ndhc/sockd.c

557 lines
19 KiB
C

// Copyright 2014-2020 Nicholas J. Kain <njkain at gmail dot com>
// SPDX-License-Identifier: MIT
#include <stdbool.h>
#include <stdint.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <signal.h>
#include <fcntl.h>
#include <assert.h>
#include <sys/socket.h>
#include <poll.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/prctl.h>
#include <arpa/inet.h>
#include <netinet/ip.h>
#include <netpacket/packet.h>
#include <net/ethernet.h>
#include <netinet/if_ether.h>
#include <linux/filter.h>
#include <pwd.h>
#include <grp.h>
#include "nk/log.h"
#include "nk/io.h"
#include "nk/privs.h"
#include "sockd.h"
#include "ndhc-defines.h"
#include "ndhc.h"
#include "dhcp.h"
#include "sys.h"
uid_t sockd_uid = 0;
gid_t sockd_gid = 0;
// Interface to make requests of sockd. Called from ndhc process.
int request_sockd_fd(char *buf, size_t buflen, char *response)
{
if (!buflen)
return -1;
ssize_t r = safe_write(sockdSock[0], buf, buflen);
if (r < 0 || (size_t)r != buflen)
suicide("%s: (%s) write failed: %zd", client_config.interface,
__func__, r);
char data[MAX_BUF], control[MAX_BUF];
struct iovec iov = {
.iov_base = data,
.iov_len = sizeof data - 1,
};
struct msghdr msg = {
.msg_iov = &iov,
.msg_iovlen = 1,
.msg_control = control,
.msg_controllen = sizeof control
};
r = safe_recvmsg(sockdSock[0], &msg, 0);
if (r == 0) {
suicide("%s: (%s) recvmsg received EOF", client_config.interface,
__func__);
} else if (r < 0) {
suicide("%s: (%s) recvmsg failed: %s", client_config.interface,
__func__, strerror(errno));
}
data[iov.iov_len] = '\0';
char repc = data[0];
for (struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg); cmsg;
cmsg = CMSG_NXTHDR(&msg, cmsg)) {
if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
if (response)
*response = repc;
else if (repc != buf[0])
suicide("%s: (%s) expected %c sockd reply but got %c",
client_config.interface, __func__, buf[0], repc);
int *fd = (int *)CMSG_DATA(cmsg);
return *fd;
}
}
suicide("%s: (%s) sockd reply did not include a fd",
client_config.interface, __func__);
}
static int create_arp_socket(void)
{
int fd = socket(AF_PACKET, SOCK_RAW | SOCK_NONBLOCK | SOCK_CLOEXEC, htons(ETH_P_ARP));
if (fd < 0) {
log_line("%s: (%s) socket failed: %s", client_config.interface,
__func__, strerror(errno));
goto out;
}
int opt = 1;
if (setsockopt(fd, SOL_SOCKET, SO_BROADCAST, &opt, sizeof opt) < 0) {
log_line("%s: (%s) setsockopt failed: %s", client_config.interface,
__func__, strerror(errno));
goto out_fd;
}
if (fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK) < 0) {
log_line("%s: (%s) fcntl failed: %s", client_config.interface,
__func__, strerror(errno));
goto out_fd;
}
struct sockaddr_ll saddr = {
.sll_family = AF_PACKET,
.sll_protocol = htons(ETH_P_ARP),
.sll_ifindex = client_config.ifindex,
};
if (bind(fd, (struct sockaddr *)&saddr, sizeof(struct sockaddr_ll)) < 0) {
log_line("%s: (%s) bind failed: %s", client_config.interface,
__func__, strerror(errno));
goto out_fd;
}
return fd;
out_fd:
close(fd);
out:
return -1;
}
// Returns fd of new udp socket bound on success, or -1 on failure.
static int create_udp_socket(uint32_t ip, uint16_t port, char *iface)
{
int fd;
if ((fd = socket(AF_INET, SOCK_DGRAM | SOCK_NONBLOCK | SOCK_CLOEXEC, IPPROTO_UDP)) < 0) {
log_line("%s: (%s) socket failed: %s",
client_config.interface, __func__, strerror(errno));
goto out;
}
int opt = 1;
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof opt) < 0) {
log_line("%s: (%s) Set reuse addr failed: %s",
client_config.interface, __func__, strerror(errno));
goto out_fd;
}
if (setsockopt(fd, SOL_SOCKET, SO_DONTROUTE, &opt, sizeof opt) < 0) {
log_line("%s: (%s) Set don't route failed: %s",
client_config.interface, __func__, strerror(errno));
goto out_fd;
}
struct ifreq ifr;
memset(&ifr, 0, sizeof ifr);
if (!memccpy(ifr.ifr_name, iface, 0, sizeof ifr.ifr_name)) {
log_line("%s: (%s) Set interface name failed.",
client_config.interface, __func__);
goto out_fd;
}
if (setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, &ifr, sizeof ifr) < 0) {
log_line("%s: (%s) Set bind to device failed: %s",
client_config.interface, __func__, strerror(errno));
goto out_fd;
}
if (fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK) < 0) {
log_line("%s: (%s) Set non-blocking failed: %s",
client_config.interface, __func__, strerror(errno));
goto out_fd;
}
struct sockaddr_in sa = {
.sin_family = AF_INET,
.sin_port = htons(port),
.sin_addr.s_addr = ip,
};
if (bind(fd, (struct sockaddr *)&sa, sizeof sa) < 0) {
log_line("%s: (%s) bind failed: %s",
client_config.interface, __func__, strerror(errno));
goto out_fd;
}
return fd;
out_fd:
close(fd);
out:
return -1;
}
static int create_raw_socket(struct sockaddr_ll *sa, bool *using_bpf,
const struct sock_fprog *filter_prog)
{
int fd;
if ((fd = socket(AF_PACKET, SOCK_DGRAM | SOCK_NONBLOCK | SOCK_CLOEXEC,
htons(ETH_P_IP))) < 0) {
log_line("create_raw_socket: socket failed: %s", strerror(errno));
goto out;
}
if (using_bpf)
*using_bpf = false;
if (filter_prog) {
int r = setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, filter_prog,
sizeof *filter_prog);
if (r >= 0) {
int tv = 1;
r = setsockopt(fd, SOL_SOCKET, SO_LOCK_FILTER, &tv, sizeof tv);
if (r >= 0) {
if (using_bpf)
*using_bpf = true;
} else
log_line("%s: Failed to lock BPF for raw socket: %s",
client_config.interface, strerror(errno));
} else
log_line("%s: Failed to set BPF for raw socket: %s",
client_config.interface, strerror(errno));
}
int opt = 1;
if (setsockopt(fd, SOL_SOCKET, SO_DONTROUTE, &opt, sizeof opt) < 0) {
log_line("create_raw_socket: Failed to set don't route: %s",
strerror(errno));
goto out_fd;
}
if (fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK) < 0) {
log_line("create_raw_socket: Set non-blocking failed: %s",
strerror(errno));
goto out_fd;
}
if (bind(fd, (struct sockaddr *)sa, sizeof *sa) < 0) {
log_line("create_raw_socket: bind failed: %s", strerror(errno));
goto out_fd;
}
return fd;
out_fd:
close(fd);
out:
return -1;
}
static int create_raw_listen_socket(bool *using_bpf)
{
static const struct sock_filter sf_dhcp[] = {
// Verify that the packet has a valid IPv4 version nibble and
// that no IP options are defined.
BPF_STMT(BPF_LD + BPF_B + BPF_ABS, 0),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, 0x45, 1, 0),
BPF_STMT(BPF_RET + BPF_K, 0),
// Verify that the IP header has a protocol number indicating UDP.
BPF_STMT(BPF_LD + BPF_B + BPF_ABS, 9),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, IPPROTO_UDP, 1, 0),
BPF_STMT(BPF_RET + BPF_K, 0),
// Make certain that the packet is not a fragment. All bits in
// the flag and fragment offset field must be set to zero except
// for the Evil and DF bits (0,1).
BPF_STMT(BPF_LD + BPF_H + BPF_ABS, 6),
BPF_JUMP(BPF_JMP + BPF_JSET + BPF_K, 0x3fff, 0, 1),
BPF_STMT(BPF_RET + BPF_K, 0),
// Packet is UDP. Advance X past the IP header.
BPF_STMT(BPF_LDX + BPF_B + BPF_MSH, 0),
// Verify that the UDP client and server ports match that of the
// IANA-assigned DHCP ports.
BPF_STMT(BPF_LD + BPF_W + BPF_IND, 0),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K,
(DHCP_SERVER_PORT << 16) + DHCP_CLIENT_PORT, 1, 0),
BPF_STMT(BPF_RET + BPF_K, 0),
// Get the UDP length field and store it in X.
BPF_STMT(BPF_LD + BPF_H + BPF_IND, 4),
BPF_STMT(BPF_MISC + BPF_TAX, 0),
// Get the IPv4 length field and store it in A and M[0].
BPF_STMT(BPF_LD + BPF_H + BPF_ABS, 2),
BPF_STMT(BPF_ST, 0),
// Verify that UDP length = IP length - IP header size
BPF_STMT(BPF_ALU + BPF_SUB + BPF_K, 20),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_X, 0, 1, 0),
BPF_STMT(BPF_RET + BPF_K, 0),
// Pass the number of octets that are specified in the IPv4 header.
BPF_STMT(BPF_LD + BPF_MEM, 0),
BPF_STMT(BPF_RET + BPF_A, 0),
};
static const struct sock_fprog sfp_dhcp = {
.len = sizeof sf_dhcp / sizeof sf_dhcp[0],
.filter = (struct sock_filter const * const)sf_dhcp,
};
struct sockaddr_ll sa = {
.sll_family = AF_PACKET,
.sll_protocol = htons(ETH_P_IP),
.sll_ifindex = client_config.ifindex,
};
return create_raw_socket(&sa, using_bpf, &sfp_dhcp);
}
static int create_raw_broadcast_socket(void)
{
struct sockaddr_ll da = {
.sll_family = AF_PACKET,
.sll_protocol = htons(ETH_P_IP),
.sll_pkttype = PACKET_BROADCAST,
.sll_ifindex = client_config.ifindex,
.sll_halen = 6,
};
memcpy(da.sll_addr, "\xff\xff\xff\xff\xff\xff", 6);
return create_raw_socket(&da, (bool *)0, (struct sock_fprog *)0);
}
static bool arp_set_bpf_basic(int fd)
{
static const struct sock_filter sf_arp[] = {
// Verify that the frame has ethernet protocol type of ARP
// and that the ARP hardware type field indicates Ethernet.
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, 12),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, (ETH_P_ARP << 16) | ARPHRD_ETHER,
1, 0),
BPF_STMT(BPF_RET + BPF_K, 0),
// Verify that the ARP protocol type field indicates IP, the ARP
// hardware address length field is 6, and the ARP protocol address
// length field is 4.
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, 16),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, (ETH_P_IP << 16) | 0x0604, 1, 0),
BPF_STMT(BPF_RET + BPF_K, 0),
// Sanity tests passed, so send all possible data.
BPF_STMT(BPF_RET + BPF_K, 0x7fffffff),
};
static const struct sock_fprog sfp_arp = {
.len = sizeof sf_arp / sizeof sf_arp[0],
.filter = (struct sock_filter const * const)sf_arp,
};
int ret = setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, &sfp_arp,
sizeof sfp_arp) != -1;
if (ret >= 0) {
int tv = 1;
ret = setsockopt(fd, SOL_SOCKET, SO_LOCK_FILTER, &tv, sizeof tv);
// Return true IIF we ATTACHed and LOCKed the filter. If
// we attached but failed to lock, then we still want the manual
// checks to run just in case an attacker tries to DETACH the
// filter.
if (ret < 0)
log_line("%s: Failed to lock BPF for basic ARP socket: %s",
client_config.interface, strerror(errno));
return ret >= 0;
} else
log_line("%s: Failed to set BPF for basic ARP socket: %s",
client_config.interface, strerror(errno));
return false;
}
static bool arp_set_bpf_defense(int fd, uint32_t client_addr,
uint8_t client_mac[6])
{
uint32_t mac4b;
uint16_t mac2b;
memcpy(&mac4b, client_mac, 4);
memcpy(&mac2b, client_mac + 4, 2);
struct sock_filter sf_arp[] = {
// Verify that the frame has ethernet protocol type of ARP
// and that the ARP hardware type field indicates Ethernet.
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, 12),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, (ETH_P_ARP << 16) | ARPHRD_ETHER,
1, 0),
BPF_STMT(BPF_RET + BPF_K, 0),
// Verify that the ARP protocol type field indicates IP, the ARP
// hardware address length field is 6, and the ARP protocol address
// length field is 4.
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, 16),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, (ETH_P_IP << 16) | 0x0604, 1, 0),
BPF_STMT(BPF_RET + BPF_K, 0),
// If the ARP packet source IP does not match our IP address, then
// it can be ignored.
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, 28),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, client_addr, 1, 0),
BPF_STMT(BPF_RET + BPF_K, 0),
// If the first four bytes of the ARP packet source hardware address
// does not equal our hardware address, then it's a conflict and should
// be passed along.
BPF_STMT(BPF_LD + BPF_W + BPF_ABS, 22),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, mac4b, 1, 0),
BPF_STMT(BPF_RET + BPF_K, 0x7fffffff),
// If the last two bytes of the ARP packet source hardware address
// do not equal our hardware address, then it's a conflict and should
// be passed along.
BPF_STMT(BPF_LD + BPF_H + BPF_ABS, 26),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, mac2b, 1, 0),
BPF_STMT(BPF_RET + BPF_K, 0x7fffffff),
// Packet announces our IP address and hardware address, so it requires
// no action.
BPF_STMT(BPF_RET + BPF_K, 0),
};
struct sock_fprog sfp_arp = {
.len = sizeof sf_arp / sizeof sf_arp[0],
.filter = (struct sock_filter *)sf_arp,
};
int ret = setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, &sfp_arp,
sizeof sfp_arp) != -1;
if (ret >= 0) {
int tv = 1;
ret = setsockopt(fd, SOL_SOCKET, SO_LOCK_FILTER, &tv, sizeof tv);
// Return true IIF we ATTACHed and LOCKed the filter. If
// we attached but failed to lock, then we still want the manual
// checks to run just in case an attacker tries to DETACH the
// filter.
if (ret < 0)
log_line("%s: Failed to lock BPF for defense ARP socket: %s",
client_config.interface, strerror(errno));
return ret >= 0;
} else
log_line("%s: Failed to set BPF for defense ARP socket: %s",
client_config.interface, strerror(errno));
return false;
}
static int create_arp_defense_socket(uint32_t client_addr,
uint8_t client_mac[6], bool *using_bpf)
{
assert(using_bpf);
int fd = create_arp_socket();
*using_bpf = arp_set_bpf_defense(fd, client_addr, client_mac);
return fd;
}
static int create_arp_basic_socket(bool *using_bpf)
{
assert(using_bpf);
int fd = create_arp_socket();
*using_bpf = arp_set_bpf_basic(fd);
return fd;
}
static void xfer_fd(int fd, char cmd)
{
char control[sizeof(struct cmsghdr) + 10];
struct iovec iov = {
.iov_base = &cmd,
.iov_len = 1,
};
struct msghdr msg = {
.msg_iov = &iov,
.msg_iovlen = 1,
.msg_control = control,
.msg_controllen = sizeof control,
};
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof fd);
int *cmsg_fd = (int *)CMSG_DATA(cmsg);
*cmsg_fd = fd;
msg.msg_controllen = cmsg->cmsg_len;
retry:
if (sendmsg(sockdSock[1], &msg, 0) < 0) {
if (errno == EINTR)
goto retry;
suicide("%s: (%s) sendmsg failed: %s", client_config.interface,
__func__, strerror(errno));
}
close(fd);
}
static size_t execute_sockd(char *buf, size_t buflen)
{
if (!buflen)
return 0;
char c = buf[0];
switch (c) {
case 'L': {
bool using_bpf;
int fd = create_raw_listen_socket(&using_bpf);
xfer_fd(fd, using_bpf ? 'L' : 'l');
return 1;
}
case 'a': {
bool using_bpf;
int fd = create_arp_basic_socket(&using_bpf);
xfer_fd(fd, using_bpf ? 'A' : 'a'); return 1;
}
case 'd': {
uint32_t client_addr;
uint8_t client_mac[6];
bool using_bpf;
if (buflen < 1 + sizeof client_addr + 6)
suicide("%s: (%s) 'd' does not have necessary arguments: %zu",
client_config.interface, __func__, buflen);
memcpy(&client_addr, buf + 1, sizeof client_addr);
memcpy(client_mac, buf + 1 + sizeof client_addr, 6);
int fd = create_arp_defense_socket(client_addr, client_mac,
&using_bpf);
xfer_fd(fd, using_bpf ? 'D' : 'd');
return 11;
}
case 's': xfer_fd(create_raw_broadcast_socket(), 's'); return 1;
case 'u': {
uint32_t client_addr;
if (buflen < 1 + sizeof client_addr)
suicide("%s: (%s) 'u' does not have necessary arguments: %zu",
client_config.interface, __func__, buflen);
memcpy(&client_addr, buf + 1, sizeof client_addr);
xfer_fd(create_udp_socket(client_addr, DHCP_CLIENT_PORT,
client_config.interface), 'u');
return 5;
}
default: suicide("%s: (%s) received invalid commands: '%c'",
client_config.interface, __func__, c);
}
}
static void process_client_socket(void)
{
static char buf[MAX_BUF];
static size_t buflen;
if (buflen == MAX_BUF)
suicide("%s: (%s) receive buffer exhausted", client_config.interface,
__func__);
int r = safe_recv(sockdSock[1], buf + buflen, sizeof buf - buflen,
MSG_DONTWAIT);
if (r == 0) {
// Remote end hung up.
exit(EXIT_SUCCESS);
} else if (r < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK)
return;
suicide("%s: (%s) error reading from ndhc -> sockd socket: %s",
client_config.interface, __func__, strerror(errno));
}
buflen += (size_t)r;
buflen -= execute_sockd(buf, buflen);
}
static void do_sockd_work(void)
{
struct pollfd pfds[2] = {0};
pfds[0].fd = sockdSock[1];
pfds[0].events = POLLIN|POLLHUP|POLLERR|POLLRDHUP;
pfds[1].fd = sockdStream[1];
pfds[1].events = POLLHUP|POLLERR|POLLRDHUP;
for (;;) {
if (poll(pfds, 2, -1) < 0) {
if (errno != EINTR) suicide("poll failed");
}
if (pfds[0].revents & POLLIN) {
process_client_socket();
}
if (pfds[0].revents & (POLLHUP|POLLERR|POLLRDHUP)) {
suicide("sockdSock closed unexpectedly");
}
if (pfds[1].revents & (POLLHUP|POLLERR|POLLRDHUP)) {
exit(EXIT_SUCCESS);
}
}
}
void sockd_main(void)
{
prctl(PR_SET_NAME, "ndhc: sockd");
umask(077);
setup_signals_subprocess();
nk_set_chroot(chroot_dir);
memset(chroot_dir, 0, sizeof chroot_dir);
unsigned char keepcaps[] = { CAP_NET_BIND_SERVICE, CAP_NET_BROADCAST,
CAP_NET_RAW };
nk_set_uidgid(sockd_uid, sockd_gid, keepcaps, sizeof keepcaps);
do_sockd_work();
}