Ming-Hung Tsai e8f1bda1a5 [thin] store the device id in single_mapping_tree_damage_visitor for error reporting
1. fix the damage type for single_mapping_tree_damage_visitor
2. walk_mapping_tree() now requires the device id
3. update metadata_dumper and thin_ls for the new walk_mapping_tree()
2016-06-20 00:30:25 +08:00

541 lines
12 KiB
C++

// Copyright (C) 2015 Red Hat, Inc. All rights reserved.
//
// This file is part of the thin-provisioning-tools source.
//
// thin-provisioning-tools is free software: you can redistribute it
// and/or modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// thin-provisioning-tools is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with thin-provisioning-tools. If not, see
// <http://www.gnu.org/licenses/>.
#include <fstream>
#include <iostream>
#include <getopt.h>
#include <libgen.h>
#include "base/disk_units.h"
#include "base/grid_layout.h"
#include "boost/lexical_cast.hpp"
#include "boost/optional.hpp"
#include "boost/range.hpp"
#include "persistent-data/file_utils.h"
#include "thin-provisioning/commands.h"
#include "thin-provisioning/human_readable_format.h"
#include "thin-provisioning/metadata.h"
#include "thin-provisioning/metadata_dumper.h"
#include "thin-provisioning/xml_format.h"
#include "version.h"
using namespace base;
using namespace boost;
using namespace persistent_data;
using namespace std;
using namespace thin_provisioning;
//----------------------------------------------------------------
namespace {
class mapping_set {
public:
mapping_set()
: bits_(10240, false) {
}
enum block_state {
UNMAPPED,
EXCLUSIVE,
SHARED
};
void inc(block_address b) {
if (get_bit(b * 2))
set_bit(b * 2 + 1, true); // shared
else
set_bit(b * 2, true); // exclusive
}
block_state get_state(block_address b) const {
if (get_bit(b * 2)) {
if (get_bit(b * 2 + 1))
return SHARED;
else
return EXCLUSIVE;
} else
return UNMAPPED;
}
private:
void ensure_size(block_address bit) const {
if (bit >= bits_.size()) {
unsigned new_size = bits_.size() * 2;
while (new_size < bit)
new_size *= 2;
bits_.resize(new_size, false);
}
}
bool get_bit(block_address bit) const {
ensure_size(bit);
return bits_[bit];
}
void set_bit(block_address bit, bool v) {
ensure_size(bit);
bits_[bit] = v;
}
mutable vector<bool> bits_;
};
//------------------------------------------------
enum output_field {
DEV_ID,
MAPPED_BLOCKS,
EXCLUSIVE_BLOCKS,
SHARED_BLOCKS,
MAPPED_SECTORS,
EXCLUSIVE_SECTORS,
SHARED_SECTORS,
MAPPED_BYTES,
EXCLUSIVE_BYTES,
SHARED_BYTES,
MAPPED,
EXCLUSIVE,
SHARED,
TRANSACTION_ID,
CREATION_TIME,
SNAPSHOT_TIME // make sure this is always the last one
};
char const *field_names[] = {
"DEV",
"MAPPED_BLOCKS",
"EXCLUSIVE_BLOCKS",
"SHARED_BLOCKS",
"MAPPED_SECTORS",
"EXCLUSIVE_SECTORS",
"SHARED_SECTORS",
"MAPPED_BYTES",
"EXCLUSIVE_BYTES",
"SHARED_BYTES",
"MAPPED",
"EXCLUSIVE",
"SHARED",
"TRANSACTION",
"CREATE_TIME",
"SNAP_TIME"
};
output_field string_to_field(string const &str) {
for (unsigned i = 0; i < size(field_names); i++)
if (str == field_names[i])
return static_cast<output_field>(i);
throw runtime_error("unknown field");
return DEV_ID;
}
string field_to_string(output_field const &f) {
return field_names[static_cast<unsigned>(f)];
}
void print_headers(grid_layout &out, vector<output_field> const &fields) {
vector<output_field>::const_iterator it;
for (it = fields.begin(); it != fields.end(); ++it)
out.field(field_to_string(*it));
out.new_row();
}
//------------------------------------------------
struct flags {
flags()
: use_metadata_snap(false),
headers(true) {
fields.push_back(DEV_ID);
fields.push_back(MAPPED);
fields.push_back(CREATION_TIME);
fields.push_back(SNAPSHOT_TIME);
}
bool use_metadata_snap;
bool headers;
vector<output_field> fields;
};
//------------------------------------------------
class mapping_pass1 : public mapping_tree_detail::mapping_visitor {
public:
mapping_pass1(mapping_set &mappings)
: mappings_(mappings) {
}
virtual void visit(btree_path const &path, mapping_tree_detail::block_time const &bt) {
mappings_.inc(bt.block_);
}
private:
mapping_set &mappings_;
};
class mapping_pass2 : public mapping_tree_detail::mapping_visitor {
public:
mapping_pass2(mapping_set const &mappings)
: mappings_(mappings),
exclusives_(0) {
}
virtual void visit(btree_path const &path, mapping_tree_detail::block_time const &bt) {
if (mappings_.get_state(bt.block_) == mapping_set::EXCLUSIVE)
exclusives_++;
}
block_address get_exclusives() const {
return exclusives_;
}
private:
mapping_set const &mappings_;
block_address exclusives_;
};
void raise_metadata_damage() {
throw std::runtime_error("metadata contains errors (run thin_check for details).");
}
class fatal_mapping_damage : public mapping_tree_detail::damage_visitor {
public:
virtual void visit(mapping_tree_detail::missing_devices const &d) {
raise_metadata_damage();
}
virtual void visit(mapping_tree_detail::missing_mappings const &d) {
raise_metadata_damage();
}
};
void pass1(metadata::ptr md, mapping_set &mappings, uint64_t dev_id) {
dev_tree::key k = {dev_id};
optional<uint64_t> dev_root = md->mappings_top_level_->lookup(k);
if (!dev_root)
throw runtime_error("couldn't find mapping tree root");
single_mapping_tree dev_mappings(*md->tm_, *dev_root,
mapping_tree_detail::block_traits::ref_counter(md->tm_->get_sm()));
mapping_pass1 pass1(mappings);
fatal_mapping_damage dv;
walk_mapping_tree(dev_mappings, dev_id, pass1, dv);
}
block_address count_exclusives(metadata::ptr md, mapping_set const &mappings, uint64_t dev_id) {
dev_tree::key k = {dev_id};
optional<uint64_t> dev_root = md->mappings_top_level_->lookup(k);
if (!dev_root)
throw runtime_error("couldn't find mapping tree root");
single_mapping_tree dev_mappings(*md->tm_, *dev_root,
mapping_tree_detail::block_traits::ref_counter(md->tm_->get_sm()));
mapping_pass2 pass2(mappings);
fatal_mapping_damage dv;
walk_mapping_tree(dev_mappings, dev_id, pass2, dv);
return pass2.get_exclusives();
}
//------------------------------------------------
typedef map<block_address, device_tree_detail::device_details> dd_map;
class details_extractor : public device_tree_detail::device_visitor {
public:
void visit(block_address dev_id, device_tree_detail::device_details const &dd) {
dd_.insert(make_pair(dev_id, dd));
}
dd_map const &get_details() const {
return dd_;
}
private:
dd_map dd_;
};
struct fatal_details_damage : public device_tree_detail::damage_visitor {
void visit(device_tree_detail::missing_devices const &d) {
raise_metadata_damage();
}
};
device_tree_detail::damage_visitor::ptr details_damage_policy() {
typedef device_tree_detail::damage_visitor::ptr dvp;
return dvp(new fatal_details_damage());
}
//------------------------------------------------
bool pass1_needed(vector<output_field> const &fields) {
vector<output_field>::const_iterator it;
for (it = fields.begin(); it != fields.end(); ++it) {
if (*it == EXCLUSIVE_BLOCKS ||
*it == SHARED_BLOCKS ||
*it == EXCLUSIVE_SECTORS ||
*it == SHARED_SECTORS ||
*it == EXCLUSIVE_BYTES ||
*it == SHARED_BYTES ||
*it == EXCLUSIVE ||
*it == SHARED)
return true;
}
return false;
}
void ls_(string const &path, ostream &out, struct flags &flags) {
grid_layout grid;
block_manager<>::ptr bm(open_bm(path, block_manager<>::READ_ONLY,
!flags.use_metadata_snap));
metadata::ptr md;
if (flags.use_metadata_snap)
md.reset(new metadata(bm, optional<block_address>()));
else
md.reset(new metadata(bm));
block_address block_size = md->sb_.data_block_size_;
details_extractor de;
device_tree_detail::damage_visitor::ptr dd_policy(details_damage_policy());
walk_device_tree(*md->details_, de, *dd_policy);
mapping_set mappings;
dd_map::const_iterator it;
dd_map const &map = de.get_details();
bool some_exclusive_fields = pass1_needed(flags.fields);
if (some_exclusive_fields) {
for (it = map.begin(); it != map.end(); ++it)
pass1(md, mappings, it->first);
}
if (flags.headers)
print_headers(grid, flags.fields);
for (it = map.begin(); it != map.end(); ++it) {
vector<output_field>::const_iterator f;
block_address exclusive = 0;
if (some_exclusive_fields)
exclusive = count_exclusives(md, mappings, it->first);
for (f = flags.fields.begin(); f != flags.fields.end(); ++f) {
switch (*f) {
case DEV_ID:
grid.field(it->first);
break;
case MAPPED_BLOCKS:
grid.field(it->second.mapped_blocks_);
break;
case EXCLUSIVE_BLOCKS:
grid.field(exclusive);
break;
case SHARED_BLOCKS:
grid.field(it->second.mapped_blocks_ - exclusive);
break;
case MAPPED_SECTORS:
grid.field(it->second.mapped_blocks_ * block_size);
break;
case EXCLUSIVE_SECTORS:
grid.field(exclusive * block_size);
break;
case SHARED_SECTORS:
grid.field((it->second.mapped_blocks_ - exclusive) * block_size);
break;
case MAPPED_BYTES:
grid.field(it->second.mapped_blocks_ * block_size *
disk_unit_multiplier(UNIT_SECTOR));
break;
case EXCLUSIVE_BYTES:
grid.field(exclusive * block_size *
disk_unit_multiplier(UNIT_SECTOR));
break;
case SHARED_BYTES:
grid.field((it->second.mapped_blocks_ - exclusive) * block_size *
disk_unit_multiplier(UNIT_SECTOR));
break;
case MAPPED:
grid.field(
format_disk_unit(it->second.mapped_blocks_ * block_size,
UNIT_SECTOR));
break;
case EXCLUSIVE:
grid.field(
format_disk_unit(exclusive * block_size,
UNIT_SECTOR));
break;
case SHARED:
grid.field(
format_disk_unit((it->second.mapped_blocks_ - exclusive) *
block_size, UNIT_SECTOR));
break;
case TRANSACTION_ID:
grid.field(it->second.transaction_id_);
break;
case CREATION_TIME:
grid.field(it->second.creation_time_);
break;
case SNAPSHOT_TIME:
grid.field(it->second.snapshotted_time_);
}
}
grid.new_row();
}
grid.render(out);
}
int ls(string const &path, ostream &out, struct flags &flags) {
try {
ls_(path, out, flags);
} catch (std::exception &e) {
cerr << e.what() << endl;
return 1;
}
return 0;
}
}
//----------------------------------------------------------------
thin_ls_cmd::thin_ls_cmd()
: command("thin_ls")
{
}
void
thin_ls_cmd::usage(std::ostream &out) const
{
out << "Usage: " << get_name() << " [options] {metadata device}\n"
<< "Options:\n"
<< " {-h|--help}\n"
<< " {-m|--metadata-snap}\n"
<< " {--no-headers}\n"
<< " {-o|--format <fields>}\n"
<< " {-V|--version}\n\n"
<< "where <fields> is a comma separated list from:\n";
for (unsigned i = 0; i <= static_cast<unsigned>(SNAPSHOT_TIME); i++)
out << " " << field_to_string(static_cast<output_field>(i)) << "\n";
}
vector<output_field> parse_fields(string const &str)
{
vector<output_field> fields;
stringstream in(str);
string item;
while (getline(in, item, ','))
fields.push_back(string_to_field(item));
return fields;
}
int
thin_ls_cmd::run(int argc, char **argv)
{
int c;
struct flags flags;
const char shortopts[] = "ho:m::V";
const struct option longopts[] = {
{ "help", no_argument, NULL, 'h'},
{ "metadata-snap", no_argument, NULL, 'm' },
{ "version", no_argument, NULL, 'V'},
{ "format", required_argument, NULL, 'o' },
{ "no-headers", no_argument, NULL, 1 },
{ NULL, no_argument, NULL, 0 }
};
while ((c = getopt_long(argc, argv, shortopts, longopts, NULL)) != -1) {
switch(c) {
case 'h':
usage(cout);
return 0;
case 'm':
flags.use_metadata_snap = true;
break;
case 'o':
flags.fields = parse_fields(optarg);
break;
case 'V':
cout << THIN_PROVISIONING_TOOLS_VERSION << endl;
return 0;
case 1:
flags.headers = false;
break;
default:
usage(cerr);
return 1;
}
}
if (argc == optind) {
cerr << "No input file provided." << endl;
usage(cerr);
return 1;
}
return ls(argv[optind], cout, flags);
}
//----------------------------------------------------------------