Add support for `include /etc/syslog.d/*.conf` in /etc/syslog.conf

- Massive refactor of the .conf file parsing
- Add queue.h v1.43 from OpenBSD, has _SAFE versions unlike GLIBC queue.h
- Use queue.h list macros instead of homegrown linked list
- Adopt NetBSD reconf style; on failure to reload keep old config

Signed-off-by: Joachim Nilsson <troglobit@gmail.com>
This commit is contained in:
Joachim Nilsson 2019-11-02 11:44:11 +01:00
parent ddaa0a1a82
commit 917ef4ed1d
4 changed files with 750 additions and 144 deletions

View File

@ -24,7 +24,7 @@ lib_LTLIBRARIES = libsyslog.la
AM_CFLAGS = -W -Wall -Wextra
AM_CFLAGS += -Wno-unused-result -Wno-unused-parameter -fno-strict-aliasing
syslogd_SOURCES = syslogd.c syslog.h pidfile.c pidfile.h
syslogd_SOURCES = syslogd.c syslog.h pidfile.c pidfile.h queue.h
syslogd_CPPFLAGS = -D_XOPEN_SOURCE=600 -D_BSD_SOURCE -D_DEFAULT_SOURCE
syslogd_LDADD = $(LIBS) $(LIBOBJS)

542
src/queue.h Normal file
View File

@ -0,0 +1,542 @@
/* $OpenBSD: queue.h,v 1.43 2015/12/28 19:38:40 millert Exp $ */
/* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)queue.h 8.5 (Berkeley) 8/20/94
*/
#ifdef __cplusplus
extern "C"
{
#endif
#ifndef _SYS_QUEUE_H_
#define _SYS_QUEUE_H_
/*
* This file defines five types of data structures: singly-linked lists,
* lists, simple queues, tail queues and XOR simple queues.
*
*
* A singly-linked list is headed by a single forward pointer. The elements
* are singly linked for minimum space and pointer manipulation overhead at
* the expense of O(n) removal for arbitrary elements. New elements can be
* added to the list after an existing element or at the head of the list.
* Elements being removed from the head of the list should use the explicit
* macro for this purpose for optimum efficiency. A singly-linked list may
* only be traversed in the forward direction. Singly-linked lists are ideal
* for applications with large datasets and few or no removals or for
* implementing a LIFO queue.
*
* A list is headed by a single forward pointer (or an array of forward
* pointers for a hash table header). The elements are doubly linked
* so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before
* or after an existing element or at the head of the list. A list
* may only be traversed in the forward direction.
*
* A simple queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are singly
* linked to save space, so elements can only be removed from the
* head of the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the
* list. A simple queue may only be traversed in the forward direction.
*
* A tail queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or
* after an existing element, at the head of the list, or at the end of
* the list. A tail queue may be traversed in either direction.
*
* An XOR simple queue is used in the same way as a regular simple queue.
* The difference is that the head structure also includes a "cookie" that
* is XOR'd with the queue pointer (first, last or next) to generate the
* real pointer value.
*
* For details on the use of these macros, see the queue(3) manual page.
*/
#if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
#define _Q_INVALIDATE(a) (a) = ((void *)-1)
#else
#define _Q_INVALIDATE(a)
#endif
/*
* Singly-linked List definitions.
*/
#define SLIST_HEAD(name, type) \
struct name { \
struct type *slh_first; /* first element */ \
}
#define SLIST_HEAD_INITIALIZER(head) \
{ NULL }
#define SLIST_ENTRY(type) \
struct { \
struct type *sle_next; /* next element */ \
}
/*
* Singly-linked List access methods.
*/
#define SLIST_FIRST(head) ((head)->slh_first)
#define SLIST_END(head) NULL
#define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
#define SLIST_FOREACH(var, head, field) \
for((var) = SLIST_FIRST(head); \
(var) != SLIST_END(head); \
(var) = SLIST_NEXT(var, field))
#define SLIST_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = SLIST_FIRST(head); \
(var) && ((tvar) = SLIST_NEXT(var, field), 1); \
(var) = (tvar))
/*
* Singly-linked List functions.
*/
#define SLIST_INIT(head) { \
SLIST_FIRST(head) = SLIST_END(head); \
}
#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
(elm)->field.sle_next = (slistelm)->field.sle_next; \
(slistelm)->field.sle_next = (elm); \
} while (0)
#define SLIST_INSERT_HEAD(head, elm, field) do { \
(elm)->field.sle_next = (head)->slh_first; \
(head)->slh_first = (elm); \
} while (0)
#define SLIST_REMOVE_AFTER(elm, field) do { \
(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
} while (0)
#define SLIST_REMOVE_HEAD(head, field) do { \
(head)->slh_first = (head)->slh_first->field.sle_next; \
} while (0)
#define SLIST_REMOVE(head, elm, type, field) do { \
if ((head)->slh_first == (elm)) { \
SLIST_REMOVE_HEAD((head), field); \
} else { \
struct type *curelm = (head)->slh_first; \
\
while (curelm->field.sle_next != (elm)) \
curelm = curelm->field.sle_next; \
curelm->field.sle_next = \
curelm->field.sle_next->field.sle_next; \
} \
_Q_INVALIDATE((elm)->field.sle_next); \
} while (0)
/*
* List definitions.
*/
#define LIST_HEAD(name, type) \
struct name { \
struct type *lh_first; /* first element */ \
}
#define LIST_HEAD_INITIALIZER(head) \
{ NULL }
#define LIST_ENTRY(type) \
struct { \
struct type *le_next; /* next element */ \
struct type **le_prev; /* address of previous next element */ \
}
/*
* List access methods.
*/
#define LIST_FIRST(head) ((head)->lh_first)
#define LIST_END(head) NULL
#define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
#define LIST_NEXT(elm, field) ((elm)->field.le_next)
#define LIST_FOREACH(var, head, field) \
for((var) = LIST_FIRST(head); \
(var)!= LIST_END(head); \
(var) = LIST_NEXT(var, field))
#define LIST_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = LIST_FIRST(head); \
(var) && ((tvar) = LIST_NEXT(var, field), 1); \
(var) = (tvar))
/*
* List functions.
*/
#define LIST_INIT(head) do { \
LIST_FIRST(head) = LIST_END(head); \
} while (0)
#define LIST_INSERT_AFTER(listelm, elm, field) do { \
if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
(listelm)->field.le_next->field.le_prev = \
&(elm)->field.le_next; \
(listelm)->field.le_next = (elm); \
(elm)->field.le_prev = &(listelm)->field.le_next; \
} while (0)
#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
(elm)->field.le_prev = (listelm)->field.le_prev; \
(elm)->field.le_next = (listelm); \
*(listelm)->field.le_prev = (elm); \
(listelm)->field.le_prev = &(elm)->field.le_next; \
} while (0)
#define LIST_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.le_next = (head)->lh_first) != NULL) \
(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
(head)->lh_first = (elm); \
(elm)->field.le_prev = &(head)->lh_first; \
} while (0)
#define LIST_REMOVE(elm, field) do { \
if ((elm)->field.le_next != NULL) \
(elm)->field.le_next->field.le_prev = \
(elm)->field.le_prev; \
*(elm)->field.le_prev = (elm)->field.le_next; \
_Q_INVALIDATE((elm)->field.le_prev); \
_Q_INVALIDATE((elm)->field.le_next); \
} while (0)
#define LIST_REPLACE(elm, elm2, field) do { \
if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
(elm2)->field.le_next->field.le_prev = \
&(elm2)->field.le_next; \
(elm2)->field.le_prev = (elm)->field.le_prev; \
*(elm2)->field.le_prev = (elm2); \
_Q_INVALIDATE((elm)->field.le_prev); \
_Q_INVALIDATE((elm)->field.le_next); \
} while (0)
/*
* Simple queue definitions.
*/
#define SIMPLEQ_HEAD(name, type) \
struct name { \
struct type *sqh_first; /* first element */ \
struct type **sqh_last; /* addr of last next element */ \
}
#define SIMPLEQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).sqh_first }
#define SIMPLEQ_ENTRY(type) \
struct { \
struct type *sqe_next; /* next element */ \
}
/*
* Simple queue access methods.
*/
#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
#define SIMPLEQ_END(head) NULL
#define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
#define SIMPLEQ_FOREACH(var, head, field) \
for((var) = SIMPLEQ_FIRST(head); \
(var) != SIMPLEQ_END(head); \
(var) = SIMPLEQ_NEXT(var, field))
#define SIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = SIMPLEQ_FIRST(head); \
(var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1); \
(var) = (tvar))
/*
* Simple queue functions.
*/
#define SIMPLEQ_INIT(head) do { \
(head)->sqh_first = NULL; \
(head)->sqh_last = &(head)->sqh_first; \
} while (0)
#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
(head)->sqh_last = &(elm)->field.sqe_next; \
(head)->sqh_first = (elm); \
} while (0)
#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.sqe_next = NULL; \
*(head)->sqh_last = (elm); \
(head)->sqh_last = &(elm)->field.sqe_next; \
} while (0)
#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
(head)->sqh_last = &(elm)->field.sqe_next; \
(listelm)->field.sqe_next = (elm); \
} while (0)
#define SIMPLEQ_REMOVE_HEAD(head, field) do { \
if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
(head)->sqh_last = &(head)->sqh_first; \
} while (0)
#define SIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
== NULL) \
(head)->sqh_last = &(elm)->field.sqe_next; \
} while (0)
#define SIMPLEQ_CONCAT(head1, head2) do { \
if (!SIMPLEQ_EMPTY((head2))) { \
*(head1)->sqh_last = (head2)->sqh_first; \
(head1)->sqh_last = (head2)->sqh_last; \
SIMPLEQ_INIT((head2)); \
} \
} while (0)
/*
* XOR Simple queue definitions.
*/
#define XSIMPLEQ_HEAD(name, type) \
struct name { \
struct type *sqx_first; /* first element */ \
struct type **sqx_last; /* addr of last next element */ \
unsigned long sqx_cookie; \
}
#define XSIMPLEQ_ENTRY(type) \
struct { \
struct type *sqx_next; /* next element */ \
}
/*
* XOR Simple queue access methods.
*/
#define XSIMPLEQ_XOR(head, ptr) ((__typeof(ptr))((head)->sqx_cookie ^ \
(unsigned long)(ptr)))
#define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first))
#define XSIMPLEQ_END(head) NULL
#define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
#define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
#define XSIMPLEQ_FOREACH(var, head, field) \
for ((var) = XSIMPLEQ_FIRST(head); \
(var) != XSIMPLEQ_END(head); \
(var) = XSIMPLEQ_NEXT(head, var, field))
#define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = XSIMPLEQ_FIRST(head); \
(var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \
(var) = (tvar))
/*
* XOR Simple queue functions.
*/
#define XSIMPLEQ_INIT(head) do { \
arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \
(head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \
(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
} while (0)
#define XSIMPLEQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.sqx_next = (head)->sqx_first) == \
XSIMPLEQ_XOR(head, NULL)) \
(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
(head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \
} while (0)
#define XSIMPLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \
*(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \
(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
} while (0)
#define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.sqx_next = (listelm)->field.sqx_next) == \
XSIMPLEQ_XOR(head, NULL)) \
(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
(listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \
} while (0)
#define XSIMPLEQ_REMOVE_HEAD(head, field) do { \
if (((head)->sqx_first = XSIMPLEQ_XOR(head, \
(head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \
(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
} while (0)
#define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head, \
(elm)->field.sqx_next)->field.sqx_next) \
== XSIMPLEQ_XOR(head, NULL)) \
(head)->sqx_last = \
XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
} while (0)
/*
* Tail queue definitions.
*/
#define TAILQ_HEAD(name, type) \
struct name { \
struct type *tqh_first; /* first element */ \
struct type **tqh_last; /* addr of last next element */ \
}
#define TAILQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).tqh_first }
#define TAILQ_ENTRY(type) \
struct { \
struct type *tqe_next; /* next element */ \
struct type **tqe_prev; /* address of previous next element */ \
}
/*
* Tail queue access methods.
*/
#define TAILQ_FIRST(head) ((head)->tqh_first)
#define TAILQ_END(head) NULL
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
#define TAILQ_LAST(head, headname) \
(*(((struct headname *)((head)->tqh_last))->tqh_last))
/* XXX */
#define TAILQ_PREV(elm, headname, field) \
(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
#define TAILQ_EMPTY(head) \
(TAILQ_FIRST(head) == TAILQ_END(head))
#define TAILQ_FOREACH(var, head, field) \
for((var) = TAILQ_FIRST(head); \
(var) != TAILQ_END(head); \
(var) = TAILQ_NEXT(var, field))
#define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = TAILQ_FIRST(head); \
(var) != TAILQ_END(head) && \
((tvar) = TAILQ_NEXT(var, field), 1); \
(var) = (tvar))
#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
for((var) = TAILQ_LAST(head, headname); \
(var) != TAILQ_END(head); \
(var) = TAILQ_PREV(var, headname, field))
#define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
for ((var) = TAILQ_LAST(head, headname); \
(var) != TAILQ_END(head) && \
((tvar) = TAILQ_PREV(var, headname, field), 1); \
(var) = (tvar))
/*
* Tail queue functions.
*/
#define TAILQ_INIT(head) do { \
(head)->tqh_first = NULL; \
(head)->tqh_last = &(head)->tqh_first; \
} while (0)
#define TAILQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
(head)->tqh_first->field.tqe_prev = \
&(elm)->field.tqe_next; \
else \
(head)->tqh_last = &(elm)->field.tqe_next; \
(head)->tqh_first = (elm); \
(elm)->field.tqe_prev = &(head)->tqh_first; \
} while (0)
#define TAILQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.tqe_next = NULL; \
(elm)->field.tqe_prev = (head)->tqh_last; \
*(head)->tqh_last = (elm); \
(head)->tqh_last = &(elm)->field.tqe_next; \
} while (0)
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
(elm)->field.tqe_next->field.tqe_prev = \
&(elm)->field.tqe_next; \
else \
(head)->tqh_last = &(elm)->field.tqe_next; \
(listelm)->field.tqe_next = (elm); \
(elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
} while (0)
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
(elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
(elm)->field.tqe_next = (listelm); \
*(listelm)->field.tqe_prev = (elm); \
(listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
} while (0)
#define TAILQ_REMOVE(head, elm, field) do { \
if (((elm)->field.tqe_next) != NULL) \
(elm)->field.tqe_next->field.tqe_prev = \
(elm)->field.tqe_prev; \
else \
(head)->tqh_last = (elm)->field.tqe_prev; \
*(elm)->field.tqe_prev = (elm)->field.tqe_next; \
_Q_INVALIDATE((elm)->field.tqe_prev); \
_Q_INVALIDATE((elm)->field.tqe_next); \
} while (0)
#define TAILQ_REPLACE(head, elm, elm2, field) do { \
if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
(elm2)->field.tqe_next->field.tqe_prev = \
&(elm2)->field.tqe_next; \
else \
(head)->tqh_last = &(elm2)->field.tqe_next; \
(elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
*(elm2)->field.tqe_prev = (elm2); \
_Q_INVALIDATE((elm)->field.tqe_prev); \
_Q_INVALIDATE((elm)->field.tqe_next); \
} while (0)
#define TAILQ_CONCAT(head1, head2, field) do { \
if (!TAILQ_EMPTY(head2)) { \
*(head1)->tqh_last = (head2)->tqh_first; \
(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
(head1)->tqh_last = (head2)->tqh_last; \
TAILQ_INIT((head2)); \
} \
} while (0)
#endif /* !_SYS_QUEUE_H_ */
#ifdef __cplusplus
}
#endif

View File

@ -62,6 +62,7 @@ static char sccsid[] __attribute__((unused)) =
#include <assert.h>
#include <ctype.h>
#include <getopt.h>
#include <glob.h>
#include <setjmp.h>
#include <stdarg.h>
#include <stdio.h>
@ -156,7 +157,6 @@ char ctty[] = _PATH_CONSOLE;
char **parts;
static int debugging_on = 0;
static int nlogs = -1;
static int restart = 0;
#define MAXFUNIX 20
@ -214,7 +214,7 @@ char *TypeNames[] = {
"FORW(UNKNOWN)", "PIPE"
};
struct filed *Files = NULL;
static SIMPLEQ_HEAD(files, filed) fhead = SIMPLEQ_HEAD_INITIALIZER(fhead);
struct filed consfile;
struct code {
@ -317,7 +317,7 @@ void die(int sig);
void doexit(int sig);
void init();
static int strtobytes(char *arg);
void cfline(char *line, struct filed *f);
static int cfparse(FILE *fp, struct files *newf);
int decode(char *name, struct code *codetab);
static void logit(char *, ...);
void sighup_handler(int);
@ -1448,7 +1448,7 @@ static void logmsg(struct buf_msg *buffer)
buffer->msgid == NULL ? "-" : buffer->msgid,
buffer->sd == NULL ? "-" : buffer->sd, buffer->msg);
for (f = Files; f; f = f->f_next) {
SIMPLEQ_FOREACH(f, &fhead, f_link) {
/* skip messages that are incorrect priority */
if ((f->f_pmask[fac] == TABLE_NOPRI) ||
((f->f_pmask[fac] & (1 << prilev)) == 0))
@ -2162,7 +2162,7 @@ void domark(int signo)
}
}
for (f = Files; f; f = f->f_next) {
SIMPLEQ_FOREACH(f, &fhead, f_link) {
if (f->f_prevcount && now >= REPEATTIME(f)) {
logit("flush %s: repeated %d times, %d sec.\n",
TypeNames[f->f_type], f->f_prevcount,
@ -2202,17 +2202,15 @@ void logerror(const char *type)
void die(int signo)
{
struct filed *f;
int lognum;
int i;
struct filed *f, *next;
int was_initialized = Initialized;
int i;
Initialized = 0; /* Don't log SIGCHLDs in case we
receive one during exiting */
for (lognum = 0; lognum <= nlogs; lognum++) {
f = &Files[lognum];
/* flush any pending output */
/* flush any pending output */
SIMPLEQ_FOREACH(f, &fhead, f_link) {
if (f->f_prevcount)
fprintlog(f, NULL);
}
@ -2223,10 +2221,34 @@ void die(int signo)
flog(LOG_SYSLOG | LOG_INFO, "exiting on signal %d", signo);
}
/*
* Close all open log files.
*/
SIMPLEQ_FOREACH_SAFE(f, &fhead, f_link, next) {
switch (f->f_type) {
case F_FILE:
case F_TTY:
case F_CONSOLE:
case F_PIPE:
if (f->f_file >= 0)
(void)close(f->f_file);
break;
case F_FORW:
if (f->f_un.f_forw.f_addr)
freeaddrinfo(f->f_un.f_forw.f_addr);
break;
}
free(f);
}
/* Close the UNIX sockets. */
for (i = 0; i < nfunix; i++)
for (i = 0; i < nfunix; i++) {
if (funix[i] != -1)
close(funix[i]);
}
/* Close the inet sockets. */
if (InetInuse && finet) {
for (i = 0; i < *finet; i++)
@ -2235,9 +2257,10 @@ void die(int signo)
}
/* Clean-up files. */
for (i = 0; i < nfunix; i++)
for (i = 0; i < nfunix; i++) {
if (funixn[i] && funix[i] != -1)
(void)unlink(funixn[i]);
}
(void)remove_pid(PidFile);
exit(0);
@ -2259,7 +2282,7 @@ static int cffwd(void)
struct filed *f;
int fwd = 0;
for (f = Files; f; f = f->f_next) {
SIMPLEQ_FOREACH(f, &fhead, f_link) {
if (f->f_type == F_FORW ||
f->f_type == F_FORW_SUSP ||
f->f_type == F_FORW_UNKN)
@ -2269,93 +2292,20 @@ static int cffwd(void)
return fwd;
}
/*
* Read /etc/syslog.conf and any *.conf in /etc/syslog.d/
*/
static int cfparse(char *fn)
/* Create fallback .conf with err+panic sent to console */
static FILE *cftemp(void)
{
struct filed **nextp = NULL;
struct filed *f;
FILE *fp;
char cbuf[BUFSIZ];
char *cline;
char *p;
fp = fopen(fn, "r");
if (!fp) {
logit("Cannot open %s: %s\n", fn, strerror(errno));
fp = tmpfile();
if (!fp)
return NULL;
/* Create fallback .conf with err+panic sent to console */
Files = f = calloc(1, sizeof(*f));
if (!f) {
logerror("Cannot allocate memory for log target/file");
return 1;
}
cfline("*.err\t" _PATH_CONSOLE, f);
fprintf(fp, "*.err\t%s\n", _PATH_CONSOLE);
fprintf(fp, "*.panic\t*\n");
f->f_next = calloc(1, sizeof(*f)); /* ASP */
if (!f->f_next) {
logerror("Cannot allocate memory for log target/file");
return 1;
}
f = f->f_next;
cfline("*.panic\t*", f);
Initialized = 1;
return 0;
}
/*
* Foreach line in the conf table, open that file.
*/
cline = cbuf;
while (fgets(cline, sizeof(cbuf) - (cline - cbuf), fp) != NULL) {
/*
* check for end-of-section, comments, strip off trailing
* spaces and newline character.
*/
for (p = cline; isspace(*p); ++p)
;
if (*p == '\0' || *p == '#')
continue;
memmove(cline, p, strlen(p) + 1);
for (p = strchr(cline, '\0'); isspace(*--p);)
;
if (*p == '\\') {
if ((p - cbuf) > BUFSIZ - 30) {
/* Oops the buffer is full - what now? */
cline = cbuf;
} else {
*p = 0;
cline = p;
continue;
}
} else
cline = cbuf;
*++p = '\0';
f = (struct filed *)calloc(1, sizeof(*f));
if (!f) {
logerror("Cannot allocate memory for log file");
return 1;
}
if (!nextp)
Files = f;
else
*nextp = f;
nextp = &f->f_next;
cfline(cbuf, f);
}
/* close the configuration file */
(void)fclose(fp);
return 0;
rewind(fp);
return fp;
}
/*
@ -2364,50 +2314,38 @@ static int cfparse(char *fn)
void init(void)
{
struct hostent *hent;
struct filed *f;
struct files newf = SIMPLEQ_HEAD_INITIALIZER(newf);
struct filed *f, *next;
FILE *fp;
char *p;
int i, lognum;
int i;
/*
* Close all open log files and free log descriptor array.
*/
logit("Called init.\n");
Initialized = 0;
if (nlogs > -1) {
logit("Initializing log structures.\n");
for (lognum = 0; lognum <= nlogs; lognum++) {
f = &Files[lognum];
logit("Initializing log structures.\n");
SIMPLEQ_FOREACH(f, &fhead, f_link) {
/* flush any pending output */
if (f->f_prevcount)
fprintlog(f, NULL);
/* flush any pending output */
if (f->f_prevcount)
fprintlog(f, NULL);
switch (f->f_type) {
case F_FILE:
case F_PIPE:
case F_TTY:
case F_CONSOLE:
(void)close(f->f_file);
break;
case F_FORW:
case F_FORW_SUSP:
freeaddrinfo(f->f_un.f_forw.f_addr);
break;
}
switch (f->f_type) {
case F_FILE:
case F_PIPE:
case F_TTY:
case F_CONSOLE:
(void)close(f->f_file);
break;
case F_FORW:
case F_FORW_SUSP:
freeaddrinfo(f->f_un.f_forw.f_addr);
break;
}
/*
* This is needed especially when HUPing syslogd as the
* structure would grow infinitively. -Joey
*/
nlogs = -1;
free((void *)Files);
Files = NULL;
}
f = NULL;
/* Get hostname */
(void)gethostname(LocalHostName, sizeof(LocalHostName));
LocalDomain = emptystring;
@ -2447,8 +2385,45 @@ void init(void)
/*
* Read configuration file(s)
*/
if (cfparse(ConfFile))
fp = fopen(ConfFile, "r");
if (!fp) {
logit("Cannot open %s: %s\n", ConfFile, strerror(errno));
fp = cftemp();
if (!fp) {
logit("Cannot even create a tempfile: %s", strerror(errno));
return;
}
}
if (cfparse(fp, &newf)) {
fclose(fp);
return;
}
fclose(fp);
/*
* Close all open log files.
*/
SIMPLEQ_FOREACH_SAFE(f, &fhead, f_link, next) {
switch (f->f_type) {
case F_FILE:
case F_TTY:
case F_CONSOLE:
case F_PIPE:
if (f->f_file >= 0)
(void)close(f->f_file);
break;
case F_FORW:
if (f->f_un.f_forw.f_addr)
freeaddrinfo(f->f_un.f_forw.f_addr);
break;
}
free(f);
}
fhead = newf;
for (i = 0; i < nfunix; i++) {
if (funix[i] != -1)
@ -2482,7 +2457,7 @@ void init(void)
Initialized = 1;
if (Debug) {
for (f = Files; f; f = f->f_next) {
SIMPLEQ_FOREACH(f, &fhead, f_link) {
if (f->f_type != F_UNUSED) {
for (i = 0; i <= LOG_NFACILITIES; i++)
if (f->f_pmask[i] == TABLE_NOPRI)
@ -2528,9 +2503,10 @@ void init(void)
/*
* Crack a configuration file line
*/
void cfline(char *line, struct filed *f)
static struct filed *cfline(char *line)
{
struct addrinfo hints, *ai;
struct filed *f;
char buf[MAXLINE];
char xbuf[MAXLINE + 24];
char *p, *q, *bp;
@ -2540,15 +2516,14 @@ void cfline(char *line, struct filed *f)
logit("cfline(%s)\n", line);
errno = 0; /* keep strerror() stuff out of logerror messages */
/* clear out file entry */
memset((char *)f, 0, sizeof(*f));
for (i = 0; i <= LOG_NFACILITIES; i++) {
f->f_pmask[i] = TABLE_NOPRI;
f->f_flags = 0;
f = calloc(1, sizeof(*f));
if (!f) {
logerror("Cannot allocate memory for log file");
return NULL;
}
errno = 0; /* keep strerror() stuff out of logerror messages */
/* default rotate from command line */
f->f_rotatecount = RotateCnt;
f->f_rotatesz = RotateSz;
@ -2589,7 +2564,9 @@ void cfline(char *line, struct filed *f)
if (pri < 0) {
(void)snprintf(xbuf, sizeof(xbuf), "unknown priority name \"%s\"", buf);
logerror(xbuf);
return;
free(f);
return NULL;
}
/* scan facilities */
@ -2628,10 +2605,11 @@ void cfline(char *line, struct filed *f)
} else {
i = decode(buf, FacNames);
if (i < 0) {
(void)snprintf(xbuf, sizeof(xbuf), "unknown facility name \"%s\"", buf);
logerror(xbuf);
return;
free(f);
return NULL;
}
if (pri == INTERNAL_NOPRI) {
@ -2787,6 +2765,92 @@ void cfline(char *line, struct filed *f)
f->f_type = F_USERS;
break;
}
return f;
}
/*
* Parse .conf file and append to list
*/
static int cfparse(FILE *fp, struct files *newf)
{
struct filed *f;
char cbuf[BUFSIZ];
char *cline;
char *p;
if (!fp)
return 1;
/*
* Foreach line in the conf table, open that file.
*/
cline = cbuf;
while (fgets(cline, sizeof(cbuf) - (cline - cbuf), fp) != NULL) {
/*
* check for end-of-section, comments, strip off trailing
* spaces and newline character.
*/
for (p = cline; isspace(*p); ++p)
;
if (*p == '\0' || *p == '#')
continue;
memmove(cline, p, strlen(p) + 1);
for (p = strchr(cline, '\0'); isspace(*--p);)
;
if (*p == '\\') {
if ((p - cbuf) > BUFSIZ - 30) {
/* Oops the buffer is full - what now? */
cline = cbuf;
} else {
*p = 0;
cline = p;
continue;
}
} else
cline = cbuf;
*++p = '\0';
if (!strncmp(cbuf, "include", 7)) {
glob_t gl;
p = &cbuf[7];
while (*p && isspace(*p))
p++;
logit("Searching for %s ...\n", p);
if (glob(p, GLOB_NOSORT, NULL, &gl))
logit("No files match %s\n", p);
for (size_t i = 0; i < gl.gl_pathc; i++) {
FILE *fpi;
logit("Opening %s ...\n", gl.gl_pathv[i]);
fpi = fopen(gl.gl_pathv[i], "r");
if (!fpi) {
logit("Failed opening %s: %s\n",
gl.gl_pathv[i], strerror(errno));
continue;
}
logit("Parsing %s ...", gl.gl_pathv[i]);
cfparse(fpi, newf);
fclose(fpi);
}
continue;
}
f = cfline(cbuf);
if (!f)
continue;
SIMPLEQ_INSERT_TAIL(newf, f, f_link);
}
return 0;
}
/*

View File

@ -32,6 +32,7 @@
#ifndef SYSKLOGD_SYSLOGD_H_
#define SYSKLOGD_SYSLOGD_H_
#include "queue.h"
#include "syslog.h"
#ifdef UT_NAMESIZE
@ -86,9 +87,8 @@ struct buf_msg {
* We require f_file to be valid if f_type is F_FILE, F_CONSOLE, F_TTY
* or if f_type is F_PIPE and f_pid > 0.
*/
struct filed {
struct filed *f_next; /* next in linked list */
SIMPLEQ_ENTRY(filed) f_link;
short f_type; /* entry type, see below */
short f_file; /* file descriptor */