thin-provisioning-tools/src/pack/vm.rs

491 lines
14 KiB
Rust

use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use std::io;
use std::io::{Cursor, Read, Write};
use num_derive::FromPrimitive;
use num_traits::FromPrimitive;
use crate::pack::delta_list::*;
//-------------------------------------------------
// Deltas are converted to instructions. A delta may not fit
// into a single instruction.
#[derive(Debug, FromPrimitive)]
enum Tag {
Set, // Operand width given in nibble
Pos, // Delta in nibble
PosW, // Delta in operand, whose width is in nibble
Neg, // Delta in nibble
NegW, // Delta in operand, whose width is in nibble
Const, // Count in nibble
Const8, // count = (nibble << 8) | byte
// Controls how many times the next instruction is applied.
// Not applicable to Const instructions which hold their own count.
Count, // count stored in nibble
Count8, // count = (nibble << 8) | byte
Lit, // len in nibble
LitW,
ShiftedRun,
}
fn pack_tag<W: Write>(w: &mut W, t: Tag, nibble: u8) -> io::Result<()> {
assert!(nibble < 16);
let mut b: u8 = t as u8;
assert!(b < 16);
b = (b << 4) | nibble;
w.write_u8(b)
}
fn pack_count<W>(w: &mut W, count: u64) -> io::Result<()>
where
W: Write,
{
if count == 1u64 {
return Ok(());
} else if count < 16 {
return pack_tag(w, Tag::Count, count as u8);
} else {
assert!(count < 4096);
let nibble = count >> 8;
assert!(nibble < 16);
let byte = count & 0xff;
pack_tag(w, Tag::Count8, nibble as u8)?;
return w.write_u8(byte as u8);
}
}
fn pack_delta<W: Write>(w: &mut W, d: &Delta) -> io::Result<()> {
use Tag::*;
match d {
Delta::Base { n } => {
if *n <= std::u8::MAX as u64 {
pack_tag(w, Set, 1)?;
return w.write_u8(*n as u8);
} else if *n <= std::u16::MAX as u64 {
pack_tag(w, Set, 2)?;
return w.write_u16::<LittleEndian>(*n as u16);
} else if *n <= u32::MAX as u64 {
pack_tag(w, Set, 4)?;
return w.write_u32::<LittleEndian>(*n as u32);
} else {
pack_tag(w, Set, 8)?;
return w.write_u64::<LittleEndian>(*n);
}
}
Delta::Pos { delta, count } => {
pack_count(w, *count)?;
if *delta < 16 {
return pack_tag(w, Tag::Pos, *delta as u8);
} else if *delta <= u8::MAX as u64 {
pack_tag(w, PosW, 1)?;
return w.write_u8(*delta as u8);
} else if *delta <= u16::MAX as u64 {
pack_tag(w, PosW, 2)?;
return w.write_u16::<LittleEndian>(*delta as u16);
} else if *delta <= u32::MAX as u64 {
pack_tag(w, PosW, 4)?;
return w.write_u32::<LittleEndian>(*delta as u32);
} else {
pack_tag(w, PosW, 8)?;
return w.write_u64::<LittleEndian>(*delta as u64);
}
}
Delta::Neg { delta, count } => {
pack_count(w, *count)?;
if *delta < 16 {
return pack_tag(w, Neg, *delta as u8);
} else if *delta <= u8::MAX as u64 {
pack_tag(w, NegW, 1)?;
return w.write_u8(*delta as u8);
} else if *delta <= u16::MAX as u64 {
pack_tag(w, NegW, 2)?;
return w.write_u16::<LittleEndian>(*delta as u16);
} else if *delta <= u32::MAX as u64 {
pack_tag(w, NegW, 4)?;
return w.write_u32::<LittleEndian>(*delta as u32);
} else {
pack_tag(w, NegW, 8)?;
return w.write_u64::<LittleEndian>(*delta as u64);
}
}
Delta::Const { count } => {
if *count < 16 {
return pack_tag(w, Tag::Const, *count as u8);
} else {
assert!(*count < 4096);
let nibble = *count >> 8;
assert!(nibble < 16);
pack_tag(w, Tag::Const8, nibble as u8)?;
return w.write_u8((*count & 0xff) as u8);
}
}
}
}
fn pack_deltas<W: Write>(w: &mut W, ds: &[Delta]) -> io::Result<()> {
for d in ds {
pack_delta(w, d)?;
}
Ok(())
}
//-------------------------------------------------
pub fn pack_u64s<W: Write>(w: &mut W, ns: &[u64]) -> io::Result<()> {
let ds = to_delta(ns);
pack_deltas(w, &ds[0..])
}
fn unshift_nrs(shift: usize, ns: &[u64]) -> (Vec<u64>, Vec<u64>) {
let mut values = Vec::new();
let mut shifts = Vec::new();
let mask = (1 << shift) - 1;
for n in ns {
values.push(n >> shift);
shifts.push(n & mask);
}
(values, shifts)
}
pub fn pack_shifted_u64s<W: Write>(w: &mut W, ns: &[u64]) -> io::Result<()> {
let len = ns.len();
let nibble = len >> 8;
assert!(nibble < 16);
pack_tag(w, Tag::ShiftedRun, nibble as u8)?;
w.write_u8((len & 0xff) as u8)?;
let (high, low) = unshift_nrs(24, ns);
pack_u64s(w, &high[0..])?;
pack_u64s(w, &low[0..])
}
pub fn pack_literal<W: Write>(w: &mut W, bs: &[u8]) -> io::Result<()> {
use Tag::LitW;
let len = bs.len() as u64;
if len < 16 as u64 {
pack_tag(w, Tag::Lit, len as u8)?;
} else if len <= u8::MAX as u64 {
pack_tag(w, LitW, 1)?;
w.write_u8(len as u8)?;
} else if len <= u16::MAX as u64 {
pack_tag(w, LitW, 2)?;
w.write_u16::<LittleEndian>(len as u16)?;
} else if len <= u32::MAX as u64 {
pack_tag(w, LitW, 4)?;
w.write_u32::<LittleEndian>(len as u32)?;
} else {
pack_tag(w, LitW, 8)?;
w.write_u64::<LittleEndian>(len as u64)?;
}
w.write_all(bs)
}
//-------------------------------------------------
fn unpack_with_width<R: Read>(r: &mut R, nibble: u8) -> io::Result<u64> {
let v = match nibble {
1 => r.read_u8()? as u64,
2 => r.read_u16::<LittleEndian>()? as u64,
4 => r.read_u32::<LittleEndian>()? as u64,
8 => r.read_u64::<LittleEndian>()? as u64,
_ => {
panic!("SET with bad width");
}
};
Ok(v)
}
fn unpack_u64s<R: Read>(r: &mut R, count: usize) -> io::Result<Vec<u64>> {
let mut v = Vec::new();
for _ in 0..count {
let n = r.read_u64::<LittleEndian>()?;
v.push(n);
}
Ok(v)
}
struct VM {
base: u64,
bytes_written: usize,
}
impl VM {
fn new() -> VM {
VM {
base: 0,
bytes_written: 0,
}
}
fn emit_u64<W: Write>(&mut self, w: &mut W, n: u64) -> io::Result<()> {
w.write_u64::<LittleEndian>(n)?;
self.bytes_written += 8;
Ok(())
}
fn emit_base<W: Write>(&mut self, w: &mut W) -> io::Result<()> {
self.emit_u64(w, self.base)
}
fn emit_bytes<W: Write>(&mut self, w: &mut W, bytes: &[u8]) -> io::Result<()> {
let len = bytes.len();
w.write_all(bytes)?;
self.bytes_written += len;
Ok(())
}
fn unpack_instr<R: Read, W: Write>(
&mut self,
r: &mut R,
w: &mut W,
count: usize,
) -> io::Result<()> {
use Tag::*;
let b = r.read_u8()?;
let kind: Tag = match Tag::from_u8(b >> 4) {
Some(k) => k,
None => {
panic!("bad tag");
}
};
let nibble = b & 0xf;
match kind {
Set => {
self.base = unpack_with_width(r, nibble)?;
for _ in 0..count {
self.emit_base(w)?;
}
}
Pos => {
for _ in 0..count {
self.base += nibble as u64;
self.emit_base(w)?;
}
}
PosW => {
let delta = unpack_with_width(r, nibble)?;
for _ in 0..count {
self.base += delta;
self.emit_base(w)?;
}
}
Neg => {
for _ in 0..count {
self.base -= nibble as u64;
self.emit_base(w)?;
}
}
NegW => {
let delta = unpack_with_width(r, nibble)?;
for _ in 0..count {
self.base -= delta;
self.emit_base(w)?;
}
}
Const => {
assert_eq!(count, 1);
for _ in 0..nibble as usize {
self.emit_base(w)?;
}
}
Const8 => {
assert_eq!(count, 1);
let count = ((nibble as usize) << 8) | (r.read_u8()? as usize);
for _ in 0..count {
self.emit_base(w)?;
}
}
Count => {
self.unpack_instr(r, w, nibble as usize)?;
}
Count8 => {
let count = ((nibble as usize) << 8) | (r.read_u8()? as usize);
self.unpack_instr(r, w, count as usize)?;
}
Lit => {
assert_eq!(count, 1);
let len = nibble as usize;
let mut bytes = vec![0; len];
r.read_exact(&mut bytes[0..])?;
self.emit_bytes(w, &bytes)?;
}
LitW => {
assert_eq!(count, 1);
let len = unpack_with_width(r, nibble)? as usize;
let mut bytes = vec![0; len];
r.read_exact(&mut bytes[0..])?;
self.emit_bytes(w, &bytes)?;
}
ShiftedRun => {
// FIXME: repeated unpack, pack, unpack
let len = ((nibble as usize) << 8) | (r.read_u8()? as usize);
let nr_bytes = (len as usize) * std::mem::size_of::<u64>() as usize;
let mut high_bytes: Vec<u8> = Vec::with_capacity(nr_bytes);
let written = self.exec(r, &mut high_bytes, nr_bytes)?;
self.bytes_written -= written; // hack
let mut high_r = Cursor::new(high_bytes);
let high = unpack_u64s(&mut high_r, len)?;
let mut low_bytes: Vec<u8> = Vec::with_capacity(nr_bytes);
let written = self.exec(r, &mut low_bytes, nr_bytes)?;
self.bytes_written -= written; // hack
let mut low_r = Cursor::new(low_bytes);
let low = unpack_u64s(&mut low_r, len)?;
let mask = (1 << 24) - 1;
for i in 0..len {
self.emit_u64(w, (high[i] << 24) | (low[i] & mask))?;
}
}
}
Ok(())
}
// Runs until at least a number of bytes have been emitted. Returns nr emitted.
fn exec<R: Read, W: Write>(
&mut self,
r: &mut R,
w: &mut W,
emit_bytes: usize,
) -> io::Result<usize> {
let begin = self.bytes_written;
while (self.bytes_written - begin) < emit_bytes {
self.unpack_instr(r, w, 1)?;
}
Ok(self.bytes_written - begin)
}
}
pub fn unpack<R: Read>(r: &mut R, count: usize) -> io::Result<Vec<u8>> {
let mut w = Vec::with_capacity(4096);
let mut cursor = Cursor::new(&mut w);
let mut vm = VM::new();
let written = vm.exec(r, &mut cursor, count)?;
assert_eq!(w.len(), count);
assert_eq!(written, count);
Ok(w)
}
//-------------------------------------------------
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_pack_literals() {
struct TestCase(Vec<u8>);
let cases = [
// This is a bad test case, because unpack will not exec
// any instructions.
TestCase(b"".to_vec()),
TestCase(b"foo".to_vec()),
TestCase(vec![42; 15]),
TestCase(vec![42; 256]),
TestCase(vec![42; 4096]),
];
for t in &cases {
let mut bs = Vec::with_capacity(4096);
let mut w = Cursor::new(&mut bs);
pack_literal(&mut w, &t.0[0..]).unwrap();
let mut r = Cursor::new(&mut bs);
let unpacked = unpack(&mut r, t.0.len()).unwrap();
assert_eq!(&t.0[0..], &unpacked[0..]);
}
}
fn check_u64s_match(ns: &Vec<u64>, bytes: &[u8]) -> bool {
let mut packed = Vec::with_capacity(ns.len() * 8);
let mut w = Cursor::new(&mut packed);
for n in ns {
w.write_u64::<LittleEndian>(*n).unwrap();
}
packed == bytes
}
fn check_pack_u64s(ns: &Vec<u64>) -> bool {
println!("packing {:?}", &ns);
let mut bs = Vec::with_capacity(4096);
let mut w = Cursor::new(&mut bs);
pack_u64s(&mut w, &ns[0..]).unwrap();
println!("unpacked len = {}, packed len = {}", ns.len() * 8, bs.len());
let mut r = Cursor::new(&mut bs);
let unpacked = unpack(&mut r, ns.len() * 8).unwrap();
check_u64s_match(&ns, &unpacked[0..])
}
#[test]
fn test_pack_u64s() {
let cases = [
vec![0],
vec![1, 5, 9, 10],
b"the quick brown fox jumps over the lazy dog"
.iter()
.map(|b| *b as u64)
.collect(),
];
for t in &cases {
assert!(check_pack_u64s(&t));
}
}
#[quickcheck]
fn prop_pack_u64s(mut ns: Vec<u64>) -> bool {
ns.push(42); // We don't handle empty vecs
check_pack_u64s(&ns)
}
fn check_pack_shifted_u64s(ns: &Vec<(u64, u64)>) -> bool {
let shifted: Vec<u64> = ns
.iter()
.map(|(h, l)| (h << 24) | (l & ((1 << 24) - 1)))
.collect();
println!("packing {:?}", &ns);
let mut bs = Vec::with_capacity(4096);
let mut w = Cursor::new(&mut bs);
pack_shifted_u64s(&mut w, &shifted[0..]).unwrap();
println!("unpacked len = {}, packed len = {}", ns.len() * 8, bs.len());
let mut r = Cursor::new(&mut bs);
let unpacked = unpack(&mut r, ns.len() * 8).unwrap();
check_u64s_match(&shifted, &unpacked[0..])
}
#[quickcheck]
fn prop_pack_shifted_u64s(mut ns: Vec<(u64, u64)>) -> bool {
ns.push((42, 42));
check_pack_shifted_u64s(&ns)
}
}
//-------------------------------------------------