thin-provisioning-tools/thin-provisioning/metadata_dumper.cc
Joe Thornber 5e6ddbf2da [thin_dump, thin_repair] Fix bad metadata_damage exception
The first pass of the repair process scans all metadata working out the
largest orphan btrees.  This scan doesn't use as much validation as
the btree_walk function which subsequently gets called.

This patch catches any exceptions thrown by the btree walk function
and removes that btree from consideration.
2019-05-27 16:06:59 +01:00

842 lines
23 KiB
C++

// Copyright (C) 2011 Red Hat, Inc. All rights reserved.
//
// This file is part of the thin-provisioning-tools source.
//
// thin-provisioning-tools is free software: you can redistribute it
// and/or modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// thin-provisioning-tools is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with thin-provisioning-tools. If not, see
// <http://www.gnu.org/licenses/>.
#include "thin-provisioning/emitter.h"
#include "thin-provisioning/metadata_dumper.h"
#include "thin-provisioning/mapping_tree.h"
#include "persistent-data/data-structures/simple_traits.h"
#include "persistent-data/file_utils.h"
#include <map>
#include <vector>
using namespace boost;
using namespace persistent_data;
using namespace thin_provisioning;
#define SHOW_WORKING 0
//----------------------------------------------------------------
namespace {
void raise_metadata_damage() {
throw std::runtime_error("metadata contains errors (run thin_check for details).\n"
"perhaps you wanted to run with --repair");
}
//--------------------------------
struct ignore_details_damage : public device_tree_detail::damage_visitor {
void visit(device_tree_detail::missing_devices const &d) {
}
};
struct fatal_details_damage : public device_tree_detail::damage_visitor {
void visit(device_tree_detail::missing_devices const &d) {
raise_metadata_damage();
}
};
device_tree_detail::damage_visitor::ptr details_damage_policy(bool repair) {
typedef device_tree_detail::damage_visitor::ptr dvp;
if (repair)
return dvp(new ignore_details_damage());
else
return dvp(new fatal_details_damage());
}
//--------------------------------
struct ignore_mapping_damage : public mapping_tree_detail::damage_visitor {
void visit(mapping_tree_detail::missing_devices const &d) {
}
void visit(mapping_tree_detail::missing_mappings const &d) {
}
};
struct fatal_mapping_damage : public mapping_tree_detail::damage_visitor {
void visit(mapping_tree_detail::missing_devices const &d) {
raise_metadata_damage();
}
void visit(mapping_tree_detail::missing_mappings const &d) {
raise_metadata_damage();
}
};
mapping_tree_detail::damage_visitor::ptr mapping_damage_policy(bool repair) {
typedef mapping_tree_detail::damage_visitor::ptr mvp;
if (repair)
return mvp(new ignore_mapping_damage());
else
return mvp(new fatal_mapping_damage());
}
//--------------------------------
typedef map<block_address, device_tree_detail::device_details> dd_map;
class details_extractor : public device_tree_detail::device_visitor {
public:
details_extractor(dump_options const &opts)
: opts_(opts) {
}
void visit(block_address dev_id, device_tree_detail::device_details const &dd) {
if (opts_.selected_dev(dev_id))
dd_.insert(make_pair(dev_id, dd));
}
dd_map const &get_details() const {
return dd_;
}
private:
dump_options const &opts_;
dd_map dd_;
};
struct d_thin_id_extractor : public device_tree_detail::device_visitor {
void visit(block_address dev_id, device_tree_detail::device_details const &dd) {
dd_.insert(dev_id);
}
set<uint32_t> dd_;
};
// See comment on get_map_ids
optional<set<uint32_t> >
get_dev_ids(transaction_manager &tm, block_address root) {
d_thin_id_extractor de;
fatal_details_damage dv;
auto tree = device_tree(tm, root, device_tree_detail::device_details_traits::ref_counter());
try {
walk_device_tree(tree, de, dv);
} catch (...) {
return optional<set<uint32_t>>();
}
return de.dd_;
}
struct m_thin_id_extractor : public mapping_tree_detail::device_visitor {
void visit(btree_path const &path, block_address dtree_root) {
dd_.insert(path[0]);
}
set<uint32_t> dd_;
};
// The walk will do more sanity checks than we did when scanning the metadata, so
// it's possible that it will fail and throw a metadata damage exception.
optional<set<uint32_t> >
get_map_ids(transaction_manager &tm, block_address root) {
m_thin_id_extractor me;
fatal_mapping_damage mv;
auto tree = dev_tree(tm, root, mapping_tree_detail::mtree_traits::ref_counter(tm));
try {
walk_mapping_tree(tree, me, mv);
} catch (...) {
return optional<set<uint32_t>>();
}
return me.dd_;
}
}
// We only need to examine the mapping tree, and device details tree.
// The space maps can be inferred.
// Repair process:
// - We only trigger the repair process if there's damage when walking from
// the roots given in the superblock.
// - If there is damage, then we try and find the most recent roots with the
// least corruption. We're seeing cases where just the superblock has been
// trashed so finding the best roots is essential, and sadly non trivial.
// Finding roots:
// This is about classifying and summarising btree nodes. The use of a btree
// node may not be obvious when inspecting it in isolation. But more information
// may be gleaned by examining child and sibling nodes.
//
// So the process is:
// - scan every metadata block, summarising it's potential uses.
// - repeatedly iterate those summaries until we can glean no more useful information.
// - sort candidate roots, choose best
// Summary information:
// - btree; mapping top level, mapping bottom level, device tree (more than one possible)
// - node type; internal or leaf
// - age; for mapping trees we can infer a minimum age from the block/time
// values. In addition two similar leaf nodes can be compared by looking
// at the block/time for _specific_ blocks. This means we can define an ordering
// on the ages, but not equality.
// - Device details can be aged based on the last_snapshot_time field.
// Iteration of summary info:
// - constraints propagate both up and down the trees. eg, node 'a' may
// be ambiguous (all internal nodes are ambigous). If we find that all it's
// children are device details trees, then we infer that this is too and lose
// the ambiguity. Now if it has a sibling we can infer on this too.
// - Some characteristics only propagate upwards. eg, age. So we need two monoids
// for summary info (up and down).
namespace {
using namespace std;
using namespace boost;
using namespace persistent_data::btree_detail;
using namespace thin_provisioning::device_tree_detail;
enum btree_type {
TOP_LEVEL,
BOTTOM_LEVEL,
DEVICE_DETAILS
};
struct node_info {
node_info()
: valid(true),
type(TOP_LEVEL),
b(0),
values(0),
key_low(0),
key_high(0),
age(0),
nr_mappings(0) {
}
bool valid;
btree_type type;
block_address b;
unsigned values;
uint64_t key_low;
uint64_t key_high;
//set<uint32_t> devices;
uint32_t age;
map<uint32_t, uint32_t> time_counts;
unsigned nr_mappings;
};
#if SHOW_WORKING
ostream &operator <<(ostream &out, node_info const &n) {
out << "b=" << n.b << ", valid=" << n.valid << ", type=" << n.type << ", values=" << n.values;
out << ", nr_mapped=" << n.nr_mappings;
for (auto const &p : n.time_counts)
out << ", t" << p.first << "=" << p.second;
return out;
}
#endif
bool cmp_time_counts(pair<node_info, node_info> const &lhs_pair,
pair<node_info, node_info> const &rhs_pair) {
auto const &lhs = lhs_pair.first.time_counts;
auto const &rhs = rhs_pair.first.time_counts;
for (auto lhs_it = lhs.crbegin(); lhs_it != lhs.crend(); lhs_it++) {
for (auto rhs_it = rhs.crbegin(); rhs_it != rhs.crend(); rhs_it++) {
if (lhs_it->first > rhs_it->first)
return true;
else if (rhs_it->first > lhs_it->first)
return false;
else if (lhs_it->second > rhs_it->second)
return true;
else if (rhs_it->second > lhs_it->second)
return false;
}
}
return true;
}
class gatherer {
public:
gatherer(block_manager<> &bm)
: bm_(bm),
referenced_(bm.get_nr_blocks(), false),
examined_(bm.get_nr_blocks(), false) {
}
optional<pair<block_address, block_address>>
find_best_roots(transaction_manager &tm) {
vector<node_info> mapping_roots;
vector<node_info> device_roots;
auto nr_blocks = bm_.get_nr_blocks();
for (block_address b = 0; b < nr_blocks; b++)
get_info(b);
for (block_address b = 0; b < nr_blocks; b++) {
if (referenced(b))
continue;
auto info = get_info(b);
if (info.valid) {
if (info.type == TOP_LEVEL)
mapping_roots.push_back(info);
else if (info.type == DEVICE_DETAILS)
device_roots.push_back(info);
}
}
#if SHOW_WORKING
cerr << "mapping candidates (" << mapping_roots.size() << "):\n";
for (auto const &i : mapping_roots)
cerr << i << "\n";
cerr << "\ndevice candidates (" << device_roots.size() << "):\n";
for (auto const &i : device_roots)
cerr << i << "\n";
#endif
auto pairs = find_compatible_roots(tm, device_roots, mapping_roots);
#if SHOW_WORKING
for (auto const &p : pairs)
cerr << "(" << p.first << ", " << p.second << ")\n";
#endif
if (pairs.size())
return pairs[0];
else
return optional<pair<block_address, block_address>>();
}
private:
bool set_eq(set<uint32_t> const &lhs, set<uint32_t> const &rhs) {
for (auto v : lhs)
if (!rhs.count(v))
return false;
return true;
}
vector<pair<block_address, block_address> >
find_compatible_roots(transaction_manager &tm,
vector<node_info> const &device_roots,
vector<node_info> const &mapping_roots) {
vector<pair<node_info, node_info>> pairs;
set<block_address> d_roots;
set<block_address> m_roots;
// construct pairs that have the same number of entries
for (auto const &di : device_roots)
for (auto const &mi : mapping_roots)
if (di.values == mi.values && di.nr_mappings == mi.nr_mappings) {
pairs.push_back(make_pair(di, mi));
d_roots.insert(di.b);
m_roots.insert(mi.b);
}
sort(pairs.begin(), pairs.end(), cmp_time_counts);
map<block_address, set<uint32_t>> ds;
for (auto b : d_roots) {
auto maybe_ids = get_dev_ids(tm, b);
if (maybe_ids)
ds.insert(make_pair(b, *maybe_ids));
}
map<block_address, set<uint32_t>> ms;
for (auto b : m_roots) {
auto maybe_ids = get_map_ids(tm, b);
if (maybe_ids)
ms.insert(make_pair(b, *maybe_ids));
}
// now we check that the thin_ids are identical
vector<pair<block_address, block_address>> filtered;
for (auto const &p : pairs) {
auto lhs = ds.find(p.first.b);
if (lhs == ds.end())
continue;
auto rhs = ms.find(p.second.b);
if (rhs == ms.end())
continue;
filtered.push_back(make_pair(p.first.b, p.second.b));
}
return filtered;
}
void mark_referenced(block_address b) {
referenced_[b] = true;
}
bool referenced(block_address b) const {
return referenced_[b];
}
bool is_btree_node(block_address b) {
auto v = create_btree_node_validator();
auto rr = bm_.read_lock(b);
return v->check_raw(rr.data());
}
// The bottom layer has the block time encoded in it, with the time
// in the bottom 24 bits. This means every block/time apart from block 0
// will result in a value that's outside the range of the metadata device.
bool is_top_level(node_ref<uint64_traits> &n) {
auto nr_metadata_blocks = bm_.get_nr_blocks();
for (unsigned i = 0; i < n.get_nr_entries(); i++)
if (n.value_at(i) >= nr_metadata_blocks)
return false;
return true;
}
uint32_t get_dd_age(device_details const &dd) {
return max(dd.creation_time_, dd.snapshotted_time_);
}
void fail(node_info &n, const char *reason) {
// cerr << n.b << " failed: " << reason << "\n";
n.valid = false;
}
bool failed(node_info const &n) {
return !n.valid;
}
void inc_time_count(map<uint32_t, uint32_t> &counts, uint32_t time) {
auto it = counts.find(time);
if (it == counts.end()) {
counts.insert(make_pair(time, 1));
} else
it->second++;
}
void merge_time_counts(map<uint32_t, uint32_t> &lhs, map<uint32_t, uint32_t> const &rhs) {
for (auto const &p : rhs) {
auto it = lhs.find(p.first);
if (it == lhs.end())
lhs.insert(p);
else
it->second += p.second;
}
}
node_info get_internal_info(block_manager<>::read_ref &rr) {
node_info info;
info.b = rr.get_location();
// values refer to blocks, so we should have infos for them.
auto n = to_node<block_traits>(rr);
uint64_t key_low = 0;
unsigned values = 0;
for (unsigned i = 0; i < n.get_nr_entries(); i++) {
auto child = get_info(n.value_at(i));
if (failed(child)) {
fail(info, "child failed");
break;
}
if (!i)
info.type = child.type;
else if (info.type != child.type) {
fail(info, "mismatch types");
break;
}
// we use the keys to help decide if this is a valid child
if (key_low && child.key_low <= key_low) {
fail(info, "bad keys");
break;
} else
key_low = child.key_high;
values += child.values;
merge_time_counts(info.time_counts, child.time_counts);
info.age = max(info.age, child.age);
info.nr_mappings += child.nr_mappings;
}
// We don't clear the orphan flags until we know the parent is good
if (!failed(info)) {
info.values = values;
for (unsigned i = 0; i < n.get_nr_entries(); i++)
mark_referenced(n.value_at(i));
}
return info;
}
node_info get_leaf_info(block_manager<>::read_ref &rr, node_header const &hdr) {
node_info info;
info.b = rr.get_location();
auto vsize = to_cpu<uint32_t>(hdr.value_size);
info.values = to_cpu<uint32_t>(hdr.nr_entries);
if (vsize == sizeof(device_details_traits::disk_type)) {
auto n = to_node<device_details_traits>(rr);
info.type = DEVICE_DETAILS;
if (n.get_nr_entries()) {
info.key_low = n.key_at(0);
info.key_high = n.key_at(n.get_nr_entries() - 1);
}
for (unsigned i = 0; i < n.get_nr_entries(); i++) {
info.age = max(info.age, get_dd_age(n.value_at(i)));
info.nr_mappings += n.value_at(i).mapped_blocks_;
}
} else if (vsize == sizeof(uint64_t)) {
auto n = to_node<uint64_traits>(rr);
if (n.get_nr_entries()) {
info.key_low = n.key_at(0);
info.key_high = n.key_at(n.get_nr_entries() - 1);
}
if (is_top_level(n)) {
info.type = TOP_LEVEL;
for (unsigned i = 0; i < n.get_nr_entries(); i++) {
node_info child = get_info(n.value_at(i));
if (!child.valid || (child.type != BOTTOM_LEVEL)) {
fail(info, "child not bottom level");
return info;
}
info.age = max(info.age, child.age);
merge_time_counts(info.time_counts, child.time_counts);
info.nr_mappings += child.nr_mappings;
}
for (unsigned i = 0; i < n.get_nr_entries(); i++)
mark_referenced(n.value_at(i));
} else {
auto n = to_node<mapping_tree_detail::block_traits>(rr);
info.type = BOTTOM_LEVEL;
for (unsigned i = 0; i < n.get_nr_entries(); i++) {
auto bt = n.value_at(i);
inc_time_count(info.time_counts, bt.time_);
info.age = max(info.age, bt.time_);
}
info.nr_mappings = n.get_nr_entries();
}
}
return info;
}
node_info get_info_(block_address b) {
if (!is_btree_node(b)) {
node_info info;
info.b = b;
fail(info, "not btree node");
return info;
}
auto rr = bm_.read_lock(b);
auto hdr = reinterpret_cast<node_header const *>(rr.data());
auto flags = to_cpu<uint32_t>(hdr->flags);
if (flags & INTERNAL_NODE)
return get_internal_info(rr);
else
return get_leaf_info(rr, *hdr);
}
node_info get_info(block_address b) {
if (examined_[b]) {
auto it = infos_.find(b);
if (it == infos_.end()) {
node_info info;
info.b = b;
fail(info, "unknown");
return info;
}
return it->second;
} else {
node_info info = get_info_(b);
examined_[b] = true;
if (!failed(info))
infos_.insert(make_pair(b, info));
return info;
}
}
block_manager<> &bm_;
vector<bool> referenced_;
vector<bool> examined_;
map<block_address, node_info> infos_;
};
}
//----------------------------------------------------------------
namespace {
class mapping_emitter : public mapping_tree_detail::mapping_visitor {
public:
mapping_emitter(emitter::ptr e)
: e_(e),
in_range_(false) {
}
~mapping_emitter() {
end_mapping();
}
typedef mapping_tree_detail::block_time block_time;
void visit(btree_path const &path, block_time const &bt) {
add_mapping(path[0], bt);
}
private:
void start_mapping(uint64_t origin_block, block_time const &bt) {
origin_start_ = origin_block;
dest_start_ = bt.block_;
time_ = bt.time_;
len_ = 1;
in_range_ = true;
}
void end_mapping() {
if (in_range_) {
if (len_ == 1)
e_->single_map(origin_start_, dest_start_, time_);
else
e_->range_map(origin_start_, dest_start_, time_, len_);
in_range_ = false;
}
}
void add_mapping(uint64_t origin_block, block_time const &bt) {
if (!in_range_)
start_mapping(origin_block, bt);
else if (origin_block == origin_start_ + len_ &&
bt.block_ == dest_start_ + len_ &&
time_ == bt.time_)
len_++;
else {
end_mapping();
start_mapping(origin_block, bt);
}
}
emitter::ptr e_;
block_address origin_start_;
block_address dest_start_;
uint32_t time_;
block_address len_;
bool in_range_;
};
class mapping_tree_emitter : public mapping_tree_detail::device_visitor {
public:
mapping_tree_emitter(dump_options const &opts,
metadata::ptr md,
emitter::ptr e,
dd_map const &dd,
mapping_tree_detail::damage_visitor::ptr damage_policy)
: opts_(opts),
md_(md),
e_(e),
dd_(dd),
damage_policy_(damage_policy) {
}
void visit(btree_path const &path, block_address tree_root) {
block_address dev_id = path[0];
if (!opts_.selected_dev(dev_id))
return;
dd_map::const_iterator it = dd_.find(path[0]);
if (it != dd_.end()) {
device_tree_detail::device_details const &d = it->second;
e_->begin_device(dev_id,
d.mapped_blocks_,
d.transaction_id_,
d.creation_time_,
d.snapshotted_time_);
try {
if (!opts_.skip_mappings_)
emit_mappings(dev_id, tree_root);
} catch (std::exception &e) {
cerr << e.what();
e_->end_device();
throw;
}
e_->end_device();
} else {
ostringstream msg;
msg << "mappings present for device " << dev_id
<< ", but it isn't present in device tree";
throw runtime_error(msg.str());
}
}
private:
void emit_mappings(uint64_t dev_id, block_address subtree_root) {
mapping_emitter me(e_);
single_mapping_tree tree(*md_->tm_, subtree_root,
mapping_tree_detail::block_time_ref_counter(md_->data_sm_));
walk_mapping_tree(tree, dev_id, static_cast<mapping_tree_detail::mapping_visitor &>(me), *damage_policy_);
}
dump_options const &opts_;
metadata::ptr md_;
emitter::ptr e_;
dd_map const &dd_;
mapping_tree_detail::damage_visitor::ptr damage_policy_;
};
block_address get_nr_blocks(metadata::ptr md) {
if (md->data_sm_)
return md->data_sm_->get_nr_blocks();
else if (md->sb_.blocknr_ == superblock_detail::SUPERBLOCK_LOCATION)
// grab from the root structure of the space map
return get_nr_blocks_in_data_sm(*md->tm_, &md->sb_.data_space_map_root_);
else
// metadata snap, we really don't know
return 0ull;
}
}
//----------------------------------------------------------------
void
thin_provisioning::metadata_dump(metadata::ptr md, emitter::ptr e, dump_options const &opts)
{
details_extractor de(opts);
device_tree_detail::damage_visitor::ptr dd_policy(details_damage_policy(false));
walk_device_tree(*md->details_, de, *dd_policy);
e->begin_superblock("", md->sb_.time_,
md->sb_.trans_id_,
md->sb_.flags_,
md->sb_.version_,
md->sb_.data_block_size_,
get_nr_blocks(md),
boost::optional<block_address>());
{
mapping_tree_detail::damage_visitor::ptr md_policy(mapping_damage_policy(false));
mapping_tree_emitter mte(opts, md, e, de.get_details(), mapping_damage_policy(false));
walk_mapping_tree(*md->mappings_top_level_, mte, *md_policy);
}
e->end_superblock();
}
void
thin_provisioning::metadata_repair(block_manager<>::ptr bm, emitter::ptr e)
{
// We assume the superblock is wrong, and find the best roots
// for ourselves. We've had a few cases where people have
// activated a pool on multiple hosts at once, which results in
// the superblock being over written.
gatherer g(*bm);
auto tm = open_tm(bm, superblock_detail::SUPERBLOCK_LOCATION);
auto p = g.find_best_roots(*tm);
metadata::ptr md;
if (p) {
// We found good roots, so we fill out our own superblock,
// with some help from the old sb.
// FIXME: what happens if the superblock can't be read?
// catch and fill out defaults? what should the data_block_size be?
auto sb = read_superblock(*bm);
sb.metadata_snap_ = 0;
sb.device_details_root_ = p->first;
sb.data_mapping_root_ = p->second;
sb.metadata_nr_blocks_ = bm->get_nr_blocks();
md.reset(new metadata(bm, sb));
} else {
// We couldn't find any good roots, so we'll fall back to using the
// on disk superblock.
md.reset(new metadata(bm, false));
}
dump_options opts;
details_extractor de(opts);
device_tree_detail::damage_visitor::ptr dd_policy(details_damage_policy(true));
walk_device_tree(*md->details_, de, *dd_policy);
e->begin_superblock("", md->sb_.time_,
md->sb_.trans_id_,
md->sb_.flags_,
md->sb_.version_,
md->sb_.data_block_size_,
get_nr_blocks(md),
boost::optional<block_address>());
{
mapping_tree_detail::damage_visitor::ptr md_policy(mapping_damage_policy(true));
mapping_tree_emitter mte(opts, md, e, de.get_details(), mapping_damage_policy(true));
walk_mapping_tree(*md->mappings_top_level_, mte, *md_policy);
}
e->end_superblock();
}
//----------------------------------------------------------------
void
thin_provisioning::metadata_dump_subtree(metadata::ptr md, emitter::ptr e, bool repair, uint64_t subtree_root) {
mapping_emitter me(e);
single_mapping_tree tree(*md->tm_, subtree_root,
mapping_tree_detail::block_time_ref_counter(md->data_sm_));
// FIXME: pass the current device id instead of zero
walk_mapping_tree(tree, 0, static_cast<mapping_tree_detail::mapping_visitor &>(me),
*mapping_damage_policy(repair));
}
//----------------------------------------------------------------