function old new delta expand_vars_to_list - 2118 +2118 lzo1x_optimize - 1429 +1429 run_pipe 358 1775 +1417 arith_apply - 1335 +1335 mainQSort3 - 1198 +1198 logdir_open - 1163 +1163 rewrite - 1039 +1039 dump_identity - 987 +987 do_shm - 884 +884 cpio_o - 863 +863 cpio_main 1450 560 -890 ipcs_main 3442 2523 -919 bb_dump_dump 2611 1488 -1123 process_dev 4572 3405 -1167 logdirs_reopen 1308 86 -1222 arith 2084 707 -1377 mainSort 2622 1202 -1420 do_lzo_compress 2276 799 -1477 run_list 2491 943 -1548 expand_variables 2280 135 -2145 ------------------------------------------------------------------------------ (add/remove: 9/0 grow/shrink: 1/10 up/down: 12433/-13288) Total: -855 bytes Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
		
			
				
	
	
		
			1073 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1073 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * bzip2 is written by Julian Seward <jseward@bzip.org>.
 | 
						|
 * Adapted for busybox by Denys Vlasenko <vda.linux@googlemail.com>.
 | 
						|
 * See README and LICENSE files in this directory for more information.
 | 
						|
 */
 | 
						|
 | 
						|
/*-------------------------------------------------------------*/
 | 
						|
/*--- Block sorting machinery                               ---*/
 | 
						|
/*---                                           blocksort.c ---*/
 | 
						|
/*-------------------------------------------------------------*/
 | 
						|
 | 
						|
/* ------------------------------------------------------------------
 | 
						|
This file is part of bzip2/libbzip2, a program and library for
 | 
						|
lossless, block-sorting data compression.
 | 
						|
 | 
						|
bzip2/libbzip2 version 1.0.4 of 20 December 2006
 | 
						|
Copyright (C) 1996-2006 Julian Seward <jseward@bzip.org>
 | 
						|
 | 
						|
Please read the WARNING, DISCLAIMER and PATENTS sections in the
 | 
						|
README file.
 | 
						|
 | 
						|
This program is released under the terms of the license contained
 | 
						|
in the file LICENSE.
 | 
						|
------------------------------------------------------------------ */
 | 
						|
 | 
						|
/* #include "bzlib_private.h" */
 | 
						|
 | 
						|
#define mswap(zz1, zz2) \
 | 
						|
{ \
 | 
						|
	int32_t zztmp = zz1; \
 | 
						|
	zz1 = zz2; \
 | 
						|
	zz2 = zztmp; \
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
/* No measurable speed gain with inlining */
 | 
						|
/* ALWAYS_INLINE */
 | 
						|
void mvswap(uint32_t* ptr, int32_t zzp1, int32_t zzp2, int32_t zzn)
 | 
						|
{
 | 
						|
	while (zzn > 0) {
 | 
						|
		mswap(ptr[zzp1], ptr[zzp2]);
 | 
						|
		zzp1++;
 | 
						|
		zzp2++;
 | 
						|
		zzn--;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
ALWAYS_INLINE
 | 
						|
int32_t mmin(int32_t a, int32_t b)
 | 
						|
{
 | 
						|
	return (a < b) ? a : b;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*---------------------------------------------*/
 | 
						|
/*--- Fallback O(N log(N)^2) sorting        ---*/
 | 
						|
/*--- algorithm, for repetitive blocks      ---*/
 | 
						|
/*---------------------------------------------*/
 | 
						|
 | 
						|
/*---------------------------------------------*/
 | 
						|
static
 | 
						|
inline
 | 
						|
void fallbackSimpleSort(uint32_t* fmap,
 | 
						|
		uint32_t* eclass,
 | 
						|
		int32_t   lo,
 | 
						|
		int32_t   hi)
 | 
						|
{
 | 
						|
	int32_t i, j, tmp;
 | 
						|
	uint32_t ec_tmp;
 | 
						|
 | 
						|
	if (lo == hi) return;
 | 
						|
 | 
						|
	if (hi - lo > 3) {
 | 
						|
		for (i = hi-4; i >= lo; i--) {
 | 
						|
			tmp = fmap[i];
 | 
						|
			ec_tmp = eclass[tmp];
 | 
						|
			for (j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4)
 | 
						|
				fmap[j-4] = fmap[j];
 | 
						|
			fmap[j-4] = tmp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = hi-1; i >= lo; i--) {
 | 
						|
		tmp = fmap[i];
 | 
						|
		ec_tmp = eclass[tmp];
 | 
						|
		for (j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++)
 | 
						|
			fmap[j-1] = fmap[j];
 | 
						|
		fmap[j-1] = tmp;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*---------------------------------------------*/
 | 
						|
#define fpush(lz,hz) { \
 | 
						|
	stackLo[sp] = lz; \
 | 
						|
	stackHi[sp] = hz; \
 | 
						|
	sp++; \
 | 
						|
}
 | 
						|
 | 
						|
#define fpop(lz,hz) { \
 | 
						|
	sp--; \
 | 
						|
	lz = stackLo[sp]; \
 | 
						|
	hz = stackHi[sp]; \
 | 
						|
}
 | 
						|
 | 
						|
#define FALLBACK_QSORT_SMALL_THRESH 10
 | 
						|
#define FALLBACK_QSORT_STACK_SIZE   100
 | 
						|
 | 
						|
static
 | 
						|
void fallbackQSort3(uint32_t* fmap,
 | 
						|
		uint32_t* eclass,
 | 
						|
		int32_t   loSt,
 | 
						|
		int32_t   hiSt)
 | 
						|
{
 | 
						|
	int32_t unLo, unHi, ltLo, gtHi, n, m;
 | 
						|
	int32_t sp, lo, hi;
 | 
						|
	uint32_t med, r, r3;
 | 
						|
	int32_t stackLo[FALLBACK_QSORT_STACK_SIZE];
 | 
						|
	int32_t stackHi[FALLBACK_QSORT_STACK_SIZE];
 | 
						|
 | 
						|
	r = 0;
 | 
						|
 | 
						|
	sp = 0;
 | 
						|
	fpush(loSt, hiSt);
 | 
						|
 | 
						|
	while (sp > 0) {
 | 
						|
		AssertH(sp < FALLBACK_QSORT_STACK_SIZE - 1, 1004);
 | 
						|
 | 
						|
		fpop(lo, hi);
 | 
						|
		if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) {
 | 
						|
			fallbackSimpleSort(fmap, eclass, lo, hi);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Random partitioning.  Median of 3 sometimes fails to
 | 
						|
		 * avoid bad cases.  Median of 9 seems to help but
 | 
						|
		 * looks rather expensive.  This too seems to work but
 | 
						|
		 * is cheaper.  Guidance for the magic constants
 | 
						|
		 * 7621 and 32768 is taken from Sedgewick's algorithms
 | 
						|
		 * book, chapter 35.
 | 
						|
		 */
 | 
						|
		r = ((r * 7621) + 1) % 32768;
 | 
						|
		r3 = r % 3;
 | 
						|
		if (r3 == 0)
 | 
						|
			med = eclass[fmap[lo]];
 | 
						|
		else if (r3 == 1)
 | 
						|
			med = eclass[fmap[(lo+hi)>>1]];
 | 
						|
		else
 | 
						|
			med = eclass[fmap[hi]];
 | 
						|
 | 
						|
		unLo = ltLo = lo;
 | 
						|
		unHi = gtHi = hi;
 | 
						|
 | 
						|
		while (1) {
 | 
						|
			while (1) {
 | 
						|
				if (unLo > unHi) break;
 | 
						|
				n = (int32_t)eclass[fmap[unLo]] - (int32_t)med;
 | 
						|
				if (n == 0) {
 | 
						|
					mswap(fmap[unLo], fmap[ltLo]);
 | 
						|
					ltLo++;
 | 
						|
					unLo++;
 | 
						|
					continue;
 | 
						|
				};
 | 
						|
				if (n > 0) break;
 | 
						|
				unLo++;
 | 
						|
			}
 | 
						|
			while (1) {
 | 
						|
				if (unLo > unHi) break;
 | 
						|
				n = (int32_t)eclass[fmap[unHi]] - (int32_t)med;
 | 
						|
				if (n == 0) {
 | 
						|
					mswap(fmap[unHi], fmap[gtHi]);
 | 
						|
					gtHi--; unHi--;
 | 
						|
					continue;
 | 
						|
				};
 | 
						|
				if (n < 0) break;
 | 
						|
				unHi--;
 | 
						|
			}
 | 
						|
			if (unLo > unHi) break;
 | 
						|
			mswap(fmap[unLo], fmap[unHi]); unLo++; unHi--;
 | 
						|
		}
 | 
						|
 | 
						|
		AssertD(unHi == unLo-1, "fallbackQSort3(2)");
 | 
						|
 | 
						|
		if (gtHi < ltLo) continue;
 | 
						|
 | 
						|
		n = mmin(ltLo-lo, unLo-ltLo); mvswap(fmap, lo, unLo-n, n);
 | 
						|
		m = mmin(hi-gtHi, gtHi-unHi); mvswap(fmap, unLo, hi-m+1, m);
 | 
						|
 | 
						|
		n = lo + unLo - ltLo - 1;
 | 
						|
		m = hi - (gtHi - unHi) + 1;
 | 
						|
 | 
						|
		if (n - lo > hi - m) {
 | 
						|
			fpush(lo, n);
 | 
						|
			fpush(m, hi);
 | 
						|
		} else {
 | 
						|
			fpush(m, hi);
 | 
						|
			fpush(lo, n);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#undef fpush
 | 
						|
#undef fpop
 | 
						|
#undef FALLBACK_QSORT_SMALL_THRESH
 | 
						|
#undef FALLBACK_QSORT_STACK_SIZE
 | 
						|
 | 
						|
 | 
						|
/*---------------------------------------------*/
 | 
						|
/* Pre:
 | 
						|
 *	nblock > 0
 | 
						|
 *	eclass exists for [0 .. nblock-1]
 | 
						|
 *	((uint8_t*)eclass) [0 .. nblock-1] holds block
 | 
						|
 *	ptr exists for [0 .. nblock-1]
 | 
						|
 *
 | 
						|
 * Post:
 | 
						|
 *	((uint8_t*)eclass) [0 .. nblock-1] holds block
 | 
						|
 *	All other areas of eclass destroyed
 | 
						|
 *	fmap [0 .. nblock-1] holds sorted order
 | 
						|
 *	bhtab[0 .. 2+(nblock/32)] destroyed
 | 
						|
*/
 | 
						|
 | 
						|
#define       SET_BH(zz)  bhtab[(zz) >> 5] |= (1 << ((zz) & 31))
 | 
						|
#define     CLEAR_BH(zz)  bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31))
 | 
						|
#define     ISSET_BH(zz)  (bhtab[(zz) >> 5] & (1 << ((zz) & 31)))
 | 
						|
#define      WORD_BH(zz)  bhtab[(zz) >> 5]
 | 
						|
#define UNALIGNED_BH(zz)  ((zz) & 0x01f)
 | 
						|
 | 
						|
static
 | 
						|
void fallbackSort(uint32_t* fmap,
 | 
						|
		uint32_t* eclass,
 | 
						|
		uint32_t* bhtab,
 | 
						|
		int32_t   nblock)
 | 
						|
{
 | 
						|
	int32_t ftab[257];
 | 
						|
	int32_t ftabCopy[256];
 | 
						|
	int32_t H, i, j, k, l, r, cc, cc1;
 | 
						|
	int32_t nNotDone;
 | 
						|
	int32_t nBhtab;
 | 
						|
	uint8_t* eclass8 = (uint8_t*)eclass;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initial 1-char radix sort to generate
 | 
						|
	 * initial fmap and initial BH bits.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < 257;    i++) ftab[i] = 0;
 | 
						|
	for (i = 0; i < nblock; i++) ftab[eclass8[i]]++;
 | 
						|
	for (i = 0; i < 256;    i++) ftabCopy[i] = ftab[i];
 | 
						|
 | 
						|
	j = ftab[0];  /* bbox: optimized */
 | 
						|
	for (i = 1; i < 257;    i++) {
 | 
						|
		j += ftab[i];
 | 
						|
		ftab[i] = j;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < nblock; i++) {
 | 
						|
		j = eclass8[i];
 | 
						|
		k = ftab[j] - 1;
 | 
						|
		ftab[j] = k;
 | 
						|
		fmap[k] = i;
 | 
						|
	}
 | 
						|
 | 
						|
	nBhtab = 2 + ((uint32_t)nblock / 32); /* bbox: unsigned div is easier */
 | 
						|
	for (i = 0; i < nBhtab; i++) bhtab[i] = 0;
 | 
						|
	for (i = 0; i < 256; i++) SET_BH(ftab[i]);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Inductively refine the buckets.  Kind-of an
 | 
						|
	 * "exponential radix sort" (!), inspired by the
 | 
						|
	 * Manber-Myers suffix array construction algorithm.
 | 
						|
	 */
 | 
						|
 | 
						|
	/*-- set sentinel bits for block-end detection --*/
 | 
						|
	for (i = 0; i < 32; i++) {
 | 
						|
		SET_BH(nblock + 2*i);
 | 
						|
		CLEAR_BH(nblock + 2*i + 1);
 | 
						|
	}
 | 
						|
 | 
						|
	/*-- the log(N) loop --*/
 | 
						|
	H = 1;
 | 
						|
	while (1) {
 | 
						|
		j = 0;
 | 
						|
		for (i = 0; i < nblock; i++) {
 | 
						|
			if (ISSET_BH(i))
 | 
						|
				j = i;
 | 
						|
			k = fmap[i] - H;
 | 
						|
			if (k < 0)
 | 
						|
				k += nblock;
 | 
						|
			eclass[k] = j;
 | 
						|
		}
 | 
						|
 | 
						|
		nNotDone = 0;
 | 
						|
		r = -1;
 | 
						|
		while (1) {
 | 
						|
 | 
						|
		/*-- find the next non-singleton bucket --*/
 | 
						|
			k = r + 1;
 | 
						|
			while (ISSET_BH(k) && UNALIGNED_BH(k))
 | 
						|
				k++;
 | 
						|
			if (ISSET_BH(k)) {
 | 
						|
				while (WORD_BH(k) == 0xffffffff) k += 32;
 | 
						|
				while (ISSET_BH(k)) k++;
 | 
						|
			}
 | 
						|
			l = k - 1;
 | 
						|
			if (l >= nblock)
 | 
						|
				break;
 | 
						|
			while (!ISSET_BH(k) && UNALIGNED_BH(k))
 | 
						|
				k++;
 | 
						|
			if (!ISSET_BH(k)) {
 | 
						|
				while (WORD_BH(k) == 0x00000000) k += 32;
 | 
						|
				while (!ISSET_BH(k)) k++;
 | 
						|
			}
 | 
						|
			r = k - 1;
 | 
						|
			if (r >= nblock)
 | 
						|
				break;
 | 
						|
 | 
						|
			/*-- now [l, r] bracket current bucket --*/
 | 
						|
			if (r > l) {
 | 
						|
				nNotDone += (r - l + 1);
 | 
						|
				fallbackQSort3(fmap, eclass, l, r);
 | 
						|
 | 
						|
				/*-- scan bucket and generate header bits-- */
 | 
						|
				cc = -1;
 | 
						|
				for (i = l; i <= r; i++) {
 | 
						|
					cc1 = eclass[fmap[i]];
 | 
						|
					if (cc != cc1) {
 | 
						|
						SET_BH(i);
 | 
						|
						cc = cc1;
 | 
						|
					};
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		H *= 2;
 | 
						|
		if (H > nblock || nNotDone == 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reconstruct the original block in
 | 
						|
	 * eclass8 [0 .. nblock-1], since the
 | 
						|
	 * previous phase destroyed it.
 | 
						|
	 */
 | 
						|
	j = 0;
 | 
						|
	for (i = 0; i < nblock; i++) {
 | 
						|
		while (ftabCopy[j] == 0)
 | 
						|
			j++;
 | 
						|
		ftabCopy[j]--;
 | 
						|
		eclass8[fmap[i]] = (uint8_t)j;
 | 
						|
	}
 | 
						|
	AssertH(j < 256, 1005);
 | 
						|
}
 | 
						|
 | 
						|
#undef       SET_BH
 | 
						|
#undef     CLEAR_BH
 | 
						|
#undef     ISSET_BH
 | 
						|
#undef      WORD_BH
 | 
						|
#undef UNALIGNED_BH
 | 
						|
 | 
						|
 | 
						|
/*---------------------------------------------*/
 | 
						|
/*--- The main, O(N^2 log(N)) sorting       ---*/
 | 
						|
/*--- algorithm.  Faster for "normal"       ---*/
 | 
						|
/*--- non-repetitive blocks.                ---*/
 | 
						|
/*---------------------------------------------*/
 | 
						|
 | 
						|
/*---------------------------------------------*/
 | 
						|
static
 | 
						|
NOINLINE
 | 
						|
int mainGtU(
 | 
						|
		uint32_t  i1,
 | 
						|
		uint32_t  i2,
 | 
						|
		uint8_t*  block,
 | 
						|
		uint16_t* quadrant,
 | 
						|
		uint32_t  nblock,
 | 
						|
		int32_t*  budget)
 | 
						|
{
 | 
						|
	int32_t  k;
 | 
						|
	uint8_t  c1, c2;
 | 
						|
	uint16_t s1, s2;
 | 
						|
 | 
						|
/* Loop unrolling here is actually very useful
 | 
						|
 * (generated code is much simpler),
 | 
						|
 * code size increase is only 270 bytes (i386)
 | 
						|
 * but speeds up compression 10% overall
 | 
						|
 */
 | 
						|
 | 
						|
#if CONFIG_BZIP2_FEATURE_SPEED >= 1
 | 
						|
 | 
						|
#define TIMES_8(code) \
 | 
						|
	code; code; code; code; \
 | 
						|
	code; code; code; code;
 | 
						|
#define TIMES_12(code) \
 | 
						|
	code; code; code; code; \
 | 
						|
	code; code; code; code; \
 | 
						|
	code; code; code; code;
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
#define TIMES_8(code) \
 | 
						|
{ \
 | 
						|
	int nn = 8; \
 | 
						|
	do { \
 | 
						|
		code; \
 | 
						|
	} while (--nn); \
 | 
						|
}
 | 
						|
#define TIMES_12(code) \
 | 
						|
{ \
 | 
						|
	int nn = 12; \
 | 
						|
	do { \
 | 
						|
		code; \
 | 
						|
	} while (--nn); \
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
	AssertD(i1 != i2, "mainGtU");
 | 
						|
	TIMES_12(
 | 
						|
		c1 = block[i1]; c2 = block[i2];
 | 
						|
		if (c1 != c2) return (c1 > c2);
 | 
						|
		i1++; i2++;
 | 
						|
	)
 | 
						|
 | 
						|
	k = nblock + 8;
 | 
						|
 | 
						|
	do {
 | 
						|
		TIMES_8(
 | 
						|
			c1 = block[i1]; c2 = block[i2];
 | 
						|
			if (c1 != c2) return (c1 > c2);
 | 
						|
			s1 = quadrant[i1]; s2 = quadrant[i2];
 | 
						|
			if (s1 != s2) return (s1 > s2);
 | 
						|
			i1++; i2++;
 | 
						|
		)
 | 
						|
 | 
						|
		if (i1 >= nblock) i1 -= nblock;
 | 
						|
		if (i2 >= nblock) i2 -= nblock;
 | 
						|
 | 
						|
		(*budget)--;
 | 
						|
		k -= 8;
 | 
						|
	} while (k >= 0);
 | 
						|
 | 
						|
	return False;
 | 
						|
}
 | 
						|
#undef TIMES_8
 | 
						|
#undef TIMES_12
 | 
						|
 | 
						|
/*---------------------------------------------*/
 | 
						|
/*
 | 
						|
 * Knuth's increments seem to work better
 | 
						|
 * than Incerpi-Sedgewick here.  Possibly
 | 
						|
 * because the number of elems to sort is
 | 
						|
 * usually small, typically <= 20.
 | 
						|
 */
 | 
						|
static
 | 
						|
const int32_t incs[14] = {
 | 
						|
	1, 4, 13, 40, 121, 364, 1093, 3280,
 | 
						|
	9841, 29524, 88573, 265720,
 | 
						|
	797161, 2391484
 | 
						|
};
 | 
						|
 | 
						|
static
 | 
						|
void mainSimpleSort(uint32_t* ptr,
 | 
						|
		uint8_t*  block,
 | 
						|
		uint16_t* quadrant,
 | 
						|
		int32_t   nblock,
 | 
						|
		int32_t   lo,
 | 
						|
		int32_t   hi,
 | 
						|
		int32_t   d,
 | 
						|
		int32_t*  budget)
 | 
						|
{
 | 
						|
	int32_t i, j, h, bigN, hp;
 | 
						|
	uint32_t v;
 | 
						|
 | 
						|
	bigN = hi - lo + 1;
 | 
						|
	if (bigN < 2) return;
 | 
						|
 | 
						|
	hp = 0;
 | 
						|
	while (incs[hp] < bigN) hp++;
 | 
						|
	hp--;
 | 
						|
 | 
						|
	for (; hp >= 0; hp--) {
 | 
						|
		h = incs[hp];
 | 
						|
 | 
						|
		i = lo + h;
 | 
						|
		while (1) {
 | 
						|
			/*-- copy 1 --*/
 | 
						|
			if (i > hi) break;
 | 
						|
			v = ptr[i];
 | 
						|
			j = i;
 | 
						|
			while (mainGtU(ptr[j-h]+d, v+d, block, quadrant, nblock, budget)) {
 | 
						|
				ptr[j] = ptr[j-h];
 | 
						|
				j = j - h;
 | 
						|
				if (j <= (lo + h - 1)) break;
 | 
						|
			}
 | 
						|
			ptr[j] = v;
 | 
						|
			i++;
 | 
						|
 | 
						|
/* 1.5% overall speedup, +290 bytes */
 | 
						|
#if CONFIG_BZIP2_FEATURE_SPEED >= 3
 | 
						|
			/*-- copy 2 --*/
 | 
						|
			if (i > hi) break;
 | 
						|
			v = ptr[i];
 | 
						|
			j = i;
 | 
						|
			while (mainGtU(ptr[j-h]+d, v+d, block, quadrant, nblock, budget)) {
 | 
						|
				ptr[j] = ptr[j-h];
 | 
						|
				j = j - h;
 | 
						|
				if (j <= (lo + h - 1)) break;
 | 
						|
			}
 | 
						|
			ptr[j] = v;
 | 
						|
			i++;
 | 
						|
 | 
						|
			/*-- copy 3 --*/
 | 
						|
			if (i > hi) break;
 | 
						|
			v = ptr[i];
 | 
						|
			j = i;
 | 
						|
			while (mainGtU(ptr[j-h]+d, v+d, block, quadrant, nblock, budget)) {
 | 
						|
				ptr[j] = ptr[j-h];
 | 
						|
				j = j - h;
 | 
						|
				if (j <= (lo + h - 1)) break;
 | 
						|
			}
 | 
						|
			ptr[j] = v;
 | 
						|
			i++;
 | 
						|
#endif
 | 
						|
			if (*budget < 0) return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*---------------------------------------------*/
 | 
						|
/*
 | 
						|
 * The following is an implementation of
 | 
						|
 * an elegant 3-way quicksort for strings,
 | 
						|
 * described in a paper "Fast Algorithms for
 | 
						|
 * Sorting and Searching Strings", by Robert
 | 
						|
 * Sedgewick and Jon L. Bentley.
 | 
						|
 */
 | 
						|
 | 
						|
static
 | 
						|
ALWAYS_INLINE
 | 
						|
uint8_t mmed3(uint8_t a, uint8_t b, uint8_t c)
 | 
						|
{
 | 
						|
	uint8_t t;
 | 
						|
	if (a > b) {
 | 
						|
		t = a;
 | 
						|
		a = b;
 | 
						|
		b = t;
 | 
						|
	};
 | 
						|
	/* here b >= a */
 | 
						|
	if (b > c) {
 | 
						|
		b = c;
 | 
						|
		if (a > b)
 | 
						|
			b = a;
 | 
						|
	}
 | 
						|
	return b;
 | 
						|
}
 | 
						|
 | 
						|
#define mpush(lz,hz,dz) \
 | 
						|
{ \
 | 
						|
	stackLo[sp] = lz; \
 | 
						|
	stackHi[sp] = hz; \
 | 
						|
	stackD [sp] = dz; \
 | 
						|
	sp++; \
 | 
						|
}
 | 
						|
 | 
						|
#define mpop(lz,hz,dz) \
 | 
						|
{ \
 | 
						|
	sp--; \
 | 
						|
	lz = stackLo[sp]; \
 | 
						|
	hz = stackHi[sp]; \
 | 
						|
	dz = stackD [sp]; \
 | 
						|
}
 | 
						|
 | 
						|
#define mnextsize(az) (nextHi[az] - nextLo[az])
 | 
						|
 | 
						|
#define mnextswap(az,bz) \
 | 
						|
{ \
 | 
						|
	int32_t tz; \
 | 
						|
	tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \
 | 
						|
	tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \
 | 
						|
	tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; \
 | 
						|
}
 | 
						|
 | 
						|
#define MAIN_QSORT_SMALL_THRESH 20
 | 
						|
#define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT)
 | 
						|
#define MAIN_QSORT_STACK_SIZE   100
 | 
						|
 | 
						|
static NOINLINE
 | 
						|
void mainQSort3(uint32_t* ptr,
 | 
						|
		uint8_t*  block,
 | 
						|
		uint16_t* quadrant,
 | 
						|
		int32_t   nblock,
 | 
						|
		int32_t   loSt,
 | 
						|
		int32_t   hiSt,
 | 
						|
		int32_t   dSt,
 | 
						|
		int32_t*  budget)
 | 
						|
{
 | 
						|
	int32_t unLo, unHi, ltLo, gtHi, n, m, med;
 | 
						|
	int32_t sp, lo, hi, d;
 | 
						|
 | 
						|
	int32_t stackLo[MAIN_QSORT_STACK_SIZE];
 | 
						|
	int32_t stackHi[MAIN_QSORT_STACK_SIZE];
 | 
						|
	int32_t stackD [MAIN_QSORT_STACK_SIZE];
 | 
						|
 | 
						|
	int32_t nextLo[3];
 | 
						|
	int32_t nextHi[3];
 | 
						|
	int32_t nextD [3];
 | 
						|
 | 
						|
	sp = 0;
 | 
						|
	mpush(loSt, hiSt, dSt);
 | 
						|
 | 
						|
	while (sp > 0) {
 | 
						|
		AssertH(sp < MAIN_QSORT_STACK_SIZE - 2, 1001);
 | 
						|
 | 
						|
		mpop(lo, hi, d);
 | 
						|
		if (hi - lo < MAIN_QSORT_SMALL_THRESH
 | 
						|
		 || d > MAIN_QSORT_DEPTH_THRESH
 | 
						|
		) {
 | 
						|
			mainSimpleSort(ptr, block, quadrant, nblock, lo, hi, d, budget);
 | 
						|
			if (*budget < 0)
 | 
						|
				return;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		med = (int32_t)	mmed3(block[ptr[lo          ] + d],
 | 
						|
		                      block[ptr[hi          ] + d],
 | 
						|
		                      block[ptr[(lo+hi) >> 1] + d]);
 | 
						|
 | 
						|
		unLo = ltLo = lo;
 | 
						|
		unHi = gtHi = hi;
 | 
						|
 | 
						|
		while (1) {
 | 
						|
			while (1) {
 | 
						|
				if (unLo > unHi)
 | 
						|
					break;
 | 
						|
				n = ((int32_t)block[ptr[unLo]+d]) - med;
 | 
						|
				if (n == 0) {
 | 
						|
					mswap(ptr[unLo], ptr[ltLo]);
 | 
						|
					ltLo++;
 | 
						|
					unLo++;
 | 
						|
					continue;
 | 
						|
				};
 | 
						|
				if (n >  0) break;
 | 
						|
				unLo++;
 | 
						|
			}
 | 
						|
			while (1) {
 | 
						|
				if (unLo > unHi)
 | 
						|
					break;
 | 
						|
				n = ((int32_t)block[ptr[unHi]+d]) - med;
 | 
						|
				if (n == 0) {
 | 
						|
					mswap(ptr[unHi], ptr[gtHi]);
 | 
						|
					gtHi--;
 | 
						|
					unHi--;
 | 
						|
					continue;
 | 
						|
				};
 | 
						|
				if (n <  0) break;
 | 
						|
				unHi--;
 | 
						|
			}
 | 
						|
			if (unLo > unHi)
 | 
						|
				break;
 | 
						|
			mswap(ptr[unLo], ptr[unHi]);
 | 
						|
			unLo++;
 | 
						|
			unHi--;
 | 
						|
		}
 | 
						|
 | 
						|
		AssertD(unHi == unLo-1, "mainQSort3(2)");
 | 
						|
 | 
						|
		if (gtHi < ltLo) {
 | 
						|
			mpush(lo, hi, d + 1);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		n = mmin(ltLo-lo, unLo-ltLo); mvswap(ptr, lo, unLo-n, n);
 | 
						|
		m = mmin(hi-gtHi, gtHi-unHi); mvswap(ptr, unLo, hi-m+1, m);
 | 
						|
 | 
						|
		n = lo + unLo - ltLo - 1;
 | 
						|
		m = hi - (gtHi - unHi) + 1;
 | 
						|
 | 
						|
		nextLo[0] = lo;  nextHi[0] = n;   nextD[0] = d;
 | 
						|
		nextLo[1] = m;   nextHi[1] = hi;  nextD[1] = d;
 | 
						|
		nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1;
 | 
						|
 | 
						|
		if (mnextsize(0) < mnextsize(1)) mnextswap(0, 1);
 | 
						|
		if (mnextsize(1) < mnextsize(2)) mnextswap(1, 2);
 | 
						|
		if (mnextsize(0) < mnextsize(1)) mnextswap(0, 1);
 | 
						|
 | 
						|
		AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)");
 | 
						|
		AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)");
 | 
						|
 | 
						|
		mpush(nextLo[0], nextHi[0], nextD[0]);
 | 
						|
		mpush(nextLo[1], nextHi[1], nextD[1]);
 | 
						|
		mpush(nextLo[2], nextHi[2], nextD[2]);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#undef mpush
 | 
						|
#undef mpop
 | 
						|
#undef mnextsize
 | 
						|
#undef mnextswap
 | 
						|
#undef MAIN_QSORT_SMALL_THRESH
 | 
						|
#undef MAIN_QSORT_DEPTH_THRESH
 | 
						|
#undef MAIN_QSORT_STACK_SIZE
 | 
						|
 | 
						|
 | 
						|
/*---------------------------------------------*/
 | 
						|
/* Pre:
 | 
						|
 *	nblock > N_OVERSHOOT
 | 
						|
 *	block32 exists for [0 .. nblock-1 +N_OVERSHOOT]
 | 
						|
 *	((uint8_t*)block32) [0 .. nblock-1] holds block
 | 
						|
 *	ptr exists for [0 .. nblock-1]
 | 
						|
 *
 | 
						|
 * Post:
 | 
						|
 *	((uint8_t*)block32) [0 .. nblock-1] holds block
 | 
						|
 *	All other areas of block32 destroyed
 | 
						|
 *	ftab[0 .. 65536] destroyed
 | 
						|
 *	ptr [0 .. nblock-1] holds sorted order
 | 
						|
 *	if (*budget < 0), sorting was abandoned
 | 
						|
 */
 | 
						|
 | 
						|
#define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8])
 | 
						|
#define SETMASK (1 << 21)
 | 
						|
#define CLEARMASK (~(SETMASK))
 | 
						|
 | 
						|
static NOINLINE
 | 
						|
void mainSort(EState* state,
 | 
						|
		uint32_t* ptr,
 | 
						|
		uint8_t*  block,
 | 
						|
		uint16_t* quadrant,
 | 
						|
		uint32_t* ftab,
 | 
						|
		int32_t   nblock,
 | 
						|
		int32_t*  budget)
 | 
						|
{
 | 
						|
	int32_t  i, j, k, ss, sb;
 | 
						|
	uint8_t  c1;
 | 
						|
	int32_t  numQSorted;
 | 
						|
	uint16_t s;
 | 
						|
	Bool     bigDone[256];
 | 
						|
	/* bbox: moved to EState to save stack
 | 
						|
	int32_t  runningOrder[256];
 | 
						|
	int32_t  copyStart[256];
 | 
						|
	int32_t  copyEnd  [256];
 | 
						|
	*/
 | 
						|
#define runningOrder (state->mainSort__runningOrder)
 | 
						|
#define copyStart    (state->mainSort__copyStart)
 | 
						|
#define copyEnd      (state->mainSort__copyEnd)
 | 
						|
 | 
						|
	/*-- set up the 2-byte frequency table --*/
 | 
						|
	/* was: for (i = 65536; i >= 0; i--) ftab[i] = 0; */
 | 
						|
	memset(ftab, 0, 65537 * sizeof(ftab[0]));
 | 
						|
 | 
						|
	j = block[0] << 8;
 | 
						|
	i = nblock - 1;
 | 
						|
/* 3%, +300 bytes */
 | 
						|
#if CONFIG_BZIP2_FEATURE_SPEED >= 2
 | 
						|
	for (; i >= 3; i -= 4) {
 | 
						|
		quadrant[i] = 0;
 | 
						|
		j = (j >> 8) | (((uint16_t)block[i]) << 8);
 | 
						|
		ftab[j]++;
 | 
						|
		quadrant[i-1] = 0;
 | 
						|
		j = (j >> 8) | (((uint16_t)block[i-1]) << 8);
 | 
						|
		ftab[j]++;
 | 
						|
		quadrant[i-2] = 0;
 | 
						|
		j = (j >> 8) | (((uint16_t)block[i-2]) << 8);
 | 
						|
		ftab[j]++;
 | 
						|
		quadrant[i-3] = 0;
 | 
						|
		j = (j >> 8) | (((uint16_t)block[i-3]) << 8);
 | 
						|
		ftab[j]++;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	for (; i >= 0; i--) {
 | 
						|
		quadrant[i] = 0;
 | 
						|
		j = (j >> 8) | (((uint16_t)block[i]) << 8);
 | 
						|
		ftab[j]++;
 | 
						|
	}
 | 
						|
 | 
						|
	/*-- (emphasises close relationship of block & quadrant) --*/
 | 
						|
	for (i = 0; i < BZ_N_OVERSHOOT; i++) {
 | 
						|
		block   [nblock+i] = block[i];
 | 
						|
		quadrant[nblock+i] = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*-- Complete the initial radix sort --*/
 | 
						|
	j = ftab[0]; /* bbox: optimized */
 | 
						|
	for (i = 1; i <= 65536; i++) {
 | 
						|
		j += ftab[i];
 | 
						|
		ftab[i] = j;
 | 
						|
	}
 | 
						|
 | 
						|
	s = block[0] << 8;
 | 
						|
	i = nblock - 1;
 | 
						|
#if CONFIG_BZIP2_FEATURE_SPEED >= 2
 | 
						|
	for (; i >= 3; i -= 4) {
 | 
						|
		s = (s >> 8) | (block[i] << 8);
 | 
						|
		j = ftab[s] - 1;
 | 
						|
		ftab[s] = j;
 | 
						|
		ptr[j] = i;
 | 
						|
		s = (s >> 8) | (block[i-1] << 8);
 | 
						|
		j = ftab[s] - 1;
 | 
						|
		ftab[s] = j;
 | 
						|
		ptr[j] = i-1;
 | 
						|
		s = (s >> 8) | (block[i-2] << 8);
 | 
						|
		j = ftab[s] - 1;
 | 
						|
		ftab[s] = j;
 | 
						|
		ptr[j] = i-2;
 | 
						|
		s = (s >> 8) | (block[i-3] << 8);
 | 
						|
		j = ftab[s] - 1;
 | 
						|
		ftab[s] = j;
 | 
						|
		ptr[j] = i-3;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	for (; i >= 0; i--) {
 | 
						|
		s = (s >> 8) | (block[i] << 8);
 | 
						|
		j = ftab[s] - 1;
 | 
						|
		ftab[s] = j;
 | 
						|
		ptr[j] = i;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now ftab contains the first loc of every small bucket.
 | 
						|
	 * Calculate the running order, from smallest to largest
 | 
						|
	 * big bucket.
 | 
						|
	 */
 | 
						|
	for (i = 0; i <= 255; i++) {
 | 
						|
		bigDone     [i] = False;
 | 
						|
		runningOrder[i] = i;
 | 
						|
	}
 | 
						|
 | 
						|
	{
 | 
						|
		int32_t vv;
 | 
						|
		/* bbox: was: int32_t h = 1; */
 | 
						|
		/* do h = 3 * h + 1; while (h <= 256); */
 | 
						|
		uint32_t h = 364;
 | 
						|
 | 
						|
		do {
 | 
						|
			/*h = h / 3;*/
 | 
						|
			h = (h * 171) >> 9; /* bbox: fast h/3 */
 | 
						|
			for (i = h; i <= 255; i++) {
 | 
						|
				vv = runningOrder[i];
 | 
						|
				j = i;
 | 
						|
				while (BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv)) {
 | 
						|
					runningOrder[j] = runningOrder[j-h];
 | 
						|
					j = j - h;
 | 
						|
					if (j <= (h - 1))
 | 
						|
						goto zero;
 | 
						|
				}
 | 
						|
 zero:
 | 
						|
				runningOrder[j] = vv;
 | 
						|
			}
 | 
						|
		} while (h != 1);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The main sorting loop.
 | 
						|
	 */
 | 
						|
 | 
						|
	numQSorted = 0;
 | 
						|
 | 
						|
	for (i = 0; i <= 255; i++) {
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Process big buckets, starting with the least full.
 | 
						|
		 * Basically this is a 3-step process in which we call
 | 
						|
		 * mainQSort3 to sort the small buckets [ss, j], but
 | 
						|
		 * also make a big effort to avoid the calls if we can.
 | 
						|
		 */
 | 
						|
		ss = runningOrder[i];
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Step 1:
 | 
						|
		 * Complete the big bucket [ss] by quicksorting
 | 
						|
		 * any unsorted small buckets [ss, j], for j != ss.
 | 
						|
		 * Hopefully previous pointer-scanning phases have already
 | 
						|
		 * completed many of the small buckets [ss, j], so
 | 
						|
		 * we don't have to sort them at all.
 | 
						|
		 */
 | 
						|
		for (j = 0; j <= 255; j++) {
 | 
						|
			if (j != ss) {
 | 
						|
				sb = (ss << 8) + j;
 | 
						|
				if (!(ftab[sb] & SETMASK)) {
 | 
						|
					int32_t lo =  ftab[sb]   & CLEARMASK;
 | 
						|
					int32_t hi = (ftab[sb+1] & CLEARMASK) - 1;
 | 
						|
					if (hi > lo) {
 | 
						|
						mainQSort3(
 | 
						|
							ptr, block, quadrant, nblock,
 | 
						|
							lo, hi, BZ_N_RADIX, budget
 | 
						|
						);
 | 
						|
						if (*budget < 0) return;
 | 
						|
						numQSorted += (hi - lo + 1);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				ftab[sb] |= SETMASK;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		AssertH(!bigDone[ss], 1006);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Step 2:
 | 
						|
		 * Now scan this big bucket [ss] so as to synthesise the
 | 
						|
		 * sorted order for small buckets [t, ss] for all t,
 | 
						|
		 * including, magically, the bucket [ss,ss] too.
 | 
						|
		 * This will avoid doing Real Work in subsequent Step 1's.
 | 
						|
		 */
 | 
						|
		{
 | 
						|
			for (j = 0; j <= 255; j++) {
 | 
						|
				copyStart[j] =  ftab[(j << 8) + ss]     & CLEARMASK;
 | 
						|
				copyEnd  [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1;
 | 
						|
			}
 | 
						|
			for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) {
 | 
						|
				k = ptr[j] - 1;
 | 
						|
				if (k < 0)
 | 
						|
					k += nblock;
 | 
						|
				c1 = block[k];
 | 
						|
				if (!bigDone[c1])
 | 
						|
					ptr[copyStart[c1]++] = k;
 | 
						|
			}
 | 
						|
			for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) {
 | 
						|
				k = ptr[j]-1;
 | 
						|
				if (k < 0)
 | 
						|
					k += nblock;
 | 
						|
				c1 = block[k];
 | 
						|
				if (!bigDone[c1])
 | 
						|
					ptr[copyEnd[c1]--] = k;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* Extremely rare case missing in bzip2-1.0.0 and 1.0.1.
 | 
						|
		 * Necessity for this case is demonstrated by compressing
 | 
						|
		 * a sequence of approximately 48.5 million of character
 | 
						|
		 * 251; 1.0.0/1.0.1 will then die here. */
 | 
						|
		AssertH((copyStart[ss]-1 == copyEnd[ss]) \
 | 
						|
		     || (copyStart[ss] == 0 && copyEnd[ss] == nblock-1), 1007);
 | 
						|
 | 
						|
		for (j = 0; j <= 255; j++)
 | 
						|
			ftab[(j << 8) + ss] |= SETMASK;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Step 3:
 | 
						|
		 * The [ss] big bucket is now done.  Record this fact,
 | 
						|
		 * and update the quadrant descriptors.  Remember to
 | 
						|
		 * update quadrants in the overshoot area too, if
 | 
						|
		 * necessary.  The "if (i < 255)" test merely skips
 | 
						|
		 * this updating for the last bucket processed, since
 | 
						|
		 * updating for the last bucket is pointless.
 | 
						|
		 *
 | 
						|
		 * The quadrant array provides a way to incrementally
 | 
						|
		 * cache sort orderings, as they appear, so as to
 | 
						|
		 * make subsequent comparisons in fullGtU() complete
 | 
						|
		 * faster.  For repetitive blocks this makes a big
 | 
						|
		 * difference (but not big enough to be able to avoid
 | 
						|
		 * the fallback sorting mechanism, exponential radix sort).
 | 
						|
		 *
 | 
						|
		 * The precise meaning is: at all times:
 | 
						|
		 *
 | 
						|
		 *	for 0 <= i < nblock and 0 <= j <= nblock
 | 
						|
		 *
 | 
						|
		 *	if block[i] != block[j],
 | 
						|
		 *
 | 
						|
		 *		then the relative values of quadrant[i] and
 | 
						|
		 *			  quadrant[j] are meaningless.
 | 
						|
		 *
 | 
						|
		 *		else {
 | 
						|
		 *			if quadrant[i] < quadrant[j]
 | 
						|
		 *				then the string starting at i lexicographically
 | 
						|
		 *				precedes the string starting at j
 | 
						|
		 *
 | 
						|
		 *			else if quadrant[i] > quadrant[j]
 | 
						|
		 *				then the string starting at j lexicographically
 | 
						|
		 *				precedes the string starting at i
 | 
						|
		 *
 | 
						|
		 *			else
 | 
						|
		 *				the relative ordering of the strings starting
 | 
						|
		 *				at i and j has not yet been determined.
 | 
						|
		 *		}
 | 
						|
		 */
 | 
						|
		bigDone[ss] = True;
 | 
						|
 | 
						|
		if (i < 255) {
 | 
						|
			int32_t bbStart = ftab[ss << 8] & CLEARMASK;
 | 
						|
			int32_t bbSize  = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart;
 | 
						|
			int32_t shifts  = 0;
 | 
						|
 | 
						|
			while ((bbSize >> shifts) > 65534) shifts++;
 | 
						|
 | 
						|
			for (j = bbSize-1; j >= 0; j--) {
 | 
						|
				int32_t a2update   = ptr[bbStart + j];
 | 
						|
				uint16_t qVal      = (uint16_t)(j >> shifts);
 | 
						|
				quadrant[a2update] = qVal;
 | 
						|
				if (a2update < BZ_N_OVERSHOOT)
 | 
						|
					quadrant[a2update + nblock] = qVal;
 | 
						|
			}
 | 
						|
			AssertH(((bbSize-1) >> shifts) <= 65535, 1002);
 | 
						|
		}
 | 
						|
	}
 | 
						|
#undef runningOrder
 | 
						|
#undef copyStart
 | 
						|
#undef copyEnd
 | 
						|
}
 | 
						|
 | 
						|
#undef BIGFREQ
 | 
						|
#undef SETMASK
 | 
						|
#undef CLEARMASK
 | 
						|
 | 
						|
 | 
						|
/*---------------------------------------------*/
 | 
						|
/* Pre:
 | 
						|
 *	nblock > 0
 | 
						|
 *	arr2 exists for [0 .. nblock-1 +N_OVERSHOOT]
 | 
						|
 *	  ((uint8_t*)arr2)[0 .. nblock-1] holds block
 | 
						|
 *	arr1 exists for [0 .. nblock-1]
 | 
						|
 *
 | 
						|
 * Post:
 | 
						|
 *	((uint8_t*)arr2) [0 .. nblock-1] holds block
 | 
						|
 *	All other areas of block destroyed
 | 
						|
 *	ftab[0 .. 65536] destroyed
 | 
						|
 *	arr1[0 .. nblock-1] holds sorted order
 | 
						|
 */
 | 
						|
static NOINLINE
 | 
						|
void BZ2_blockSort(EState* s)
 | 
						|
{
 | 
						|
	/* In original bzip2 1.0.4, it's a parameter, but 30
 | 
						|
	 * (which was the default) should work ok. */
 | 
						|
	enum { wfact = 30 };
 | 
						|
 | 
						|
	uint32_t* ptr    = s->ptr;
 | 
						|
	uint8_t*  block  = s->block;
 | 
						|
	uint32_t* ftab   = s->ftab;
 | 
						|
	int32_t   nblock = s->nblock;
 | 
						|
	uint16_t* quadrant;
 | 
						|
	int32_t   budget;
 | 
						|
	int32_t   i;
 | 
						|
 | 
						|
	if (nblock < 10000) {
 | 
						|
		fallbackSort(s->arr1, s->arr2, ftab, nblock);
 | 
						|
	} else {
 | 
						|
		/* Calculate the location for quadrant, remembering to get
 | 
						|
		 * the alignment right.  Assumes that &(block[0]) is at least
 | 
						|
		 * 2-byte aligned -- this should be ok since block is really
 | 
						|
		 * the first section of arr2.
 | 
						|
		 */
 | 
						|
		i = nblock + BZ_N_OVERSHOOT;
 | 
						|
		if (i & 1) i++;
 | 
						|
		quadrant = (uint16_t*)(&(block[i]));
 | 
						|
 | 
						|
		/* (wfact-1) / 3 puts the default-factor-30
 | 
						|
		 * transition point at very roughly the same place as
 | 
						|
		 * with v0.1 and v0.9.0.
 | 
						|
		 * Not that it particularly matters any more, since the
 | 
						|
		 * resulting compressed stream is now the same regardless
 | 
						|
		 * of whether or not we use the main sort or fallback sort.
 | 
						|
		 */
 | 
						|
		budget = nblock * ((wfact-1) / 3);
 | 
						|
 | 
						|
		mainSort(s, ptr, block, quadrant, ftab, nblock, &budget);
 | 
						|
		if (budget < 0) {
 | 
						|
			fallbackSort(s->arr1, s->arr2, ftab, nblock);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	s->origPtr = -1;
 | 
						|
	for (i = 0; i < s->nblock; i++)
 | 
						|
		if (ptr[i] == 0) {
 | 
						|
			s->origPtr = i;
 | 
						|
			break;
 | 
						|
		};
 | 
						|
 | 
						|
	AssertH(s->origPtr != -1, 1003);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*-------------------------------------------------------------*/
 | 
						|
/*--- end                                       blocksort.c ---*/
 | 
						|
/*-------------------------------------------------------------*/
 |