tls: optimize sp_256_mont_reduce_8 in P256
The code size decrease is small, but we eliminate ALL multiplies! function old new delta sp_256_mont_reduce_8 268 262 -6 Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
This commit is contained in:
parent
bbd723ebec
commit
2430fcfd8d
@ -488,19 +488,118 @@ static void sp_256_mont_shift_8(sp_digit* r, const sp_digit* a)
|
||||
}
|
||||
|
||||
/* Mul a by scalar b and add into r. (r += a * b) */
|
||||
static int sp_256_mul_add_8(sp_digit* r, const sp_digit* a, sp_digit b)
|
||||
static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/)
|
||||
{
|
||||
// const sp_digit* a = p256_mod;
|
||||
//a[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff
|
||||
sp_digit b = r[0];
|
||||
uint64_t t = 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 8; i++) {
|
||||
uint32_t t_hi;
|
||||
uint64_t m = ((uint64_t)b * a[i]) + r[i];
|
||||
// for (i = 0; i < 8; i++) {
|
||||
// uint32_t t_hi;
|
||||
// uint64_t m = ((uint64_t)b * a[i]) + r[i];
|
||||
// t += m;
|
||||
// t_hi = (t < m);
|
||||
// r[i] = (sp_digit)t;
|
||||
// t = (t >> 32) | ((uint64_t)t_hi << 32);
|
||||
// }
|
||||
// r[8] += (sp_digit)t;
|
||||
|
||||
// Unroll, then optimize the above loop:
|
||||
//uint32_t t_hi;
|
||||
uint64_t m;
|
||||
|
||||
//m = ((uint64_t)b * a[0]) + r[0];
|
||||
// Since b is r[0] and a[0] is ffffffff, the above optimizes to:
|
||||
// m = r[0] * ffffffff + r[0] = (r[0] * 100000000 - r[0]) + r[0] = r[0] << 32;
|
||||
//t += m;
|
||||
// t = (uint64_t)r[0] << 32;
|
||||
//t_hi = (t < m);
|
||||
// t_hi = 0;
|
||||
//r[0] = (sp_digit)t;
|
||||
r[0] = 0;
|
||||
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
||||
// t = b;
|
||||
|
||||
//m = ((uint64_t)b * a[1]) + r[1];
|
||||
// Since a[1] is ffffffff, the above optimizes to:
|
||||
// m = b * ffffffff + r[1] = (b * 100000000 - b) + r[1] = (b << 32) - b + r[1];
|
||||
//t += m;
|
||||
// t = b + (b << 32) - b + r[1] = (b << 32) + r[1];
|
||||
//t_hi = (t < m);
|
||||
// t_hi = 0;
|
||||
//r[1] = (sp_digit)t;
|
||||
// r[1] = r[1];
|
||||
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
||||
// t = b;
|
||||
|
||||
//m = ((uint64_t)b * a[2]) + r[2];
|
||||
// Since a[2] is ffffffff, the above optimizes to:
|
||||
// m = b * ffffffff + r[2] = (b * 100000000 - b) + r[2] = (b << 32) - b + r[2];
|
||||
//t += m;
|
||||
// t = b + (b << 32) - b + r[2] = (b << 32) + r[2]
|
||||
//t_hi = (t < m);
|
||||
// t_hi = 0;
|
||||
//r[2] = (sp_digit)t;
|
||||
// r[2] = r[2];
|
||||
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
||||
// t = b;
|
||||
|
||||
//m = ((uint64_t)b * a[3]) + r[3];
|
||||
// Since a[3] is 00000000, the above optimizes to:
|
||||
// m = b * 0 + r[3] = r[3];
|
||||
//t += m;
|
||||
// t += r[3];
|
||||
//t_hi = (t < m);
|
||||
// t_hi = 0;
|
||||
//r[3] = (sp_digit)t;
|
||||
r[3] = r[3] + b;
|
||||
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
||||
t = (r[3] < b);
|
||||
|
||||
//m = ((uint64_t)b * a[4]) + r[4];
|
||||
// Since a[4] is 00000000, the above optimizes to:
|
||||
// m = b * 0 + r[4] = r[4];
|
||||
//t += m;
|
||||
t += r[4];
|
||||
//t_hi = (t < m);
|
||||
// t_hi = 0;
|
||||
r[4] = (sp_digit)t;
|
||||
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
||||
t = (t >> 32);
|
||||
|
||||
//m = ((uint64_t)b * a[5]) + r[5];
|
||||
// Since a[5] is 00000000, the above optimizes to:
|
||||
// m = b * 0 + r[5] = r[5];
|
||||
//t += m;
|
||||
t += r[5];
|
||||
//t_hi = (t < m);
|
||||
// t_hi = 0;
|
||||
r[5] = (sp_digit)t;
|
||||
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
||||
t = (t >> 32);
|
||||
|
||||
//m = ((uint64_t)b * a[6]) + r[6];
|
||||
// Since a[6] is 00000001, the above optimizes to:
|
||||
m = (uint64_t)b + r[6]; // 33 bits at most
|
||||
t += m;
|
||||
t_hi = (t < m);
|
||||
r[i] = (sp_digit)t;
|
||||
t = (t >> 32) | ((uint64_t)t_hi << 32);
|
||||
}
|
||||
//t_hi = (t < m);
|
||||
// t_hi = 0; //32bit_value + 33bit_value can't overflow 64 bits
|
||||
r[6] = (sp_digit)t;
|
||||
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
||||
t = (t >> 32);
|
||||
|
||||
//m = ((uint64_t)b * a[7]) + r[7];
|
||||
// Since a[7] is ffffffff, the above optimizes to:
|
||||
// m = b * ffffffff + r[7] = (b * 100000000 - b) + r[7]
|
||||
m = ((uint64_t)b << 32) - b + r[7];
|
||||
t += m;
|
||||
//t_hi = (t < m);
|
||||
// t_hi in fact is always 0 here
|
||||
r[7] = (sp_digit)t;
|
||||
//t = (t >> 32) | ((uint64_t)t_hi << 32);
|
||||
t = (t >> 32);
|
||||
|
||||
r[8] += (sp_digit)t;
|
||||
return (r[8] < (sp_digit)t); /* 1 if addition overflowed */
|
||||
}
|
||||
@ -517,28 +616,33 @@ static void sp_256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/
|
||||
sp_digit mp = p256_mp_mod;
|
||||
|
||||
int i;
|
||||
sp_digit mu;
|
||||
// sp_digit mu;
|
||||
|
||||
if (mp != 1) {
|
||||
int too_wide;
|
||||
for (i = 0; i < 7; i++) {
|
||||
mu = (sp_digit)(a[i] * mp);
|
||||
if (sp_256_mul_add_8(a+i, m, mu))
|
||||
(a+i)[9]++;
|
||||
sp_digit word16th = 0;
|
||||
for (i = 0; i < 8; i++) {
|
||||
// mu = (sp_digit)(a[i] * mp);
|
||||
if (sp_256_mul_add_8(a+i /*, m, mu*/)) {
|
||||
int j = i + 8;
|
||||
inc_next_word0:
|
||||
if (++j > 15) { /* a[16] array has no more words? */
|
||||
word16th++;
|
||||
continue;
|
||||
}
|
||||
if (++a[j] == 0) /* did this overflow too? */
|
||||
goto inc_next_word0;
|
||||
}
|
||||
}
|
||||
mu = (sp_digit)(a[7] * mp);
|
||||
too_wide = sp_256_mul_add_8(a+7, m, mu);
|
||||
sp_256_mont_shift_8(a, a);
|
||||
if (too_wide)
|
||||
if (word16th != 0)
|
||||
sp_256_sub_8(a, a, m);
|
||||
sp_256_norm_8(a);
|
||||
}
|
||||
else { /* Same code for explicit mp == 1 (which is always the case for P256) */
|
||||
sp_digit word16th = 0;
|
||||
for (i = 0; i < 8; i++) {
|
||||
mu = a[i];
|
||||
//m = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff
|
||||
if (sp_256_mul_add_8(a+i, m, mu)) {
|
||||
// mu = a[i];
|
||||
if (sp_256_mul_add_8(a+i /*, m, mu*/)) {
|
||||
int j = i + 8;
|
||||
inc_next_word:
|
||||
if (++j > 15) { /* a[16] array has no more words? */
|
||||
|
Loading…
Reference in New Issue
Block a user