cdrs) (recur other-lists)
|
||
|
(values (cons a cars) (cons d cdrs)))))
|
||
|
(values '() '()))))
|
||
|
|
||
|
|
||
|
;; count
|
||
|
;; ;;;;;;
|
||
|
(define (count pred list1 . lists)
|
||
|
(check-arg procedure? pred count)
|
||
|
(if (pair? lists)
|
||
|
|
||
|
;; N-ary case
|
||
|
(let lp ((list1 list1) (lists lists) (i 0))
|
||
|
(if (null-list? list1) i
|
||
|
(receive (as ds) (%cars+cdrs lists)
|
||
|
(if (null? as) i
|
||
|
(lp (cdr list1) ds
|
||
|
(if (apply pred (car list1) as) (+ i 1) i))))))
|
||
|
|
||
|
;; Fast path
|
||
|
(let lp ((lis list1) (i 0))
|
||
|
(if (null-list? lis) i
|
||
|
(lp (cdr lis) (if (pred (car lis)) (+ i 1) i))))))
|
||
|
|
||
|
|
||
|
;; fold/unfold
|
||
|
;; ;;;;;;;;;;;;
|
||
|
|
||
|
(define unfold-right
|
||
|
(case-lambda
|
||
|
[(p f g seed)
|
||
|
(unfold-right p f g seed '())]
|
||
|
[(p f g seed tail)
|
||
|
(check-arg procedure? p unfold-right)
|
||
|
(check-arg procedure? f unfold-right)
|
||
|
(check-arg procedure? g unfold-right)
|
||
|
(let lp ((seed seed) (ans tail))
|
||
|
(if (p seed) ans
|
||
|
(lp (g seed)
|
||
|
(cons (f seed) ans))))]))
|
||
|
|
||
|
|
||
|
(define (unfold p f g seed . maybe-tail-gen)
|
||
|
(check-arg procedure? p unfold)
|
||
|
(check-arg procedure? f unfold)
|
||
|
(check-arg procedure? g unfold)
|
||
|
(if (pair? maybe-tail-gen) ;;; so much for :optional (aghuloum)
|
||
|
|
||
|
(let ((tail-gen (car maybe-tail-gen)))
|
||
|
(if (pair? (cdr maybe-tail-gen))
|
||
|
(apply error 'unfold "Too many arguments" p f g seed maybe-tail-gen)
|
||
|
|
||
|
(let recur ((seed seed))
|
||
|
(if (p seed) (tail-gen seed)
|
||
|
(cons (f seed) (recur (g seed)))))))
|
||
|
|
||
|
(let recur ((seed seed))
|
||
|
(if (p seed) '()
|
||
|
(cons (f seed) (recur (g seed)))))))
|
||
|
|
||
|
|
||
|
(define (fold kons knil lis1 . lists)
|
||
|
(check-arg procedure? kons fold)
|
||
|
(if (pair? lists)
|
||
|
(let lp ((lists (cons lis1 lists)) (ans knil)) ; N-ary case
|
||
|
(receive (cars+ans cdrs) (%cars+cdrs+ lists ans)
|
||
|
(if (null? cars+ans) ans ; Done.
|
||
|
(lp cdrs (apply kons cars+ans)))))
|
||
|
|
||
|
(let lp ((lis lis1) (ans knil)) ; Fast path
|
||
|
(if (null-list? lis) ans
|
||
|
(lp (cdr lis) (kons (car lis) ans))))))
|
||
|
|
||
|
|
||
|
(define (fold-right kons knil lis1 . lists)
|
||
|
(check-arg procedure? kons fold-right)
|
||
|
(if (pair? lists)
|
||
|
(let recur ((lists (cons lis1 lists))) ; N-ary case
|
||
|
(let ((cdrs (%cdrs lists)))
|
||
|
(if (null? cdrs) knil
|
||
|
(apply kons (%cars+ lists (recur cdrs))))))
|
||
|
|
||
|
(let recur ((lis lis1)) ; Fast path
|
||
|
(if (null-list? lis) knil
|
||
|
(let ((head (car lis)))
|
||
|
(kons head (recur (cdr lis))))))))
|
||
|
|
||
|
|
||
|
(define (pair-fold-right f zero lis1 . lists)
|
||
|
(check-arg procedure? f pair-fold-right)
|
||
|
(if (pair? lists)
|
||
|
(let recur ((lists (cons lis1 lists))) ; N-ary case
|
||
|
(let ((cdrs (%cdrs lists)))
|
||
|
(if (null? cdrs) zero
|
||
|
(apply f (append! lists (list (recur cdrs)))))))
|
||
|
|
||
|
(let recur ((lis lis1)) ; Fast path
|
||
|
(if (null-list? lis) zero (f lis (recur (cdr lis)))))))
|
||
|
|
||
|
(define (pair-fold f zero lis1 . lists)
|
||
|
(check-arg procedure? f pair-fold)
|
||
|
(if (pair? lists)
|
||
|
(let lp ((lists (cons lis1 lists)) (ans zero)) ; N-ary case
|
||
|
(let ((tails (%cdrs lists)))
|
||
|
(if (null? tails) ans
|
||
|
(lp tails (apply f (append! lists (list ans)))))))
|
||
|
|
||
|
(let lp ((lis lis1) (ans zero))
|
||
|
(if (null-list? lis) ans
|
||
|
(let ((tail (cdr lis))) ; Grab the cdr now,
|
||
|
(lp tail (f lis ans))))))) ; in case F SET-CDR!s LIS.
|
||
|
|
||
|
;; REDUCE and REDUCE-RIGHT only use RIDENTITY in the empty-list case.
|
||
|
;; These cannot meaningfully be n-ary.
|
||
|
|
||
|
(define (reduce f ridentity lis)
|
||
|
(check-arg procedure? f reduce)
|
||
|
(if (null-list? lis) ridentity
|
||
|
(fold f (car lis) (cdr lis))))
|
||
|
|
||
|
(define (reduce-right f ridentity lis)
|
||
|
(check-arg procedure? f reduce-right)
|
||
|
(if (null-list? lis) ridentity
|
||
|
(let recur ((head (car lis)) (lis (cdr lis)))
|
||
|
(if (pair? lis)
|
||
|
(f head (recur (car lis) (cdr lis)))
|
||
|
head))))
|
||
|
|
||
|
;; Mappers: append-map append-map! pair-for-each map! filter-map map-in-order
|
||
|
;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||
|
|
||
|
(define (append-map f lis1 . lists)
|
||
|
(check-arg procedure? f append-map)
|
||
|
(really-append-map append f lis1 lists))
|
||
|
(define (append-map! f lis1 . lists)
|
||
|
(check-arg procedure? f append-map!)
|
||
|
(really-append-map append! f lis1 lists))
|
||
|
|
||
|
(define (really-append-map appender f lis1 lists)
|
||
|
(if (pair? lists)
|
||
|
(receive (cars cdrs) (%cars+cdrs (cons lis1 lists))
|
||
|
(if (null? cars) '()
|
||
|
(let recur ((cars cars) (cdrs cdrs))
|
||
|
(let ((vals (apply f cars)))
|
||
|
(receive (cars2 cdrs2) (%cars+cdrs cdrs)
|
||
|
(if (null? cars2) vals
|
||
|
(appender vals (recur cars2 cdrs2))))))))
|
||
|
|
||
|
;; Fast path
|
||
|
(if (null-list? lis1) '()
|
||
|
(let recur ((elt (car lis1)) (rest (cdr lis1)))
|
||
|
(let ((vals (f elt)))
|
||
|
(if (null-list? rest) vals
|
||
|
(appender vals (recur (car rest) (cdr rest)))))))))
|
||
|
|
||
|
|
||
|
(define (pair-for-each proc lis1 . lists)
|
||
|
(check-arg procedure? proc pair-for-each)
|
||
|
(if (pair? lists)
|
||
|
|
||
|
(let lp ((lists (cons lis1 lists)))
|
||
|
(let ((tails (%cdrs lists)))
|
||
|
(if (pair? tails)
|
||
|
(begin (apply proc lists)
|
||
|
(lp tails)))))
|
||
|
|
||
|
;; Fast path.
|
||
|
(let lp ((lis lis1))
|
||
|
(if (not (null-list? lis))
|
||
|
(let ((tail (cdr lis))) ; Grab the cdr now,
|
||
|
(proc lis) ; in case PROC SET-CDR!s LIS.
|
||
|
(lp tail))))))
|
||
|
|
||
|
;; We stop when LIS1 runs out, not when any list runs out.
|
||
|
(define (map! f lis1 . lists)
|
||
|
(check-arg procedure? f map!)
|
||
|
(if (pair? lists)
|
||
|
(let lp ((lis1 lis1) (lists lists))
|
||
|
(if (not (null-list? lis1))
|
||
|
(receive (heads tails) (%cars+cdrs/no-test lists)
|
||
|
(set-car! lis1 (apply f (car lis1) heads))
|
||
|
(lp (cdr lis1) tails))))
|
||
|
|
||
|
;; Fast path.
|
||
|
(pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) lis1))
|
||
|
lis1)
|
||
|
|
||
|
|
||
|
;; Map F across L, and save up all the non-false results.
|
||
|
(define (filter-map f lis1 . lists)
|
||
|
(check-arg procedure? f filter-map)
|
||
|
(if (pair? lists)
|
||
|
(let recur ((lists (cons lis1 lists)))
|
||
|
(receive (cars cdrs) (%cars+cdrs lists)
|
||
|
(if (pair? cars)
|
||
|
(cond ((apply f cars) => (lambda (x) (cons x (recur cdrs))))
|
||
|
(else (recur cdrs))) ; Tail call in this arm.
|
||
|
'())))
|
||
|
|
||
|
;; Fast path.
|
||
|
(let recur ((lis lis1))
|
||
|
(if (null-list? lis) lis
|
||
|
(let ((tail (recur (cdr lis))))
|
||
|
(cond ((f (car lis)) => (lambda (x) (cons x tail)))
|
||
|
(else tail)))))))
|
||
|
|
||
|
|
||
|
;; Map F across lists, guaranteeing to go left-to-right.
|
||
|
;; NOTE: Some implementations of R5RS MAP are compliant with this spec;
|
||
|
;; in which case this procedure may simply be defined as a synonym for MAP.
|
||
|
|
||
|
(define (map-in-order f lis1 . lists)
|
||
|
(check-arg procedure? f map-in-order)
|
||
|
(if (pair? lists)
|
||
|
(let recur ((lists (cons lis1 lists)))
|
||
|
(receive (cars cdrs) (%cars+cdrs lists)
|
||
|
(if (pair? cars)
|
||
|
(let ((x (apply f cars))) ; Do head first,
|
||
|
(cons x (recur cdrs))) ; then tail.
|
||
|
'())))
|
||
|
|
||
|
;; Fast path.
|
||
|
(let recur ((lis lis1))
|
||
|
(if (null-list? lis) lis
|
||
|
(let ((tail (cdr lis))
|
||
|
(x (f (car lis)))) ; Do head first,
|
||
|
(cons x (recur tail))))))) ; then tail.
|
||
|
|
||
|
|
||
|
;; We extend MAP to handle arguments of unequal length.
|
||
|
(define map map-in-order)
|
||
|
|
||
|
;; Contributed by Michael Sperber since it was missing from the
|
||
|
;; reference implementation.
|
||
|
(define (for-each f lis1 . lists)
|
||
|
(if (pair? lists)
|
||
|
(let recur ((lists (cons lis1 lists)))
|
||
|
(receive (cars cdrs) (%cars+cdrs lists)
|
||
|
(if (pair? cars)
|
||
|
(begin
|
||
|
(apply f cars) ; Do head first,
|
||
|
(recur cdrs))))) ; then tail.
|
||
|
|
||
|
;; Fast path.
|
||
|
(let recur ((lis lis1))
|
||
|
(if (not (null-list? lis))
|
||
|
(begin
|
||
|
(f (car lis)) ; Do head first,
|
||
|
(recur (cdr lis))))))) ; then tail.
|
||
|
|
||
|
;; filter, remove, partition
|
||
|
;; ;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||
|
;; FILTER, REMOVE, PARTITION and their destructive counterparts do not
|
||
|
;; disorder the elements of their argument.
|
||
|
|
||
|
;; This FILTER shares the longest tail of L that has no deleted elements.
|
||
|
;; If Scheme had multi-continuation calls, they could be made more efficient.
|
||
|
|
||
|
(define (filter pred lis) ; Sleazing with EQ? makes this
|
||
|
(check-arg procedure? pred filter) ; one faster.
|
||
|
(let recur ((lis lis))
|
||
|
(if (null-list? lis) lis ; Use NOT-PAIR? to handle dotted lists.
|
||
|
(let ((head (car lis))
|
||
|
(tail (cdr lis)))
|
||
|
(if (pred head)
|
||
|
(let ((new-tail (recur tail))) ; Replicate the RECUR call so
|
||
|
(if (eq? tail new-tail) lis
|
||
|
(cons head new-tail)))
|
||
|
(recur tail)))))) ; this one can be a tail call.
|
||
|
|
||
|
|
||
|
(define (filter! pred lis)
|
||
|
(check-arg procedure? pred filter!)
|
||
|
(let lp ((ans lis))
|
||
|
(cond ((null-list? ans) ans) ; Scan looking for
|
||
|
((not (pred (car ans))) (lp (cdr ans))) ; first cons of result.
|
||
|
(else (letrec ((scan-in (lambda (prev lis)
|
||
|
(if (pair? lis)
|
||
|
(if (pred (car lis))
|
||
|
(scan-in lis (cdr lis))
|
||
|
(scan-out prev (cdr lis))))))
|
||
|
(scan-out (lambda (prev lis)
|
||
|
(let lp ((lis lis))
|
||
|
(if (pair? lis)
|
||
|
(if (pred (car lis))
|
||
|
(begin (set-cdr! prev lis)
|
||
|
(scan-in lis (cdr lis)))
|
||
|
(lp (cdr lis)))
|
||
|
(set-cdr! prev lis))))))
|
||
|
(scan-in ans (cdr ans))
|
||
|
ans)))))
|
||
|
|
||
|
(define (partition pred lis)
|
||
|
(check-arg procedure? pred partition)
|
||
|
(let recur ((lis lis))
|
||
|
(if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle dotted lists.
|
||
|
(let ((elt (car lis))
|
||
|
(tail (cdr lis)))
|
||
|
(receive (in out) (recur tail)
|
||
|
(if (pred elt)
|
||
|
(values (if (pair? out) (cons elt in) lis) out)
|
||
|
(values in (if (pair? in) (cons elt out) lis))))))))
|
||
|
|
||
|
(define (partition! pred lis)
|
||
|
(check-arg procedure? pred partition!)
|
||
|
(if (null-list? lis) (values lis lis)
|
||
|
(letrec ((scan-in (lambda (in-prev out-prev lis)
|
||
|
(let lp ((in-prev in-prev) (lis lis))
|
||
|
(if (pair? lis)
|
||
|
(if (pred (car lis))
|
||
|
(lp lis (cdr lis))
|
||
|
(begin (set-cdr! out-prev lis)
|
||
|
(scan-out in-prev lis (cdr lis))))
|
||
|
(set-cdr! out-prev lis))))) ; Done.
|
||
|
|
||
|
(scan-out (lambda (in-prev out-prev lis)
|
||
|
(let lp ((out-prev out-prev) (lis lis))
|
||
|
(if (pair? lis)
|
||
|
(if (pred (car lis))
|
||
|
(begin (set-cdr! in-prev lis)
|
||
|
(scan-in lis out-prev (cdr lis)))
|
||
|
(lp lis (cdr lis)))
|
||
|
(set-cdr! in-prev lis)))))) ; Done.
|
||
|
|
||
|
;; Crank up the scan&splice loops.
|
||
|
(if (pred (car lis))
|
||
|
;; LIS begins in-list. Search for out-list's first pair.
|
||
|
(let lp ((prev-l lis) (l (cdr lis)))
|
||
|
(cond ((not (pair? l)) (values lis l))
|
||
|
((pred (car l)) (lp l (cdr l)))
|
||
|
(else (scan-out prev-l l (cdr l))
|
||
|
(values lis l)))) ; Done.
|
||
|
|
||
|
;; LIS begins out-list. Search for in-list's first pair.
|
||
|
(let lp ((prev-l lis) (l (cdr lis)))
|
||
|
(cond ((not (pair? l)) (values l lis))
|
||
|
((pred (car l))
|
||
|
(scan-in l prev-l (cdr l))
|
||
|
(values l lis)) ; Done.
|
||
|
(else (lp l (cdr l)))))))))
|
||
|
|
||
|
|
||
|
;; Inline us, please.
|
||
|
(define (remove pred l) (filter (lambda (x) (not (pred x))) l))
|
||
|
(define (remove! pred l) (filter! (lambda (x) (not (pred x))) l))
|
||
|
|
||
|
(define delete
|
||
|
(case-lambda
|
||
|
[(x lis)
|
||
|
(delete x lis equal?)]
|
||
|
[(x lis =)
|
||
|
(filter (lambda (y) (not (= x y))) lis)]))
|
||
|
|
||
|
(define delete!
|
||
|
(case-lambda
|
||
|
[(x lis)
|
||
|
(delete! x lis equal?)]
|
||
|
[(x lis =)
|
||
|
(filter! (lambda (y) (not (= x y))) lis)]))
|
||
|
|
||
|
;; Extended from R4RS to take an optional comparison argument.
|
||
|
(define member
|
||
|
(case-lambda
|
||
|
[(x lis)
|
||
|
(member x lis equal?)]
|
||
|
[(x lis =)
|
||
|
(find-tail (lambda (y) (= x y)) lis)]))
|
||
|
|
||
|
(define delete-duplicates
|
||
|
(case-lambda
|
||
|
[(lis)
|
||
|
(delete-duplicates lis equal?)]
|
||
|
[(lis elt=)
|
||
|
(check-arg procedure? elt= delete-duplicates)
|
||
|
(let recur ((lis lis))
|
||
|
(if (null-list? lis) lis
|
||
|
(let* ((x (car lis))
|
||
|
(tail (cdr lis))
|
||
|
(new-tail (recur (delete x tail elt=))))
|
||
|
(if (eq? tail new-tail) lis (cons x new-tail)))))]))
|
||
|
|
||
|
(define delete-duplicates!
|
||
|
(case-lambda
|
||
|
[(lis)
|
||
|
(delete-duplicates! lis equal?)]
|
||
|
[(lis elt=)
|
||
|
(check-arg procedure? elt= delete-duplicates!)
|
||
|
(let recur ((lis lis))
|
||
|
(if (null-list? lis) lis
|
||
|
(let* ((x (car lis))
|
||
|
(tail (cdr lis))
|
||
|
(new-tail (recur (delete! x tail elt=))))
|
||
|
(when (not (eq? tail new-tail))
|
||
|
(set-cdr! lis new-tail))
|
||
|
lis)))]))
|
||
|
|
||
|
|
||
|
;; alist stuff
|
||
|
;; ;;;;;;;;;;;;
|
||
|
|
||
|
(define assoc
|
||
|
(case-lambda
|
||
|
[(x lis)
|
||
|
(assoc x lis equal?)]
|
||
|
[(x lis =)
|
||
|
(find (lambda (entry) (= x (car entry))) lis)]))
|
||
|
|
||
|
(define (alist-cons key datum alist) (cons (cons key datum) alist))
|
||
|
|
||
|
(define (alist-copy alist)
|
||
|
(map (lambda (elt) (cons (car elt) (cdr elt)))
|
||
|
alist))
|
||
|
|
||
|
(define alist-delete
|
||
|
(case-lambda
|
||
|
[(key alist)
|
||
|
(alist-delete key alist equal?)]
|
||
|
[(key alist =)
|
||
|
(filter (lambda (elt) (not (= key (car elt)))) alist)]))
|
||
|
|
||
|
(define alist-delete!
|
||
|
(case-lambda
|
||
|
[(key alist)
|
||
|
(alist-delete! key alist equal?)]
|
||
|
[(key alist =)
|
||
|
(filter! (lambda (elt) (not (= key (car elt)))) alist)]))
|
||
|
|
||
|
|
||
|
;; find find-tail take-while drop-while span break any every list-index
|
||
|
;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||
|
|
||
|
(define (find pred list)
|
||
|
(cond ((find-tail pred list) => car)
|
||
|
(else #f)))
|
||
|
|
||
|
(define (find-tail pred list)
|
||
|
(check-arg procedure? pred find-tail)
|
||
|
(let lp ((list list))
|
||
|
(and (not (null-list? list))
|
||
|
(if (pred (car list)) list
|
||
|
(lp (cdr list))))))
|
||
|
|
||
|
(define (take-while pred lis)
|
||
|
(check-arg procedure? pred take-while)
|
||
|
(let recur ((lis lis))
|
||
|
(if (null-list? lis) '()
|
||
|
(let ((x (car lis)))
|
||
|
(if (pred x)
|
||
|
(cons x (recur (cdr lis)))
|
||
|
'())))))
|
||
|
|
||
|
(define (drop-while pred lis)
|
||
|
(check-arg procedure? pred drop-while)
|
||
|
(let lp ((lis lis))
|
||
|
(if (null-list? lis) '()
|
||
|
(if (pred (car lis))
|
||
|
(lp (cdr lis))
|
||
|
lis))))
|
||
|
|
||
|
(define (take-while! pred lis)
|
||
|
(check-arg procedure? pred take-while!)
|
||
|
(if (or (null-list? lis) (not (pred (car lis)))) '()
|
||
|
(begin (let lp ((prev lis) (rest (cdr lis)))
|
||
|
(if (pair? rest)
|
||
|
(let ((x (car rest)))
|
||
|
(if (pred x) (lp rest (cdr rest))
|
||
|
(set-cdr! prev '())))))
|
||
|
lis)))
|
||
|
|
||
|
(define (span pred lis)
|
||
|
(check-arg procedure? pred span)
|
||
|
(let recur ((lis lis))
|
||
|
(if (null-list? lis) (values '() '())
|
||
|
(let ((x (car lis)))
|
||
|
(if (pred x)
|
||
|
(receive (prefix suffix) (recur (cdr lis))
|
||
|
(values (cons x prefix) suffix))
|
||
|
(values '() lis))))))
|
||
|
|
||
|
(define (span! pred lis)
|
||
|
(check-arg procedure? pred span!)
|
||
|
(if (or (null-list? lis) (not (pred (car lis)))) (values '() lis)
|
||
|
(let ((suffix (let lp ((prev lis) (rest (cdr lis)))
|
||
|
(if (null-list? rest) rest
|
||
|
(let ((x (car rest)))
|
||
|
(if (pred x) (lp rest (cdr rest))
|
||
|
(begin (set-cdr! prev '())
|
||
|
rest)))))))
|
||
|
(values lis suffix))))
|
||
|
|
||
|
|
||
|
(define (break pred lis) (span (lambda (x) (not (pred x))) lis))
|
||
|
(define (break! pred lis) (span! (lambda (x) (not (pred x))) lis))
|
||
|
|
||
|
(define (any pred lis1 . lists)
|
||
|
(check-arg procedure? pred any)
|
||
|
(if (pair? lists)
|
||
|
|
||
|
;; N-ary case
|
||
|
(receive (heads tails) (%cars+cdrs (cons lis1 lists))
|
||
|
(and (pair? heads)
|
||
|
(let lp ((heads heads) (tails tails))
|
||
|
(receive (next-heads next-tails) (%cars+cdrs tails)
|
||
|
(if (pair? next-heads)
|
||
|
(or (apply pred heads) (lp next-heads next-tails))
|
||
|
(apply pred heads)))))) ; Last PRED app is tail call.
|
||
|
|
||
|
;; Fast path
|
||
|
(and (not (null-list? lis1))
|
||
|
(let lp ((head (car lis1)) (tail (cdr lis1)))
|
||
|
(if (null-list? tail)
|
||
|
(pred head) ; Last PRED app is tail call.
|
||
|
(or (pred head) (lp (car tail) (cdr tail))))))))
|
||
|
|
||
|
(define every
|
||
|
(case-lambda
|
||
|
[(p ls)
|
||
|
(or (null-list? ls)
|
||
|
(let f ([p p] [a (car ls)] [d (cdr ls)])
|
||
|
(cond
|
||
|
[(pair? d)
|
||
|
(and (p a) (f p (car d) (cdr d)))]
|
||
|
[else (p a)])))]
|
||
|
[(p ls1 ls2)
|
||
|
(cond
|
||
|
[(and (pair? ls1) (pair? ls2))
|
||
|
(let f ([p p] [a1 (car ls1)] [d1 (cdr ls1)] [a2 (car ls2)] [d2 (cdr ls2)])
|
||
|
(cond
|
||
|
[(and (pair? d1) (pair? d2))
|
||
|
(and (p a1 a2) (f p (car d1) (cdr d1) (car d2) (cdr d2)))]
|
||
|
[else (p a1 a2)]))]
|
||
|
[else #t])]
|
||
|
[(pred lis1 . lists)
|
||
|
(receive (heads tails) (%cars+cdrs (cons lis1 lists))
|
||
|
(or (not (pair? heads))
|
||
|
(let lp ((heads heads) (tails tails))
|
||
|
(receive (next-heads next-tails) (%cars+cdrs tails)
|
||
|
(if (pair? next-heads)
|
||
|
(and (apply pred heads) (lp next-heads next-tails))
|
||
|
(apply pred heads))))))]))
|
||
|
|
||
|
(define (list-index pred lis1 . lists)
|
||
|
(check-arg procedure? pred list-index)
|
||
|
(if (pair? lists)
|
||
|
|
||
|
;; N-ary case
|
||
|
(let lp ((lists (cons lis1 lists)) (n 0))
|
||
|
(receive (heads tails) (%cars+cdrs lists)
|
||
|
(and (pair? heads)
|
||
|
(if (apply pred heads) n
|
||
|
(lp tails (+ n 1))))))
|
||
|
|
||
|
;; Fast path
|
||
|
(let lp ((lis lis1) (n 0))
|
||
|
(and (not (null-list? lis))
|
||
|
(if (pred (car lis)) n (lp (cdr lis) (+ n 1)))))))
|
||
|
|
||
|
;; Reverse
|
||
|
;; ;;;;;;;;
|
||
|
|
||
|
(define (reverse! lis)
|
||
|
(let lp ((lis lis) (ans '()))
|
||
|
(if (null-list? lis) ans
|
||
|
(let ((tail (cdr lis)))
|
||
|
(set-cdr! lis ans)
|
||
|
(lp tail lis)))))
|
||
|
|
||
|
;; Lists-as-sets
|
||
|
;; ;;;;;;;;;;;;;;
|
||
|
|
||
|
(define (%lset2<= = lis1 lis2) (every (lambda (x) (member x lis2 =)) lis1))
|
||
|
|
||
|
(define (lset<= = . lists)
|
||
|
(check-arg procedure? = lset<=)
|
||
|
(or (not (pair? lists)) ; 0-ary case
|
||
|
(let lp ((s1 (car lists)) (rest (cdr lists)))
|
||
|
(or (not (pair? rest))
|
||
|
(let ((s2 (car rest)) (rest (cdr rest)))
|
||
|
(and (or (eq? s2 s1) ; Fast path
|
||
|
(%lset2<= = s1 s2)) ; Real test
|
||
|
(lp s2 rest)))))))
|
||
|
|
||
|
(define (lset= = . lists)
|
||
|
(check-arg procedure? = lset=)
|
||
|
(or (not (pair? lists)) ; 0-ary case
|
||
|
(let lp ((s1 (car lists)) (rest (cdr lists)))
|
||
|
(or (not (pair? rest))
|
||
|
(let ((s2 (car rest))
|
||
|
(rest (cdr rest)))
|
||
|
(and (or (eq? s1 s2) ; Fast path
|
||
|
(and (%lset2<= = s1 s2) (%lset2<= = s2 s1))) ; Real test
|
||
|
(lp s2 rest)))))))
|
||
|
|
||
|
|
||
|
(define (lset-adjoin = lis . elts)
|
||
|
(check-arg procedure? = lset-adjoin)
|
||
|
(fold (lambda (elt ans) (if (member elt ans =) ans (cons elt ans)))
|
||
|
lis elts))
|
||
|
|
||
|
|
||
|
(define (lset-union = . lists)
|
||
|
(check-arg procedure? = lset-union)
|
||
|
(reduce (lambda (lis ans) ; Compute ANS + LIS.
|
||
|
(cond ((null? lis) ans) ; Don't copy any lists
|
||
|
((null? ans) lis) ; if we don't have to.
|
||
|
((eq? lis ans) ans)
|
||
|
(else
|
||
|
(fold (lambda (elt ans) (if (any (lambda (x) (= x elt)) ans)
|
||
|
ans
|
||
|
(cons elt ans)))
|
||
|
ans lis))))
|
||
|
'() lists))
|
||
|
|
||
|
(define (lset-union! = . lists)
|
||
|
(check-arg procedure? = lset-union!)
|
||
|
(reduce (lambda (lis ans) ; Splice new elts of LIS onto the front of ANS.
|
||
|
(cond ((null? lis) ans) ; Don't copy any lists
|
||
|
((null? ans) lis) ; if we don't have to.
|
||
|
((eq? lis ans) ans)
|
||
|
(else
|
||
|
(pair-fold (lambda (pair ans)
|
||
|
(let ((elt (car pair)))
|
||
|
(if (any (lambda (x) (= x elt)) ans)
|
||
|
ans
|
||
|
(begin (set-cdr! pair ans) pair))))
|
||
|
ans lis))))
|
||
|
'() lists))
|
||
|
|
||
|
|
||
|
(define (lset-intersection = lis1 . lists)
|
||
|
(check-arg procedure? = lset-intersection)
|
||
|
(let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
|
||
|
(cond ((any null-list? lists) '()) ; Short cut
|
||
|
((null? lists) lis1) ; Short cut
|
||
|
(else (filter (lambda (x)
|
||
|
(every (lambda (lis) (member x lis =)) lists))
|
||
|
lis1)))))
|
||
|
|
||
|
(define (lset-intersection! = lis1 . lists)
|
||
|
(check-arg procedure? = lset-intersection!)
|
||
|
(let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
|
||
|
(cond ((any null-list? lists) '()) ; Short cut
|
||
|
((null? lists) lis1) ; Short cut
|
||
|
(else (filter! (lambda (x)
|
||
|
(every (lambda (lis) (member x lis =)) lists))
|
||
|
lis1)))))
|
||
|
|
||
|
|
||
|
(define (lset-difference = lis1 . lists)
|
||
|
(check-arg procedure? = lset-difference)
|
||
|
(let ((lists (filter pair? lists))) ; Throw out empty lists.
|
||
|
(cond ((null? lists) lis1) ; Short cut
|
||
|
((memq lis1 lists) '()) ; Short cut
|
||
|
(else (filter (lambda (x)
|
||
|
(every (lambda (lis) (not (member x lis =)))
|
||
|
lists))
|
||
|
lis1)))))
|
||
|
|
||
|
(define (lset-difference! = lis1 . lists)
|
||
|
(check-arg procedure? = lset-difference!)
|
||
|
(let ((lists (filter pair? lists))) ; Throw out empty lists.
|
||
|
(cond ((null? lists) lis1) ; Short cut
|
||
|
((memq lis1 lists) '()) ; Short cut
|
||
|
(else (filter! (lambda (x)
|
||
|
(every (lambda (lis) (not (member x lis =)))
|
||
|
lists))
|
||
|
lis1)))))
|
||
|
|
||
|
|
||
|
(define (lset-xor = . lists)
|
||
|
(check-arg procedure? = lset-xor)
|
||
|
(reduce (lambda (b a) ; Compute A xor B:
|
||
|
;; Note that this code relies on the constant-time
|
||
|
;; short-cuts provided by LSET-DIFF+INTERSECTION,
|
||
|
;; LSET-DIFFERENCE & APPEND to provide constant-time short
|
||
|
;; cuts for the cases A = (), B = (), and A eq? B. It takes
|
||
|
;; a careful case analysis to see it, but it's carefully
|
||
|
;; built in.
|
||
|
|
||
|
;; Compute a-b and a^b, then compute b-(a^b) and
|
||
|
;; cons it onto the front of a-b.
|
||
|
(receive (a-b a-int-b) (lset-diff+intersection = a b)
|
||
|
(cond ((null? a-b) (lset-difference = b a))
|
||
|
((null? a-int-b) (append b a))
|
||
|
(else (fold (lambda (xb ans)
|
||
|
(if (member xb a-int-b =) ans (cons xb ans)))
|
||
|
a-b
|
||
|
b)))))
|
||
|
'() lists))
|
||
|
|
||
|
|
||
|
(define (lset-xor! = . lists)
|
||
|
(check-arg procedure? = lset-xor!)
|
||
|
(reduce (lambda (b a) ; Compute A xor B:
|
||
|
;; Note that this code relies on the constant-time
|
||
|
;; short-cuts provided by LSET-DIFF+INTERSECTION,
|
||
|
;; LSET-DIFFERENCE & APPEND to provide constant-time short
|
||
|
;; cuts for the cases A = (), B = (), and A eq? B. It takes
|
||
|
;; a careful case analysis to see it, but it's carefully
|
||
|
;; built in.
|
||
|
|
||
|
;; Compute a-b and a^b, then compute b-(a^b) and
|
||
|
;; cons it onto the front of a-b.
|
||
|
(receive (a-b a-int-b) (lset-diff+intersection! = a b)
|
||
|
(cond ((null? a-b) (lset-difference! = b a))
|
||
|
((null? a-int-b) (append! b a))
|
||
|
(else (pair-fold (lambda (b-pair ans)
|
||
|
(if (member (car b-pair) a-int-b =) ans
|
||
|
(begin (set-cdr! b-pair ans) b-pair)))
|
||
|
a-b
|
||
|
b)))))
|
||
|
'() lists))
|
||
|
|
||
|
|
||
|
(define (lset-diff+intersection = lis1 . lists)
|
||
|
(check-arg procedure? = lset-diff+intersection)
|
||
|
(cond ((every null-list? lists) (values lis1 '())) ; Short cut
|
||
|
((memq lis1 lists) (values '() lis1)) ; Short cut
|
||
|
(else (partition (lambda (elt)
|
||
|
(not (any (lambda (lis) (member elt lis =))
|
||
|
lists)))
|
||
|
lis1))))
|
||
|
|
||
|
(define (lset-diff+intersection! = lis1 . lists)
|
||
|
(check-arg procedure? = lset-diff+intersection!)
|
||
|
(cond ((every null-list? lists) (values lis1 '())) ; Short cut
|
||
|
((memq lis1 lists) (values '() lis1)) ; Short cut
|
||
|
(else (partition! (lambda (elt)
|
||
|
(not (any (lambda (lis) (member elt lis =))
|
||
|
lists)))
|
||
|
lis1))))
|
||
|
;; end of library
|
||
|
)
|