sha3: add 32-bit optimized bit-sliced implementation
It is an interesting trick, but so far I only managed to make it work correctly, not to make it faster and/or smaller. The code is ifdefed out for now. Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
This commit is contained in:
parent
a4d564ad7c
commit
2a563ea49a
@ -926,10 +926,81 @@ void FAST_FUNC sha512_end(sha512_ctx_t *ctx, void *resbuf)
|
||||
# define SHA3_SMALL CONFIG_SHA3_SMALL
|
||||
#endif
|
||||
|
||||
#define OPTIMIZE_SHA3_FOR_32 0
|
||||
/*
|
||||
* SHA3 can be optimized for 32-bit CPUs with bit-slicing:
|
||||
* every 64-bit word of state[] can be split into two 32-bit words
|
||||
* by even/odd bits. In this form, all rotations of sha3 round
|
||||
* are 32-bit - and there are lots of them.
|
||||
* However, it requires either splitting/combining state words
|
||||
* before/after sha3 round (code does this now)
|
||||
* or shuffling bits before xor'ing them into state and in sha3_end.
|
||||
* Without shuffling, bit-slicing results in -130 bytes of code
|
||||
* and marginal speedup (but of course it gives wrong result).
|
||||
* With shuffling it works, but +260 code bytes, and slower.
|
||||
* Disabled for now:
|
||||
*/
|
||||
#if 0 /* LONG_MAX == 0x7fffffff */
|
||||
# undef OPTIMIZE_SHA3_FOR_32
|
||||
# define OPTIMIZE_SHA3_FOR_32 1
|
||||
#endif
|
||||
|
||||
enum {
|
||||
SHA3_IBLK_BYTES = 72, /* 576 bits / 8 */
|
||||
};
|
||||
|
||||
#if OPTIMIZE_SHA3_FOR_32
|
||||
/* This splits every 64-bit word into a pair of 32-bit words,
|
||||
* even bits go into first word, odd bits go to second one.
|
||||
* The conversion is done in-place.
|
||||
*/
|
||||
static void split_halves(uint64_t *state)
|
||||
{
|
||||
/* Credit: Henry S. Warren, Hacker's Delight, Addison-Wesley, 2002 */
|
||||
uint32_t *s32 = (uint32_t*)state;
|
||||
uint32_t t, x0, x1;
|
||||
int i;
|
||||
for (i = 24; i >= 0; --i) {
|
||||
x0 = s32[0];
|
||||
t = (x0 ^ (x0 >> 1)) & 0x22222222; x0 = x0 ^ t ^ (t << 1);
|
||||
t = (x0 ^ (x0 >> 2)) & 0x0C0C0C0C; x0 = x0 ^ t ^ (t << 2);
|
||||
t = (x0 ^ (x0 >> 4)) & 0x00F000F0; x0 = x0 ^ t ^ (t << 4);
|
||||
t = (x0 ^ (x0 >> 8)) & 0x0000FF00; x0 = x0 ^ t ^ (t << 8);
|
||||
x1 = s32[1];
|
||||
t = (x1 ^ (x1 >> 1)) & 0x22222222; x1 = x1 ^ t ^ (t << 1);
|
||||
t = (x1 ^ (x1 >> 2)) & 0x0C0C0C0C; x1 = x1 ^ t ^ (t << 2);
|
||||
t = (x1 ^ (x1 >> 4)) & 0x00F000F0; x1 = x1 ^ t ^ (t << 4);
|
||||
t = (x1 ^ (x1 >> 8)) & 0x0000FF00; x1 = x1 ^ t ^ (t << 8);
|
||||
*s32++ = (x0 & 0x0000FFFF) | (x1 << 16);
|
||||
*s32++ = (x0 >> 16) | (x1 & 0xFFFF0000);
|
||||
}
|
||||
}
|
||||
/* The reverse operation */
|
||||
static void combine_halves(uint64_t *state)
|
||||
{
|
||||
uint32_t *s32 = (uint32_t*)state;
|
||||
uint32_t t, x0, x1;
|
||||
int i;
|
||||
for (i = 24; i >= 0; --i) {
|
||||
x0 = s32[0];
|
||||
x1 = s32[1];
|
||||
t = (x0 & 0x0000FFFF) | (x1 << 16);
|
||||
x1 = (x0 >> 16) | (x1 & 0xFFFF0000);
|
||||
x0 = t;
|
||||
t = (x0 ^ (x0 >> 8)) & 0x0000FF00; x0 = x0 ^ t ^ (t << 8);
|
||||
t = (x0 ^ (x0 >> 4)) & 0x00F000F0; x0 = x0 ^ t ^ (t << 4);
|
||||
t = (x0 ^ (x0 >> 2)) & 0x0C0C0C0C; x0 = x0 ^ t ^ (t << 2);
|
||||
t = (x0 ^ (x0 >> 1)) & 0x22222222; x0 = x0 ^ t ^ (t << 1);
|
||||
*s32++ = x0;
|
||||
t = (x1 ^ (x1 >> 8)) & 0x0000FF00; x1 = x1 ^ t ^ (t << 8);
|
||||
t = (x1 ^ (x1 >> 4)) & 0x00F000F0; x1 = x1 ^ t ^ (t << 4);
|
||||
t = (x1 ^ (x1 >> 2)) & 0x0C0C0C0C; x1 = x1 ^ t ^ (t << 2);
|
||||
t = (x1 ^ (x1 >> 1)) & 0x22222222; x1 = x1 ^ t ^ (t << 1);
|
||||
*s32++ = x1;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* In the crypto literature this function is usually called Keccak-f().
|
||||
*/
|
||||
@ -937,6 +1008,164 @@ static void sha3_process_block72(uint64_t *state)
|
||||
{
|
||||
enum { NROUNDS = 24 };
|
||||
|
||||
#if OPTIMIZE_SHA3_FOR_32
|
||||
/*
|
||||
static const uint32_t IOTA_CONST_0[NROUNDS] = {
|
||||
0x00000001UL,
|
||||
0x00000000UL,
|
||||
0x00000000UL,
|
||||
0x00000000UL,
|
||||
0x00000001UL,
|
||||
0x00000001UL,
|
||||
0x00000001UL,
|
||||
0x00000001UL,
|
||||
0x00000000UL,
|
||||
0x00000000UL,
|
||||
0x00000001UL,
|
||||
0x00000000UL,
|
||||
0x00000001UL,
|
||||
0x00000001UL,
|
||||
0x00000001UL,
|
||||
0x00000001UL,
|
||||
0x00000000UL,
|
||||
0x00000000UL,
|
||||
0x00000000UL,
|
||||
0x00000000UL,
|
||||
0x00000001UL,
|
||||
0x00000000UL,
|
||||
0x00000001UL,
|
||||
0x00000000UL,
|
||||
};
|
||||
** bits are in lsb: 0101 0000 1111 0100 1111 0001
|
||||
*/
|
||||
uint32_t IOTA_CONST_0bits = (uint32_t)(0x0050f4f1);
|
||||
static const uint32_t IOTA_CONST_1[NROUNDS] = {
|
||||
0x00000000UL,
|
||||
0x00000089UL,
|
||||
0x8000008bUL,
|
||||
0x80008080UL,
|
||||
0x0000008bUL,
|
||||
0x00008000UL,
|
||||
0x80008088UL,
|
||||
0x80000082UL,
|
||||
0x0000000bUL,
|
||||
0x0000000aUL,
|
||||
0x00008082UL,
|
||||
0x00008003UL,
|
||||
0x0000808bUL,
|
||||
0x8000000bUL,
|
||||
0x8000008aUL,
|
||||
0x80000081UL,
|
||||
0x80000081UL,
|
||||
0x80000008UL,
|
||||
0x00000083UL,
|
||||
0x80008003UL,
|
||||
0x80008088UL,
|
||||
0x80000088UL,
|
||||
0x00008000UL,
|
||||
0x80008082UL,
|
||||
};
|
||||
|
||||
uint32_t *const s32 = (uint32_t*)state;
|
||||
unsigned round;
|
||||
|
||||
split_halves(state);
|
||||
|
||||
for (round = 0; round < NROUNDS; round++) {
|
||||
unsigned x;
|
||||
|
||||
/* Theta */
|
||||
{
|
||||
uint32_t BC[20];
|
||||
for (x = 0; x < 10; ++x) {
|
||||
BC[x+10] = BC[x] = s32[x]^s32[x+10]^s32[x+20]^s32[x+30]^s32[x+40];
|
||||
}
|
||||
for (x = 0; x < 10; x += 2) {
|
||||
uint32_t ta, tb;
|
||||
ta = BC[x+8] ^ rotl32(BC[x+3], 1);
|
||||
tb = BC[x+9] ^ BC[x+2];
|
||||
s32[x+0] ^= ta;
|
||||
s32[x+1] ^= tb;
|
||||
s32[x+10] ^= ta;
|
||||
s32[x+11] ^= tb;
|
||||
s32[x+20] ^= ta;
|
||||
s32[x+21] ^= tb;
|
||||
s32[x+30] ^= ta;
|
||||
s32[x+31] ^= tb;
|
||||
s32[x+40] ^= ta;
|
||||
s32[x+41] ^= tb;
|
||||
}
|
||||
}
|
||||
/* RhoPi */
|
||||
{
|
||||
uint32_t t0a,t0b, t1a,t1b;
|
||||
t1a = s32[1*2+0];
|
||||
t1b = s32[1*2+1];
|
||||
|
||||
#define RhoPi(PI_LANE, ROT_CONST) \
|
||||
t0a = s32[PI_LANE*2+0];\
|
||||
t0b = s32[PI_LANE*2+1];\
|
||||
if (ROT_CONST & 1) {\
|
||||
s32[PI_LANE*2+0] = rotl32(t1b, ROT_CONST/2+1);\
|
||||
s32[PI_LANE*2+1] = ROT_CONST == 1 ? t1a : rotl32(t1a, ROT_CONST/2+0);\
|
||||
} else {\
|
||||
s32[PI_LANE*2+0] = rotl32(t1a, ROT_CONST/2);\
|
||||
s32[PI_LANE*2+1] = rotl32(t1b, ROT_CONST/2);\
|
||||
}\
|
||||
t1a = t0a; t1b = t0b;
|
||||
|
||||
RhoPi(10, 1)
|
||||
RhoPi( 7, 3)
|
||||
RhoPi(11, 6)
|
||||
RhoPi(17,10)
|
||||
RhoPi(18,15)
|
||||
RhoPi( 3,21)
|
||||
RhoPi( 5,28)
|
||||
RhoPi(16,36)
|
||||
RhoPi( 8,45)
|
||||
RhoPi(21,55)
|
||||
RhoPi(24, 2)
|
||||
RhoPi( 4,14)
|
||||
RhoPi(15,27)
|
||||
RhoPi(23,41)
|
||||
RhoPi(19,56)
|
||||
RhoPi(13, 8)
|
||||
RhoPi(12,25)
|
||||
RhoPi( 2,43)
|
||||
RhoPi(20,62)
|
||||
RhoPi(14,18)
|
||||
RhoPi(22,39)
|
||||
RhoPi( 9,61)
|
||||
RhoPi( 6,20)
|
||||
RhoPi( 1,44)
|
||||
#undef RhoPi
|
||||
}
|
||||
/* Chi */
|
||||
for (x = 0; x <= 20; x += 5) {
|
||||
/*
|
||||
* Can write this in terms of uint32 too,
|
||||
* but why? compiler does it automatically.
|
||||
*/
|
||||
uint64_t BC0, BC1, BC2, BC3, BC4;
|
||||
BC0 = state[x + 0];
|
||||
BC1 = state[x + 1];
|
||||
BC2 = state[x + 2];
|
||||
state[x + 0] = BC0 ^ ((~BC1) & BC2);
|
||||
BC3 = state[x + 3];
|
||||
state[x + 1] = BC1 ^ ((~BC2) & BC3);
|
||||
BC4 = state[x + 4];
|
||||
state[x + 2] = BC2 ^ ((~BC3) & BC4);
|
||||
state[x + 3] = BC3 ^ ((~BC4) & BC0);
|
||||
state[x + 4] = BC4 ^ ((~BC0) & BC1);
|
||||
}
|
||||
/* Iota */
|
||||
s32[0] ^= IOTA_CONST_0bits & 1;
|
||||
IOTA_CONST_0bits >>= 1;
|
||||
s32[1] ^= IOTA_CONST_1[round];
|
||||
}
|
||||
|
||||
combine_halves(state);
|
||||
#else
|
||||
/* Elements should be 64-bit, but top half is always zero or 0x80000000.
|
||||
* We encode 63rd bits in a separate word below.
|
||||
* Same is true for 31th bits, which lets us use 16-bit table instead of 64-bit.
|
||||
@ -983,7 +1212,7 @@ static void sha3_process_block72(uint64_t *state)
|
||||
};
|
||||
/*static const uint8_t MOD5[10] = { 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, };*/
|
||||
|
||||
unsigned x, y;
|
||||
unsigned x;
|
||||
unsigned round;
|
||||
|
||||
if (BB_BIG_ENDIAN) {
|
||||
@ -1045,22 +1274,20 @@ static void sha3_process_block72(uint64_t *state)
|
||||
RhoPi_twice(20); RhoPi_twice(22);
|
||||
#undef RhoPi_twice
|
||||
}
|
||||
|
||||
/* Chi */
|
||||
for (y = 0; y <= 20; y += 5) {
|
||||
for (x = 0; x <= 20; x += 5) {
|
||||
uint64_t BC0, BC1, BC2, BC3, BC4;
|
||||
BC0 = state[y + 0];
|
||||
BC1 = state[y + 1];
|
||||
BC2 = state[y + 2];
|
||||
state[y + 0] = BC0 ^ ((~BC1) & BC2);
|
||||
BC3 = state[y + 3];
|
||||
state[y + 1] = BC1 ^ ((~BC2) & BC3);
|
||||
BC4 = state[y + 4];
|
||||
state[y + 2] = BC2 ^ ((~BC3) & BC4);
|
||||
state[y + 3] = BC3 ^ ((~BC4) & BC0);
|
||||
state[y + 4] = BC4 ^ ((~BC0) & BC1);
|
||||
BC0 = state[x + 0];
|
||||
BC1 = state[x + 1];
|
||||
BC2 = state[x + 2];
|
||||
state[x + 0] = BC0 ^ ((~BC1) & BC2);
|
||||
BC3 = state[x + 3];
|
||||
state[x + 1] = BC1 ^ ((~BC2) & BC3);
|
||||
BC4 = state[x + 4];
|
||||
state[x + 2] = BC2 ^ ((~BC3) & BC4);
|
||||
state[x + 3] = BC3 ^ ((~BC4) & BC0);
|
||||
state[x + 4] = BC4 ^ ((~BC0) & BC1);
|
||||
}
|
||||
|
||||
/* Iota */
|
||||
state[0] ^= IOTA_CONST[round]
|
||||
| (uint32_t)((IOTA_CONST_bit31 << round) & 0x80000000)
|
||||
@ -1072,6 +1299,7 @@ static void sha3_process_block72(uint64_t *state)
|
||||
state[x] = SWAP_LE64(state[x]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void FAST_FUNC sha3_begin(sha3_ctx_t *ctx)
|
||||
|
Loading…
Reference in New Issue
Block a user