thin-provisioning-tools/src/thin/check.rs
Joe Thornber 4e4b7ca2b1 [thin_check (rust)] add --sync-io flag
Makes it easier to switch between engines
2020-08-10 11:24:50 +01:00

399 lines
11 KiB
Rust

use anyhow::{anyhow, Result};
use fixedbitset::FixedBitSet;
use nom::{number::complete::*, IResult};
use std::collections::BTreeMap;
use std::path::Path;
use std::sync::{Arc, Mutex};
use std::time::Instant;
use threadpool::ThreadPool;
use crate::io_engine::{AsyncIoEngine, SyncIoEngine, Block, IoEngine};
use crate::checksum;
use crate::pdata::btree::{unpack, BTreeWalker, Node, NodeVisitor, Unpack};
use crate::pdata::space_map::*;
use crate::thin::superblock::*;
//------------------------------------------
struct TopLevelVisitor<'a> {
roots: &'a mut BTreeMap<u32, u64>,
}
impl<'a> NodeVisitor<u64> for TopLevelVisitor<'a> {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<u64>) -> Result<()> {
if let Node::Leaf {
header: _h,
keys,
values,
} = node
{
for n in 0..keys.len() {
let k = keys[n];
let root = values[n];
self.roots.insert(k as u32, root);
}
}
Ok(())
}
}
//------------------------------------------
#[allow(dead_code)]
struct BlockTime {
block: u64,
time: u32,
}
impl Unpack for BlockTime {
fn disk_size() -> u32 {
8
}
fn unpack(i: &[u8]) -> IResult<&[u8], BlockTime> {
let (i, n) = le_u64(i)?;
let block = n >> 24;
let time = n & ((1 << 24) - 1);
Ok((
i,
BlockTime {
block,
time: time as u32,
},
))
}
}
struct BottomLevelVisitor {
data_sm: Arc<Mutex<dyn SpaceMap + Send>>,
}
impl NodeVisitor<BlockTime> for BottomLevelVisitor {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<BlockTime>) -> Result<()> {
// FIXME: do other checks
if let Node::Leaf {
header: _h,
keys: _k,
values,
} = node
{
if values.len() > 0 {
let mut data_sm = self.data_sm.lock().unwrap();
let mut start = values[0].block;
let mut len = 1;
for n in 1..values.len() {
if values[n].block == start + len {
len += 1;
} else {
data_sm.inc(start, len)?;
start = values[n].block;
len = 1;
}
}
data_sm.inc(start, len)?;
}
}
Ok(())
}
}
//------------------------------------------
#[derive(Clone)]
struct DeviceDetail {
mapped_blocks: u64,
transaction_id: u64,
creation_time: u32,
snapshotted_time: u32,
}
impl Unpack for DeviceDetail {
fn disk_size() -> u32 {
24
}
fn unpack(i: &[u8]) -> IResult<&[u8], DeviceDetail> {
let (i, mapped_blocks) = le_u64(i)?;
let (i, transaction_id) = le_u64(i)?;
let (i, creation_time) = le_u32(i)?;
let (i, snapshotted_time) = le_u32(i)?;
Ok((
i,
DeviceDetail {
mapped_blocks,
transaction_id,
creation_time,
snapshotted_time,
},
))
}
}
struct DeviceVisitor {
devs: BTreeMap<u32, DeviceDetail>,
}
impl DeviceVisitor {
pub fn new() -> DeviceVisitor {
DeviceVisitor {
devs: BTreeMap::new(),
}
}
}
impl NodeVisitor<DeviceDetail> for DeviceVisitor {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<DeviceDetail>) -> Result<()> {
if let Node::Leaf {
header: _h,
keys,
values,
} = node
{
for n in 0..keys.len() {
let k = keys[n] as u32;
let v = values[n].clone();
self.devs.insert(k, v);
}
}
Ok(())
}
}
//------------------------------------------
struct IndexVisitor {
entries: Vec<IndexEntry>,
}
impl NodeVisitor<IndexEntry> for IndexVisitor {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<IndexEntry>) -> Result<()> {
if let Node::Leaf {
header: _h,
keys: _k,
values,
} = node
{
for v in values {
// FIXME: check keys are in incremental order
let v = v.clone();
self.entries.push(v);
}
}
Ok(())
}
}
//------------------------------------------
// FIXME: move to btree
struct ValueCollector<V> {
values: Vec<(u64, V)>,
}
impl<V> ValueCollector<V> {
fn new() -> ValueCollector<V> {
ValueCollector { values: Vec::new() }
}
}
impl<V: Unpack + Clone> NodeVisitor<V> for ValueCollector<V> {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<V>) -> Result<()> {
if let Node::Leaf {
header: _h,
keys,
values,
} = node
{
for n in 0..keys.len() {
let k = keys[n];
let v = values[n].clone();
self.values.push((k, v));
}
}
Ok(())
}
}
//------------------------------------------
struct OverflowChecker<'a> {
data_sm: &'a dyn SpaceMap,
}
impl<'a> OverflowChecker<'a> {
fn new(data_sm: &'a dyn SpaceMap) -> OverflowChecker<'a> {
OverflowChecker { data_sm }
}
}
impl<'a> NodeVisitor<u32> for OverflowChecker<'a> {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<u32>) -> Result<()> {
if let Node::Leaf {
header: _h,
keys,
values,
} = node
{
for n in 0..keys.len() {
let k = keys[n];
let v = values[n];
let expected = self.data_sm.get(k)?;
if expected != v {
return Err(anyhow!("Bad reference count for data block {}. Expected {}, but space map contains {}.",
k, expected, v));
}
}
}
Ok(())
}
}
//------------------------------------------
const MAX_CONCURRENT_IO: u32 = 1024;
pub struct ThinCheckOptions<'a> {
pub dev: &'a Path,
pub async_io: bool,
}
pub fn check(opts: &ThinCheckOptions) -> Result<()> {
let engine: Arc<dyn IoEngine + Send + Sync>;
let nr_threads;
if opts.async_io {
nr_threads = std::cmp::min(4, num_cpus::get());
engine = Arc::new(AsyncIoEngine::new(opts.dev, MAX_CONCURRENT_IO)?);
} else {
eprintln!("falling back to synchronous io");
nr_threads = num_cpus::get() * 2;
engine = Arc::new(SyncIoEngine::new(opts.dev, nr_threads)?);
}
let now = Instant::now();
let sb = read_superblock(engine.as_ref(), SUPERBLOCK_LOCATION)?;
eprintln!("{:?}", sb);
// device details
let nr_devs;
{
let mut visitor = DeviceVisitor::new();
let mut w = BTreeWalker::new(engine.clone(), false);
w.walk(&mut visitor, sb.details_root)?;
nr_devs = visitor.devs.len();
println!("found {} devices", visitor.devs.len());
}
// mapping top level
let mut roots = BTreeMap::new();
{
let mut visitor = TopLevelVisitor { roots: &mut roots };
let mut w = BTreeWalker::new(engine.clone(), false);
let _result = w.walk(&mut visitor, sb.mapping_root)?;
println!("read mapping tree in {} ms", now.elapsed().as_millis());
}
// mapping bottom level
let data_sm;
{
// FIXME: with a thread pool we need to return errors another way.
let nr_workers = nr_threads;
let pool = ThreadPool::new(nr_workers);
let seen = Arc::new(Mutex::new(FixedBitSet::with_capacity(
engine.get_nr_blocks() as usize,
)));
let root = unpack::<SMRoot>(&sb.data_sm_root[0..])?;
data_sm = core_sm(root.nr_blocks, nr_devs as u32);
for (thin_id, root) in roots {
let mut w = BTreeWalker::new_with_seen(engine.clone(), seen.clone(), false);
let data_sm = data_sm.clone();
pool.execute(move || {
let mut v = BottomLevelVisitor { data_sm };
let result = w.walk(&mut v, root).expect("walk failed"); // FIXME: return error
eprintln!("checked thin_dev {} -> {:?}", thin_id, result);
});
}
pool.join();
}
// data space map
{
let data_sm = data_sm.lock().unwrap();
let root = unpack::<SMRoot>(&sb.data_sm_root[0..])?;
eprintln!("data root: {:?}", root);
// overflow btree
{
let mut v = OverflowChecker::new(&*data_sm);
let mut w = BTreeWalker::new(engine.clone(), false);
w.walk(&mut v, root.ref_count_root)?;
}
// Bitmaps
let mut v = IndexVisitor {
entries: Vec::new(),
};
let mut w = BTreeWalker::new(engine.clone(), false);
let _result = w.walk(&mut v, root.bitmap_root);
eprintln!("{} index entries", v.entries.len());
let mut blocks = Vec::new();
for i in &v.entries {
blocks.push(Block::new(i.blocknr));
}
engine.read_many(&mut blocks)?;
let mut blocknr = 0;
for (n, _i) in v.entries.iter().enumerate() {
let b = &blocks[n];
if checksum::metadata_block_type(&b.get_data()) != checksum::BT::BITMAP {
return Err(anyhow!(
"Index entry points to block ({}) that isn't a bitmap",
b.loc
));
}
let bitmap = unpack::<Bitmap>(b.get_data())?;
for e in bitmap.entries {
match e {
BitmapEntry::Small(actual) => {
let expected = data_sm.get(blocknr)?;
if actual != expected as u8 {
return Err(anyhow!("Bad reference count for data block {}. Expected {}, but space map contains {}.",
blocknr, expected, actual));
}
}
BitmapEntry::Overflow => {
let expected = data_sm.get(blocknr)?;
if expected < 3 {
return Err(anyhow!("Bad reference count for data block {}. Expected {}, but space map says it's >= 3.",
blocknr, expected));
}
}
}
blocknr += 1;
}
}
}
Ok(())
}
//------------------------------------------