SwRasterizer: Implement primary fragment color.
This commit is contained in:
parent
669757a97b
commit
b2f472a2b1
@ -13,6 +13,7 @@
|
||||
#include "common/logging/log.h"
|
||||
#include "common/math_util.h"
|
||||
#include "common/microprofile.h"
|
||||
#include "common/quaternion.h"
|
||||
#include "common/vector_math.h"
|
||||
#include "core/hw/gpu.h"
|
||||
#include "core/memory.h"
|
||||
@ -114,6 +115,86 @@ static std::tuple<float24, float24, PAddr> ConvertCubeCoord(float24 u, float24 v
|
||||
return std::make_tuple(x / z * half + half, y / z * half + half, addr);
|
||||
}
|
||||
|
||||
std::tuple<Math::Vec4<u8>, Math::Vec4<u8>> ComputeFragmentsColors(const Math::Quaternion<float>& normquat, const Math::Vec3<float>& view) {
|
||||
const auto& lighting = g_state.regs.lighting;
|
||||
|
||||
if (lighting.disable)
|
||||
return {{}, {}};
|
||||
|
||||
// TODO(Subv): Bump mapping
|
||||
Math::Vec3<float> surface_normal = {0.0f, 0.0f, 1.0f};
|
||||
|
||||
if (lighting.config0.bump_mode != LightingRegs::LightingBumpMode::None) {
|
||||
LOG_CRITICAL(HW_GPU, "unimplemented bump mapping");
|
||||
UNIMPLEMENTED();
|
||||
}
|
||||
|
||||
// TODO(Subv): Do we need to normalize the quaternion here?
|
||||
auto normal = Math::QuaternionRotate(normquat, surface_normal);
|
||||
|
||||
Math::Vec3<float> light_vector = {};
|
||||
Math::Vec3<float> diffuse_sum = {};
|
||||
// TODO(Subv): Calculate specular
|
||||
Math::Vec3<float> specular_sum = {};
|
||||
|
||||
for (unsigned light_index = 0; light_index <= lighting.max_light_index; ++light_index) {
|
||||
unsigned num = lighting.light_enable.GetNum(light_index);
|
||||
const auto& light_config = g_state.regs.lighting.light[num];
|
||||
|
||||
Math::Vec3<float> position = {float16::FromRaw(light_config.x).ToFloat32(), float16::FromRaw(light_config.y).ToFloat32(), float16::FromRaw(light_config.z).ToFloat32()};
|
||||
|
||||
if (light_config.config.directional)
|
||||
light_vector = position;
|
||||
else
|
||||
light_vector = position + view;
|
||||
|
||||
light_vector.Normalize();
|
||||
|
||||
auto dot_product = Math::Dot(light_vector, normal);
|
||||
|
||||
if (light_config.config.two_sided_diffuse)
|
||||
dot_product = std::abs(dot_product);
|
||||
else
|
||||
dot_product = std::max(dot_product, 0.0f);
|
||||
|
||||
float dist_atten = 1.0f;
|
||||
if (!lighting.IsDistAttenDisabled(num)) {
|
||||
auto distance = (-view - position).Length();
|
||||
float scale = Pica::float20::FromRaw(light_config.dist_atten_scale).ToFloat32();
|
||||
float bias = Pica::float20::FromRaw(light_config.dist_atten_scale).ToFloat32();
|
||||
size_t lut = static_cast<size_t>(LightingRegs::LightingSampler::DistanceAttenuation) + num;
|
||||
|
||||
float sample_loc = scale * distance + bias;
|
||||
unsigned index_i = static_cast<unsigned>(MathUtil::Clamp(floor(sample_loc * 256), 0.0f, 1.0f));
|
||||
|
||||
float index_f = sample_loc - index_i;
|
||||
|
||||
ASSERT_MSG(lut < g_state.lighting.luts.size(), "Out of range lut");
|
||||
|
||||
float lut_value = g_state.lighting.luts[lut][index_i].ToFloat();
|
||||
float lut_diff = g_state.lighting.luts[lut][index_i].DiffToFloat();
|
||||
|
||||
dist_atten = lut_value + lut_diff * index_f;
|
||||
}
|
||||
|
||||
auto diffuse = light_config.diffuse.ToVec3f() * dot_product + light_config.ambient.ToVec3f();
|
||||
diffuse_sum += diffuse * dist_atten;
|
||||
}
|
||||
|
||||
diffuse_sum += lighting.global_ambient.ToVec3f();
|
||||
return {
|
||||
Math::MakeVec<float>(MathUtil::Clamp(diffuse_sum.x, 0.0f, 1.0f) * 255, MathUtil::Clamp(diffuse_sum.y, 0.0f, 1.0f) * 255, MathUtil::Clamp(diffuse_sum.z, 0.0f, 1.0f) * 255, 255).Cast<u8>(),
|
||||
Math::MakeVec<float>(MathUtil::Clamp(specular_sum.x, 0.0f, 1.0f) * 255, MathUtil::Clamp(specular_sum.y, 0.0f, 1.0f) * 255, MathUtil::Clamp(specular_sum.z, 0.0f, 1.0f) * 255, 255).Cast<u8>()
|
||||
};
|
||||
}
|
||||
|
||||
static bool AreQuaternionsOpposite(Math::Vec4<Pica::float24> qa, Math::Vec4<Pica::float24> qb) {
|
||||
Math::Vec4f a{ qa.x.ToFloat32(), qa.y.ToFloat32(), qa.z.ToFloat32(), qa.w.ToFloat32() };
|
||||
Math::Vec4f b{ qb.x.ToFloat32(), qb.y.ToFloat32(), qb.z.ToFloat32(), qb.w.ToFloat32() };
|
||||
|
||||
return (Math::Dot(a, b) < 0.f);
|
||||
}
|
||||
|
||||
MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240));
|
||||
|
||||
/**
|
||||
@ -207,6 +288,15 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
|
||||
int bias2 =
|
||||
IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
|
||||
|
||||
// Flip the quaternions if they are opposite to prevent interpolating them over the wrong direction.
|
||||
auto v1_quat = v1.quat;
|
||||
auto v2_quat = v2.quat;
|
||||
|
||||
if (AreQuaternionsOpposite(v0.quat, v1.quat))
|
||||
v1_quat = v1_quat * float24::FromFloat32(-1.0f);
|
||||
if (AreQuaternionsOpposite(v0.quat, v2.quat))
|
||||
v2_quat = v2_quat * float24::FromFloat32(-1.0f);
|
||||
|
||||
auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
|
||||
|
||||
auto textures = regs.texturing.GetTextures();
|
||||
@ -305,6 +395,21 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
|
||||
255),
|
||||
};
|
||||
|
||||
Math::Quaternion<float> normquat{
|
||||
{
|
||||
GetInterpolatedAttribute(v0.quat.x, v1_quat.x, v2_quat.x).ToFloat32(),
|
||||
GetInterpolatedAttribute(v0.quat.y, v1_quat.y, v2_quat.y).ToFloat32(),
|
||||
GetInterpolatedAttribute(v0.quat.z, v1_quat.z, v2_quat.z).ToFloat32()
|
||||
},
|
||||
GetInterpolatedAttribute(v0.quat.w, v1_quat.w, v2_quat.w).ToFloat32(),
|
||||
};
|
||||
|
||||
Math::Vec3<float> fragment_position{
|
||||
GetInterpolatedAttribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(),
|
||||
GetInterpolatedAttribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(),
|
||||
GetInterpolatedAttribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32()
|
||||
};
|
||||
|
||||
Math::Vec2<float24> uv[3];
|
||||
uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
|
||||
uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
|
||||
@ -419,6 +524,11 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
|
||||
regs.texturing.tev_combiner_buffer_color.a,
|
||||
};
|
||||
|
||||
Math::Vec4<u8> primary_fragment_color;
|
||||
Math::Vec4<u8> secondary_fragment_color;
|
||||
|
||||
std::tie(primary_fragment_color, secondary_fragment_color) = ComputeFragmentsColors(normquat, fragment_position);
|
||||
|
||||
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size();
|
||||
++tev_stage_index) {
|
||||
const auto& tev_stage = tev_stages[tev_stage_index];
|
||||
@ -427,14 +537,13 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
|
||||
auto GetSource = [&](Source source) -> Math::Vec4<u8> {
|
||||
switch (source) {
|
||||
case Source::PrimaryColor:
|
||||
|
||||
// HACK: Until we implement fragment lighting, use primary_color
|
||||
case Source::PrimaryFragmentColor:
|
||||
return primary_color;
|
||||
|
||||
// HACK: Until we implement fragment lighting, use zero
|
||||
case Source::PrimaryFragmentColor:
|
||||
return primary_fragment_color;
|
||||
|
||||
case Source::SecondaryFragmentColor:
|
||||
return {0, 0, 0, 0};
|
||||
return secondary_fragment_color;
|
||||
|
||||
case Source::Texture0:
|
||||
return texture_color[0];
|
||||
|
Loading…
Reference in New Issue
Block a user