thin-provisioning-tools/src/thin/check.rs
2020-08-11 13:44:33 +01:00

438 lines
12 KiB
Rust

use anyhow::{anyhow, Result};
use indicatif::{ProgressBar, ProgressStyle};
use nom::{number::complete::*, IResult};
use std::collections::BTreeMap;
use std::path::Path;
use std::sync::mpsc::{channel, Receiver, Sender, TryRecvError};
use std::sync::{Arc, Mutex};
use std::{thread, time};
use threadpool::ThreadPool;
use crate::checksum;
use crate::io_engine::{AsyncIoEngine, Block, IoEngine, SyncIoEngine};
use crate::pdata::btree::{btree_to_map, btree_to_map_with_sm, BTreeWalker, Node, NodeVisitor};
use crate::pdata::space_map::*;
use crate::pdata::unpack::*;
use crate::thin::superblock::*;
//------------------------------------------
struct TopLevelVisitor<'a> {
roots: &'a mut BTreeMap<u32, u64>,
}
impl<'a> NodeVisitor<u64> for TopLevelVisitor<'a> {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<u64>) -> Result<()> {
if let Node::Leaf {
header: _h,
keys,
values,
} = node
{
for n in 0..keys.len() {
let k = keys[n];
let root = values[n];
self.roots.insert(k as u32, root);
}
}
Ok(())
}
}
//------------------------------------------
#[allow(dead_code)]
struct BlockTime {
block: u64,
time: u32,
}
impl Unpack for BlockTime {
fn disk_size() -> u32 {
8
}
fn unpack(i: &[u8]) -> IResult<&[u8], BlockTime> {
let (i, n) = le_u64(i)?;
let block = n >> 24;
let time = n & ((1 << 24) - 1);
Ok((
i,
BlockTime {
block,
time: time as u32,
},
))
}
}
struct BottomLevelVisitor {
data_sm: Arc<Mutex<dyn SpaceMap + Send>>,
}
impl NodeVisitor<BlockTime> for BottomLevelVisitor {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<BlockTime>) -> Result<()> {
// FIXME: do other checks
if let Node::Leaf {
header: _h,
keys: _k,
values,
} = node
{
if values.len() == 0 {
return Ok(());
}
let mut data_sm = self.data_sm.lock().unwrap();
let mut start = values[0].block;
let mut len = 1;
for n in 1..values.len() {
let block = values[n].block;
if block == start + len {
len += 1;
} else {
data_sm.inc(start, len)?;
start = block;
len = 1;
}
}
data_sm.inc(start, len)?;
}
Ok(())
}
}
//------------------------------------------
#[derive(Clone)]
struct DeviceDetail {
mapped_blocks: u64,
transaction_id: u64,
creation_time: u32,
snapshotted_time: u32,
}
impl Unpack for DeviceDetail {
fn disk_size() -> u32 {
24
}
fn unpack(i: &[u8]) -> IResult<&[u8], DeviceDetail> {
let (i, mapped_blocks) = le_u64(i)?;
let (i, transaction_id) = le_u64(i)?;
let (i, creation_time) = le_u32(i)?;
let (i, snapshotted_time) = le_u32(i)?;
Ok((
i,
DeviceDetail {
mapped_blocks,
transaction_id,
creation_time,
snapshotted_time,
},
))
}
}
//------------------------------------------
struct OverflowChecker<'a> {
data_sm: &'a dyn SpaceMap,
}
impl<'a> OverflowChecker<'a> {
fn new(data_sm: &'a dyn SpaceMap) -> OverflowChecker<'a> {
OverflowChecker { data_sm }
}
}
impl<'a> NodeVisitor<u32> for OverflowChecker<'a> {
fn visit(&mut self, _w: &BTreeWalker, _b: &Block, node: &Node<u32>) -> Result<()> {
if let Node::Leaf {
header: _h,
keys,
values,
} = node
{
for n in 0..keys.len() {
let k = keys[n];
let v = values[n];
let expected = self.data_sm.get(k)?;
if expected != v {
return Err(anyhow!("Bad reference count for data block {}. Expected {}, but space map contains {}.",
k, expected, v));
}
}
}
Ok(())
}
}
//------------------------------------------
enum SpinnerCmd {
Complete,
Abort,
Title(String),
}
struct Spinner {
tx: Sender<SpinnerCmd>,
tid: thread::JoinHandle<()>,
}
impl Spinner {
fn new(sm: Arc<Mutex<dyn SpaceMap + Send + Sync>>, total_allocated: u64) -> Result<Spinner> {
let (tx, rx) = channel();
let tid = thread::spawn(move || spinner_thread(sm, total_allocated, rx));
Ok(Spinner { tx, tid })
}
fn complete(self) -> Result<()> {
self.tx.send(SpinnerCmd::Complete)?;
self.tid.join();
Ok(())
}
fn abort(self) -> Result<()> {
self.tx.send(SpinnerCmd::Abort)?;
self.tid.join();
Ok(())
}
fn set_title(&mut self, txt: &str) -> Result<()> {
self.tx.send(SpinnerCmd::Title(txt.to_string()))?;
Ok(())
}
}
fn spinner_thread(
sm: Arc<Mutex<dyn SpaceMap + Send + Sync>>,
total_allocated: u64,
rx: Receiver<SpinnerCmd>,
) {
let interval = time::Duration::from_millis(250);
let bar = ProgressBar::new(total_allocated);
loop {
match rx.try_recv() {
Ok(SpinnerCmd::Complete) => {
bar.finish();
return;
}
Ok(SpinnerCmd::Abort) => {
return;
}
Ok(SpinnerCmd::Title(txt)) => {
let mut fmt = "Checking thin metadata [{bar:40.cyan/blue}] Remaining {eta}, ".to_string();
fmt.push_str(&txt);
bar.set_style(
ProgressStyle::default_bar()
.template(&fmt)
.progress_chars("=> "),
);
}
Err(TryRecvError::Disconnected) => {
return;
}
Err(TryRecvError::Empty) => {}
}
let sm = sm.lock().unwrap();
let nr_allocated = sm.get_nr_allocated().unwrap();
drop(sm);
bar.set_position(nr_allocated);
bar.tick();
thread::sleep(interval);
}
}
//------------------------------------------
const MAX_CONCURRENT_IO: u32 = 1024;
pub struct ThinCheckOptions<'a> {
pub dev: &'a Path,
pub async_io: bool,
}
pub fn check(opts: &ThinCheckOptions) -> Result<()> {
let engine: Arc<dyn IoEngine + Send + Sync>;
let nr_threads;
if opts.async_io {
nr_threads = std::cmp::min(4, num_cpus::get());
engine = Arc::new(AsyncIoEngine::new(opts.dev, MAX_CONCURRENT_IO)?);
} else {
eprintln!("Using synchronous io");
nr_threads = num_cpus::get() * 2;
engine = Arc::new(SyncIoEngine::new(opts.dev, nr_threads)?);
}
// superblock
let sb = read_superblock(engine.as_ref(), SUPERBLOCK_LOCATION)?;
let nr_allocated_metadata;
{
let root = unpack::<SMRoot>(&sb.metadata_sm_root[0..])?;
nr_allocated_metadata = root.nr_allocated;
}
// Device details. We read this once to get the number of thin devices, and hence the
// maximum metadata ref count. Then create metadata space map, and reread to increment
// the ref counts for that metadata.
let devs = btree_to_map::<DeviceDetail>(engine.clone(), false, sb.details_root)?;
let nr_devs = devs.len();
let metadata_sm = core_sm(engine.get_nr_blocks(), nr_devs as u32);
let mut spinner = Spinner::new(metadata_sm.clone(), nr_allocated_metadata)?;
spinner.set_title("device details tree")?;
let _devs = btree_to_map_with_sm::<DeviceDetail>(
engine.clone(),
metadata_sm.clone(),
false,
sb.details_root,
)?;
// increment superblock
{
let mut sm = metadata_sm.lock().unwrap();
sm.inc(SUPERBLOCK_LOCATION, 1)?;
}
// mapping top level
let roots = btree_to_map::<u64>(engine.clone(), false, sb.mapping_root)?;
// Check the mappings filling in the data_sm as we go.
spinner.set_title("mapping tree")?;
let data_sm;
{
// FIXME: with a thread pool we need to return errors another way.
let nr_workers = nr_threads;
let pool = ThreadPool::new(nr_workers);
let root = unpack::<SMRoot>(&sb.data_sm_root[0..])?;
data_sm = core_sm(root.nr_blocks, nr_devs as u32);
for (_thin_id, root) in roots {
let mut w = BTreeWalker::new_with_sm(engine.clone(), metadata_sm.clone(), false)?;
let data_sm = data_sm.clone();
pool.execute(move || {
let mut v = BottomLevelVisitor { data_sm };
// FIXME: return error
match w.walk(&mut v, root) {
Err(e) => {
eprintln!("walk failed {:?}", e);
std::process::abort();
}
Ok(_result) => {
//eprintln!("checked thin_dev {} -> {:?}", thin_id, result);
}
}
});
}
pool.join();
}
// Check the data space map.
{
spinner.set_title("data space map")?;
let data_sm = data_sm.lock().unwrap();
let root = unpack::<SMRoot>(&sb.data_sm_root[0..])?;
let nr_data_blocks = root.nr_blocks;
// overflow btree
{
let mut v = OverflowChecker::new(&*data_sm);
let mut w = BTreeWalker::new(engine.clone(), false);
w.walk(&mut v, root.ref_count_root)?;
}
// Bitmaps
let entries = btree_to_map::<IndexEntry>(engine.clone(), false, root.bitmap_root)?;
let mut blocks = Vec::new();
for (_k, i) in &entries {
blocks.push(Block::new(i.blocknr));
}
// FIXME: we should do this in batches
engine.read_many(&mut blocks)?;
let mut leaks = 0;
let mut fail = false;
let mut blocknr = 0;
for n in 0..entries.len() {
let b = &blocks[n];
if checksum::metadata_block_type(&b.get_data()) != checksum::BT::BITMAP {
return Err(anyhow!(
"Index entry points to block ({}) that isn't a bitmap",
b.loc
));
}
let bitmap = unpack::<Bitmap>(b.get_data())?;
for e in bitmap.entries {
if blocknr >= nr_data_blocks {
break;
}
match e {
BitmapEntry::Small(actual) => {
let expected = data_sm.get(blocknr)?;
if actual == 1 && expected == 0 {
// eprintln!("Data block {} leaked.", blocknr);
leaks += 1;
} else if actual != expected as u8 {
eprintln!("Bad reference count for data block {}. Expected {}, but space map contains {}.",
blocknr, expected, actual);
fail = true;
}
}
BitmapEntry::Overflow => {
let expected = data_sm.get(blocknr)?;
if expected < 3 {
eprintln!("Bad reference count for data block {}. Expected {}, but space map says it's >= 3.",
blocknr, expected);
fail = true;
}
}
}
blocknr += 1;
}
}
if leaks > 0 {
eprintln!(
"{} data blocks have leaked. Use --auto-repair to fix.",
leaks
);
}
if fail {
spinner.abort()?;
return Err(anyhow!("Inconsistent data space map"));
}
}
// Check the metadata space map.
spinner.set_title("metadata space map")?;
spinner.complete()?;
Ok(())
}
//------------------------------------------